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ABSTRACT. By considering a fixed point in the punctured unit disk and
using the g—derivative , a new subfamily of meromorphic and univalent
functions is defined. Also, the first and second order g—derivative of mero-
morphic functions are introduced. Coefficient bounds, extreme points,
radii of starlikeness and convexity are obtained. Furthermore, the con-
vexity and preserving under convolution with some restrictions on pa-
rameters are investigated.
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1. Introduction

Let > be the class of meromorphic functions of the type:
) ) =L 0
2 = n b

which are analytic in the punctured unit disk A* ={z € C: 0 < |z| < 1}.
Let w be a fixed point in A* and ). consist of functions F' which are
univalent in A* and are of the form:

(2) FE)=1E) = 24 D), (F=z-w).
n==k

Definition 1.1. We say that a function f(z) is meromorphic on a domain A*
if f(z) is analytic on A* except possibly singularities, each of which is a pole.
Also, f(z) is a meromorphically starlike function of order A if and only if:
!
—Re{%}>)\, (z € AY).
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Similarly, f(z) is a meromorphically convex function of order A if and only if:

z 1
—Re{l—l— JJ:, } > A
Example 1.2. The functions g, % and —% are meromorphic, meromorphically
convez and meromorphically starlike functions, respectively.

Gosper and Rahman [1], defined the g—derivative (0 < ¢ < 1) of a function
f of the form (1) by:

flaz) = f(2)
3 D,f(z) = , z € A¥).
3) S =TT ea)
This definition can be extended for functions F' € > of the form (2) as follow:

flgz") — f(z")

(4) D,F(z) = D,f(z*) = (2" =z —w).

(q—1)z ~
From (4), we get:
1 - _
(5) DyF(z) = MEEE + Z[”}qan(z —w)" 7,
n=~k

where

1-— qn n—1
(6) g =g, =1+tat+d

If ¢ — 17, then [n], — n, hence we have:

lim D,F(z) = F'(2).
q—1-

A function F(z) belonging to the class > is in the class >.u (a, 3,q) if it
satisfies the inequality:

D, F(z))"
-0y 2]+

(7) 1,

Dq z 1"
Bq[(z - w)W((z))))/ + 1] + agq
1

2. Main Results

First, we obtain coefficient bounds for functions in Y . (o, 3,q). Then we
prove the convexity of this class.

Theorem 2.1. F(z) of the form (2) belongs to Y. (o, B,q) if and only if:

(8) Zq(n—l)[n]q(n(ﬂJr%) + (% —6))% < 2(a—28).

n==k
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Proof. Suppose (8) holds and
A=z = w)D,F )" + gD, F ()]
— |Ba(z — w)[Dg F(2)]" + (e + B)q[Dg F(2)]'] -

Replacing [DgyF(z)]" and [DyF(z)]” by using (5) for 0 < |z —w| =1 < 1, we
have:

Z TL + 1 1)[n]qan(2 _ w)n—2
- ﬁ@a —4B)+ Y q(n—1)[n]g(B(n — 1) + a)an(z — w)"
n=k

< S 0" Dl o 43)

Z (n—1D[nlg(B(n—1) + a)a,r” _2‘.
Since this inequality holds for all » (0 < r < 1), making » — 1, we obtain:
> 1 1
A< qln =Dl (n(8+ 5) + (5 — 8) Jan — 2(a — 28).
n=~k

By (8), we have A < 0, so we get the required result.
Conversely, let

> (%) (n — Dlnlyan(z — w)*2
n:oé: < 17
2((20‘__13)%) + ;k q(n — 1)[n]q(ﬁ(n -1)+ a)an(z — )2
hence
> q(%52) (0 — Dlnly(z — w)"*!
20— 28) = 3 a0 = Dlila (5 — 1) + @) (s — w1

Since Re{z} < |z| for all z, then it follows from the above inequality that:

> a(%5H) (n = [nly(z — w)™+!

=
@
3
Il
>
N
—_
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By putting z — w = r with 0 < r < 1 in the above inequality, we get:
> q("FH) (n = Dnjgr™+!

(9) Re e <L
2(a—28) — X::k q(n —1)[n]g[B(n — 1) + a]a,rmtt

Upon clearing the denominator in (9) and letting r — 1, we have:

Zq(n;‘l)(n_n[n] 2(a—28) — Z (n—1)[n]g[B(n —1) + aa,

n=~k n=k

So
S atn =)l [1(8+ 3) + (5~ B)]an < 2a— 29).
n=~k
This completes the proof. O

Corollary 2.2. If F(z) € >_u (v, 3,q), then the coefficients of F(z) satisfies
in the following inequality:
0 < 2(a —2p)

gl =Dl [n(5+ 5 + (5 - 9)]

Remark 2.3. Let f(z) = 2(1 — 2)~! and g(z) = 2(1 +iz)~! belong to the class
of normalized univalent functions. Then (f + g)’(3(1+1i)) = 0, so (f + g)(2)
is not in the same class. But for meromorphic functions we have the following
theorem.

(n = k).

Theorem 2.4. > " («, 3,q) is a convex set.

Proof. Let F;(z) defined by:

Fj(z) =

gz —w)", =12,

be in the class Y v (v, 3, ¢). It is sufficient to prove that:

= F(2)
j=1
is also in Y u (o, B,¢q), where > 4§, = 1.
j=1
Since Fj(z) € Y_u (o, B8,q), by (8) we have:

(10)
> atn =Dl [n(5+3) + G~ )] ans <2Aa—20),  G=12..m),
n==k
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also
P =3 0,5 (2)
j=1
:jil(sj[ 3 w)"]
- Za Lo °°<zwz_>
n=k j=1
But
S aln = Dlaly[n(8+ ) + ( ,,5}(25%])
n==k

-3, (nqu n=Dlly[n(8+ 3) + (5 — 8)]ans)

by (10), we have:

Now the proof

3. Extreme points and Radii properties

In the last section, we introduce extreme points of Y v (c, 3,¢) and obtain
radii of starlikeness and convexity for the same class.

Theorem 3.1. Let

(11) Fy(z) = ;

and forn >k,

L, 2( — 26)(z — w)"
z—w ' gn—Dnln(B+1)+ G -8)]

then F(z) € >-u (v, B,q) if and only if it can be expressed in the form:
= dnFu(2)
n=0

whered, 20,d; =0 (i=1,2,....,k—1) and > d, =1.
n=0

(12) Fa(z) =
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Proof. Let F(z) = > d,Fn(z), so:
n=0

1 2(a — 28) oy
*53%[z—w+qm—nMwa+;+w —5]" )]

)

= 1 2(&—25) Z_wn

*2;%lz—w+qm—uMme+;ww;—mﬂ )1
2

o0

_ 1 - 2(a — 28)

_Z—w;dnJrr;q(n—l)[n]q[n(ﬁ—k IENEEG)
1 & 2(a — 28) o
QTR Sty ey KL CR

Since

n==k
=2(a—2p) i dy,
n=~k
< 2(a - 28) f:dn = 2(a —2p),
n=0

so by Theorem 2.1, F(z) € >0 (a, 3, q).

w

Conversely, suppose that F(z) € >_v (o, 3,¢q). Then by (8), we have:
2(a—28)

13) WS - OB+ G-A)
By setting:
=Dl [r(B+ 1) + G- A)]
n = 2 —25) an,  (n=1),
d; =0, (i=1,2,..., k—1),
do=1— i Ay,
n=2

we obtain the required result.
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Theorem 3.2. Let F(z) € > (a,3,q). Then:
[(i),noitemsep]F(z) is memorphically univalent starlike of order \
for0 < A <1in |z —w| < Ry, where:

B - {q(n— Dnly[n(B+3) + (1 - 8)] _)\)}n}u
L 2a—28)(n+2+ ) -

F(2) is memorphically univalent convex of order X for 0 < A< 1 in
|z —w| < Ry, where:

oy a0 = D [o(8+ 1) + (3= )] - X)) ™
2 = 2n(a —28)(n+2+A) .

(2) Proof.
[(i),noitemsep] It is enough to show that:
_ /
C-wFE) |
F(z)
But
1 o n 1 - n
- 4+ nan(z —w +Z7w—|— ap(z —w
RO v Zet
F(z) 1 o n
z—w <1 + Z CLn(Z - w) +1)
n=~k
> (4 Dan(z — w)™
< n=k -
1— > ap(z —w)ntl
n=~k
< 1- )‘7
or
o o
S+ Dz — 0™ < (1= 2) = (1= X) D agle — w1,
n=~k n=~k
or
- <n+2+)‘) n+1
- — < 1.
Z X anlz — w|
n==k
Now, by using (13), we have:
o0
n+2+A "
> o ala el
n=~k
= 2(a — 20) L(n+2+ A
< |z —w/"H——=) < 1.
2 G D 5+ G 7) 5=0)
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So it is enough to suppose:
|Z _ w|n+1 < q(n - 1)[”]‘1 [n(ﬂ + %) + (% - 5)](1 - )‘)
= 2(a —28)(n+2+\) ’
and so the proof of 1 is complete. Since “f is convex if and only if
zf’ is starlike”,
(z —w) [(z - w)F’(z)]' (2w [F’(z) +(z— w)F”(z)}
(z —w)F'(z) a (z —w)F'(z)
(z = w)F"(2)
F'(z)

O
In the last theorem, we show that Y . (o, 3, ¢) is closed under convolution.

Theorem 3.3. If

1 = N
F(z)227w+g an(z —w)",
n=~k

1 o
G = 2+ D balz—w)",
n=~k

are in the class Y . («, 8,q), then the Hadamard product (or convolution) of F
and G defined by:

1

zZ—w

+ i anbn(z — w)",

n=~k

(14) (F+G)(z) =

is in the class Y (o, *,q), where:

s g s HO 2D ~aaln = Dlaly[n(5+ ) + (=9

2( = 2B)2(1 = n) — 2(n — Dglnlq[n(8 + 3) + (5 — B)]
(2) Proof. Since F,G € Y. (v, B,q), so by (8), we have:

o a(n—Dnlg[n(8+3) + (5 — B)an
(16) ; T <1,
o a(n = D[nlg[n(8 +3) + (5 = B)]ba
1" 2 o2 <!
We must find the smallest 8* such that:
ST NG RS o)

20— 25"

n=~k
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by using the Cauchy-Schwarz inequality, we have:

ay Al <o

Now, it is enough to show that:

n=k

gl = Dlaly [0 +3) + (58]
2(a — 23%) "
_ =Dl B+ (G-B)]

or equivalently:

But from (17), we have:
2(a—2
Vanby < (Ol Bl)
n

So it is enough that
2(a — 28) _ (a—28)[n(p
gn =Dl [n(8+3) + (5 -8)] ~ (a—28)[n(5"

2(a — 2p)2 < o — 26" '
gln =Dl [n(B+3) + (5 -0  nB+3)+(G—-5)
After a simple calculation, we get:
.- 3a=282(n+1) ~3aq(n — V], [n(8 + }) + (5 - B)]”
2(a —26)%2(1 —n) — 2(n — 1)g[n], [n(ﬁ + %) + 2

so the proof is complete. O
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