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Abstract. We consider a planar symmetric vector field that undergoes

a homoclinic bifurcation. In order to study the existence of exterior pe-
riodic solutions of the vector field around broken symmetric homoclinic

orbits, we investigate the existence of fixed points of the exterior Poincaré

map around these orbits. This Poincaré map is the result of the combina-
tion of flows inside and outside the homoclinic orbits. It shows how a big

periodic orbit converts to two small periodic orbits by passing through

a double homoclinic structure. Finally, we use the results to investigate
the existence of periodic solutions of the perturbed Duffing equation.

Keywords: Poincaré map, homoclinic bifurcation, fixed point, periodic
solution.
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1. Introduction

The problem of global bifurcations of homoclinic orbits leading to the ap-
pearance of periodic solutions is an interesting subject in the theory of differen-
tial equations and dynamical systems. Today, there exist several methods for
investigating the bifurcations of homoclinic orbits (see for example [1,2,4,10,18]
and references within). One of the main tools in the study of these bifurcations
is the Poincaré map, such that investigating the behavior of orbits of vector
field near homoclinic is equivalent to investigating the behavior of orbits of the
Poincaré map. For example, the existence of the closed orbits for vector fields
is equivalent to the existence of the fixed points for the Poincaré map and vice
versa.

In 1983, Glendinning and Sparrow considered the autonomous system ẋ =
f(x) + g(x, µ) where x ∈ R3, f(x) is the linear part of the system, g is an
analytic function w.r.t. x and µ ∈ R is a parameter. The assumption was
the existence of a homoclinic solution based on the saddle equilibrium point
x = 0 for the system. They investigated the existence, number, and behavior
of periodic solutions of the system near the homoclinic orbit by constructing
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the Poincaré map [8]. Deng and Zhu studied the bifurcations of homoclinic
loops with double orbit flips of the system ẋ = f(x) + g(x, µ) where x ∈ R4,
µ ∈ Rl≥3 and f, g ∈ Cr≥3. The assumption was the existence of a homoclinic
solution based on the saddle equilibrium point x = 0 for the system. They
computed the Poincaré map to discuss numbers, existence, coexistence, and
non-coexistence of Various homoclinic and periodic orbits [7]. The bifurcation
of generalized homoclinic loops of the piecewise smooth systems was verified
by Liang, Han, and Zhang in [13]. They calculated the Poincaré map and
imposed some conditions on the system for getting one or two limit cycles near
the loops. Li and Huang concentrated on homoclinic bifurcations of the planar
perturbed discontinuous Filippov systems. They gave some conditions for an
unperturbed system to show the existence and stability of homoclinic orbits.
Furthermore, they proved the existence of stable and unstable limit cycles near
the homoclinic orbit by analyzing the Poincaré map near the homoclinic [12].
Xiong and Han considered a non-smooth system. They made the Poincaré map
to verify the bifurcation of the limit cycle near a homoclinic (heteroclinic) loop.
Furthermore, they discussed the number of limit cycles that can appear from
homoclinic (heteroclinic) bifurcation [19].

In this paper, we will investigate the bifurcation of periodic solutions of a
planar vector field near two symmetric homoclinic orbits w.r.t. origin. For this
purpose, we consider the planar system

(1)

(
x
y

)′
=

(
λ1 0
0 λ2

)(
x
y

)
+

(
f1(x, y, µ)
f2(x, y, µ)

)
where λ1 < 0, λ2 > 0, f1,2 ∈ C2 are the nonlinear parts of the system, and µ ∈
R is a parameter. We assume that for µ = 0, the system is symmetric w.r.t. the
origin and has two homoclinic orbits based on it (see Fig. 1.a). Here, the main
assumption is that for µ 6= 0, the system has passed a homoclinic bifurcation
(see Fig. 1.b and 1.c). Previously, the interior Poincaré map Pi = p′1 ◦ p′0 was
constructed (see Fig. 2 a) and its results were summarized in [18] as bellow:

Theorem 1.1. ( [18, pp.144]) Consider (1) and let 0 < |µ| << 1.

A1: If (−λ1/λ2) < 1 and µ < 0, then (1) has a unique stable periodic orbit
inside the broken homoclinic orbit.

A2: If (−λ1/λ2) > 1 and µ > 0, then (1) has a unique unstable periodic
orbit inside the broken homoclinic orbit.

There exist many restrictions, especially when µ 6= 0, which turn the inves-
tigation of the exterior Poincaré map into an interesting subject in dynamical
systems. This map is the result of a combination of four local Poincaré maps
p1, p2, p3, and p4 (see Fig. 2.b). For constructing the exterior Poincaré map,
we define four cross sections as below:

π−r ={(x, y) ∈ R2 : x = ε, −ε 6 y < 0}, π+
d ={(x, y) ∈ R2 : 0 < x 6 ε, y = −ε},

π+
l ={(x, y) ∈ R2 : x = −ε, 0 < y 6 ε}, π−t ={(x, y) ∈ R : −ε 6 x < 0, y = ε}.
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Figure 1. The behavior of homoclinic orbits for µ = 0, µ > 0
and µ < 0

Figure 2. The generated flow (a): inside the homoclinic or-
bit. (b): outside the homoclinic orbits

In the next sections, we will construct the exterior Poincaré map. Then in Sec-
tion 3, we will show that there exists a big periodic solution1 that breaks into
two small periodic solutions2 by passing through symmetric homoclinic orbits
(see Fig. 5 and its description in Section 5). In Section 4, as an application of
the results, we will discuss the existence of periodic solutions of the perturbed
Duffing equation {

ẋ = y − νu(x)y2

ẏ = x− x3 + ν(x+ by) + µ sinx.

Studying such equations in science and engineering has attracted the attention
of many researchers. For example, in 2002, Chung et al. focused on the bifurca-
tion and limit cycles of nonlinear oscillators ẍi+gi(xi) = µfi(x1, ..., xn, ẋ1, ..., ẋn),

1It means a periodic solution that has a homoclinic structure in its inner region.
2It means the periodic solutions enclosed by the homoclinic orbits
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i = 1, ..., n. Especially they investigated coupled generalized Van der Pol and
Rayleigh oscillators [5]. In 2009, Kuznetsov and Roman studied the regimes of
possible oscillation and structure of parameter space in the dissipative coupled
Van der Pol and Van der Pol-Duffing oscillators with different controlling pa-
rameters [11]. In 2017 Chen et al. discussed homoclinic solutions of a power-law
nonlinear oscillator with the equation ẍ+c1x+cpx

p = εf(x, ẋ, µ) [3]. Recently,
such equations have been taken into consideration, such as [9, 14,15,17].

2. Construction of the exterior Poincaré map

To begin we consider the Poincaré map p1 : π−r → π+

d which obtained by
following the flow produced by the linear part of the system near the origin. A
direct calculation shows that

p1 : (ε, y) 7→M1(ε, y)t = (x,−ε), M1 =

(
(−εy )

λ1
λ2 0

0 −ε
y

)
, y < 0.

For defining p2, we assume

p2(0,−ε, 0) =
(
p20(0,−ε, 0), p21(0,−ε, 0)

)
= (−ε, 0).

By calculating the Taylor expansion of p21 around (0,−ε, 0), we get

p21(x, y, µ) = p21(0,−ε, 0) + ∂p21
∂x (0,−ε, 0)(x− 0) + ∂p21

∂y (0,−ε, 0)(−ε+ ε)

+∂p21
∂µ (0,−ε, 0)(µ− 0) +O(2) = ax+ bµ+O(2)

where, from Fig. 1, b < 0 and a > 0. So, we can rescale µ such that b = −1.
Thus, for x > 0 the function p2 : π+

d → π+

l can be defined as

p2 : (x,−ε) 7→(−ε, ax−µ)+O(2)=(−ε, 0)+M2(x,−ε)t+µ(0,−1)+O(2)=(−ε, ỹ),

M2 =

(
0 0
a 0

)
.

Because (1) is symmetric w.r.t. the origin, p3 : π+

l → π−t and p4 : π−t → π−r
are respectively defined as p1 and p2; that is:

p3 : (−ε, ỹ) 7→ (−ε( ε
ỹ

)
λ1
λ2 , ε) +O(2) = M3(−ε, ỹ)t +O(2), ỹ > 0,

M3 =

(
( εỹ )

λ1
λ2 0

0 ε
ỹ

)
,

p4 : (x̃, ε) 7→ (ε, ax̃+ µ) +O(2) = (ε, 0) +M4(x̃, ε)t + µ(0, 1) +O(2), x̃ < 0,

M4 =

(
0 0
a 0

)
.

Thus, the exterior Poincaré map, which is the result of the combination of the
four functions p1, p2, p3, and p4, is given by:

(2) Po : (ε, y) 7→ p4 ◦ p3 ◦ p2 ◦ p1(ε, y) = (ε, µ) +M(−ε,−µ)t,
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M =

(
0 0

a
(
aε

λ1
λ2 (−y)

−λ1
λ2 − µ

ε

)−λ1
λ2 0

)
.

Note that in (2), for combining p2 ◦ p1 with p3, the image of p2 ◦ p1 must be
limited in the domain of p3; it means 0 < p2 ◦ p1(ε, y) < ε or equivalently

−ε < µ− aε
(
aε

λ1
λ2 (−y)−

λ1
λ2 − µ

ε

)−λ1λ2 < 0.

In other words,

max{−ε,−εa
λ2
λ1

(
(
µ+ ε

aε
)−

λ2
λ1 +

µ

ε

)−λ2λ1 } < y < min{0,−εa
λ2
λ1

(
(
µ

aε
)−

λ2
λ1 +

µ

ε

)−λ2λ1 }.
Now by considering
(3)

ymax(µ) := −εa
λ2
λ1

(
(
µ

aε
)−

λ2
λ1 +

µ

ε

)−λ2λ1
, ymin(µ) := −εa

λ2
λ1

(
(
µ+ ε

aε
)−

λ2
λ1 +

µ

ε

)−λ2λ1
,

the domain of p2 ◦ p1 is obtained as

π−r,µ = {(ε, y) : max{−ε, ymin(µ)} < y < min{0, ymax(µ)}

Thus, the Poincaré map P : π−r,µ ∪ π+
r → π−r ∪ π+

r is defined as

P(ε, y) =

{
Pi(ε, y), if y > 0
Po(ε, y), if max

(
− ε, ymin

)
< y < min(ymax, 0).

Note that the Poincaré map Pi : π
r+
0 → π

r+
0 defined in [18] can also be

calculated by combining p
′

1 with p4:

Pi : (ε, y) 7→ (ε, 0) +M
′
(ε, y) + µ(0, 1), M

′
=

(
0 0

a( εy )
λ1
λ2 0

)
.

Since the two homoclinic orbits are symmetric w.r.t. the origin, we can
generalize the results of the Poincaré map inside one of the homoclinic orbits
to the other. In the next section, we will investigate the existence of fixed
points of the Poincaré map P.

3. Existence of fixed points

It is well-known that the fixed points of P can be found by solving the
equation P(ε, y) = (ε, y). For y > 0 the fixed points of P are equivalent to the
fixed points of Pi, the existence of these fixed points has already been studied
in [18] and the results have been described in Theorem 1.1.

Here, we investigate the fixed points of P when max{−ε, ymin} < y <
min{ymax, 0}. If µ < 0 then Po is defined for y < 0 and if µ > 0 then Po
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can be defined for max{−ε, ymin} < y < min{ymax, 0}. On the other hand,

dymax(µ)

dµ
=

λ2εa
λ2
λ1

(
( µaε )

−λ2λ1 + µ
ε

)−λ2λ1−1( 1
ε −

λ2( µaε )
−λ2
λ1
−1

aελ1

)
λ1

< 0,

dymin(µ)

dµ
=

λ2εa
λ2
λ1

(
(µ+εaε )−

λ2
λ1 + µ

ε

)−λ2λ1−1( 1
ε −

λ2(
µ+ε
aε )

−λ2
λ1
−1

aλ1ε

)
λ1

< 0.(4)

Therefore, ymax(µ) and ymin(µ) are strictly decreasing functions; In addition,
in the case (−λ1/λ2) > 1, by a direct calculation, we can see dymin(0)/dµ < 0,
dymax(0)/dµ = −∞ and d2ymin(0)/dµ2 > 0. Also, in the case (−λ1/λ2) < 1,
we obtain dymax(0)/dµ = 0, dymin(0)/dµ < 0 and d2ymin(0)/dµ2 < 0. Thus,
the domain of Po in the plan (y, µ) is as Fig. 3. For finding the fixed points of

Figure 3. Domain of Poincaré map Po, (a) When µ > 0 and
(−λ1/λ2) < 1. (b) when µ > 0 and (−λ1/λ2) > 1. (c) when
µ < 0.

Po, we need a generalization of the implicit function theorem.

Definition 3.1. A region is called uniformly connected if there exists a con-
stant G such that any two points of this region can be connected by a broken
line that is entirely inside the region, and the length of this broken line is not
greater than G times of the length of a straight line connecting two points.

Theorem 3.2. (The implicit function theorem on a boundary [6])
Consider the nonlinear system Fi(x1, ..., xn, u1, ..., um) = 0, 1 ≤ i ≤ n on the
uniformly connected region S. Also, assume the point (a, c) = (a1, ..., an, c1, ..., cm)

on the boundary of S be a solution of the system such that det
((
∂Fi/∂xj

)
(a, c)

)
6=

0. So, in the neighborhood of (a, c), the system Fi = 0 has a solution xi =
fi(u1, u2, ..., um) such that ai = fi(c1, c2, ..., cm).

As seen in Fig. 3, the domain of Po is a uniformly connected region. On
the other hand, according to the relation (2), the existence of a fixed point for
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Po is equivalent to the roots of equation h(y, µ) := y − µ − g(y, µ) = 0 where

g(y, µ) = −aε
(
aελ1/λ2(−y)−λ1/λ2 − µ/ε

)−λ1/λ2
and this is equivalent to the

intersection points of line x = y − µ and x = g(y, µ).

Theorem 3.3. Consider the system (1) and assume 0 < |µ| << 1.

B1: If (−λ1/λ2) < 1, then for µ > 0 , the system (1) has a unique stable
big periodic solution outside the broken homoclinic orbit.

B2: If (−λ1/λ2) > 1, then for µ < 0, the system (1) has a unique unstable
big periodic solution outside the broken homoclinic orbits.

Proof. B1: Let −λ1/λ2 < 1. In this case, the intersection points of x = y − µ
with x = g(y, µ) are equivalent to the intersection points of the corresponding
inverse functions, i.e. x = y + µ with x = g−1(y, µ). We put

(5) k(y, µ) := y + µ− g−1(y, µ),

where

g−1(y, µ) = −
[
a−1ε

−λ1
λ2

(( y

−aε
)−λ2
λ1 +

µ

ε

)]−λ2
λ1
.

Therefore,

k(ymax, 0) = 0,
(
∂k/∂µ

)
(ymax, 0) = 1,

(
∂k/∂y

)
(ymax, 0) = 1.

Thus, from Theorem (3.2), for sufficiently small µ, the equation k(y, µ) = 0
has a solution; i.e. y + µ = g−1(y, µ). On the other hand, for y < ymax(µ),

∂g(y, 0)

∂µ
= a(

−λ1
λ2

)(aε
λ1
λ2 (−y)

−λ1
λ2 )

−(λ1+λ2)
λ2 > 0.

Hence, g(y, µ) is not constant w.r.t. µ. So, for sufficiently small µ, the line
x = y − µ and x = g(y, µ) have an intersection point. Thus, for µ > 0, the
Poincaré map Po has a big periodic solution outside the broken homoclinic
orbits. Since

(
∂k/∂y

)
(ymax, 0) = 1, thus the big periodic orbit is unstable for

the inverse system, which implies that it is stable for the system itself.
B2: Let (−λ1/λ2) > 1. A direct calculation shows that

h(0, 0) = 0,
∂h

∂µ
(0, 0) = −1,

∂h

∂y
(0, 0) = 1.

Thus, Theorem (3.2) implies that for µ < 0, the Poincaré map Po has a big
unique periodic solution outside the broken homoclinic orbits. Finally, since(
∂h/∂y

)
(0, 0) = 1, thus the big periodic orbit is unstable.

�

4. Application to perturbed Duffing equation

In this section, we implement the result of Theorem 3.3 to investigate the
existence of periodic solutions around broken homoclinic orbits of the perturbed
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Duffing equation

(6)

{
ẋ = y − νu(x)y2

ẏ = x− x3 + ν(x+ by) + µ sinx

where ν, µ are positive parameters, b ∈ R and u(x) is an odd function.
The unperturbed part of (6), i.e. ν, µ = 0, is a Hamiltonian system with the

Hamiltonian function

H(x, y) =
1

2

(
y2 − x2 +

x4

2
).

Also, it has three equilibrium points p0 = (0, 0) and p1,2 = (±1, 0) that p0
is a saddle point and p1,2 are center points. Furthermore, there exist two
symmetric homoclinic orbits (see Fig. 4(a)) γ± indicated by y2 = x2 − x4/2
and respectively for

γ+ : y = ±x
√

1− x2

2
, 0 < x ≤

√
2,(7)

γ− : y = ±x
√

1− x2

2
, −

√
2 ≤ x < 0.

It is easy to check that γ± intersects the x-axis at x±0 = ±
√

2. Since γ±

are symmetric w.r.t. the origin, so we investigate the behavior of the system
around γ+. Consider (6) for µ = 0 i.e.

(8)

{
ẋ = y + νu(x)y2

ẏ = x− x3 + ν(x+ by).

By implementing the Melnikov method (see [18, Sec. 28.4]), we can obtain the
Melnikov function:

M(b) =

∫
R

(
u(x)y2(−x+ x3) + y(x+ by)

)
dt.

Considering this fact that y(t) = x
′
(t) and using (7), we can rewrite the above

integral in the form:

M(b) =

∫
γ+

(
u(x)y(−x+ x3) + x+ by

)
dx

=

∫ √2

0

(
u(x)y+(−x+ x3) + x+ by+

)
dx−

∫ 0

√
2

(
u(x)y−(−x+ x3) + x+ by−

)
dx.

Here y+ = x
√

1− x2/2 and y− = −x
√

1− x2/2 are respectively the functions

of graph of γ+ on the intervals (0,
√

2] and [
√

2, 0). Since y+ = −y−, so

M(b) = 2

∫ √2

0

(
u(x)y+(−x+ x3) + by+

)
dx.
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Figure 4. (a): The double homoclinic solutions for (6) when
µ = ν = 0. (b): The double homoclinic solutions for (6) when
µ = 0. (c): Big periodic orbit for (6) when µ = 0.01, ν = 0.001,

u(x) = x and b =
4(29
√
2−1)

35(2
√
2−1)

.

Hence, by a direct calculation, for

b0 =

∫√2

0
u(x)y+(x− x3)dx∫√2

0
y+dx

,

we obtain

M(b0) = 0,
∂M

∂b
(b0) 6= 0.

Therefore, for 0 < |ν| << 1, there exists b ∈ R such that (8) has two symmetric
(w.r.t. origin) homoclinic orbits (see Fig. 4(b)) with corresponding eigenvalues

λ1 =
1

2

(
bν −

√
b2ν2 + 4ν + 4

)
, λ2 =

1

2

(
bν +

√
b2ν2 + 4ν + 4

)
.

Note that (8) is an autonomous system, so the simple zeroes of the Melnikov
function indicate homoclinic orbits of the system. By Theorem 3.3, since
(−λ1/λ2) < 1, so for 0<ν, µ sufficiently small, the system has a unique stable
big periodic solution outside the broken homoclinic orbits (see Fig 4(c)).

5. Conclusion

This paper investigates the existence of periodic solutions bifurcated from
symmetric homoclinic orbits for a planar system by applying the Poincaré
maps. It is well-known that the system’s periodic orbits correspond to the
Poincaré map’s fixed points.

The existence of these periodic solutions was discussed in Theorem 3.3. In
fact, in the case of −λ1 > λ2 for sufficiently small µ < 0, the system (1)
has a unique unstable big periodic orbit outside the broken homoclinic orbits
that merge to homoclinics in µ = 0 and finally, for µ > 0, they convert to
two unstable periodic orbits inside the broken homoclinic orbits (see Fig. 5).
Similarly, in the case of −λ1 < λ2, for µ < 0 there exist two stable periodic
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orbits inside the broken homoclinics that merge to the homoclinic orbits in
µ = 0, and finally, for µ > 0, they convert to a stable big periodic orbit outside
the broken homoclinics. This is precisely what we have seen for perturbed
Duffing equation (6), where the broken homoclinics γ± are surrounded by a
stable big periodic orbit (see Fig. 4(c) again).

Figure 5. The global bifurcation of periodic solutions in the
case −λ1 > λ2
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