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Abstract. The Inverse Gaussian (IG) distribution is widely used to
model positively skewed data. In this article, we examine goodness of

fit tests for the Inverse Gaussian distribution based on the empirical dis-
tribution function. In order to compute the test statistics, parameters of

the Inverse Gaussian distribution are estimated by maximum likelihood

estimators (MLEs), which are simple explicit estimators. Critical points
and the actual sizes of the tests are obtained by Monte Carlo simulation.

Through a simulation study, power values of the tests are compared with

each other. Finally, an illustrative example is presented and analyzed.
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1. Introduction

The Inverse Gaussian (IG) distribution is an important statistical model for
analyzing right skewed data with positive support. Its density function is

f(x;µ, λ) =

(
λ

2πx3

)1/2

exp

{
− λ

2µ2x
(x− µ)

2

}
, x > 0,

where µ ∈ R+ and λ ∈ R+ are parameters. The mean and variance of this
distribution are µ and µ3

/
λ, respectively.

Various applications based on IG distribution assumption are widely ad-
dressed by the literature in different fields of science as electrical networks,
cardiology, hydrology, meteorology, ecology, physiology, demography, employ-
ment service, and etc., (e.g., Folks and Chhikara [9,10]; Bardsley [4]; Seshadri
[19]; Johnson et al. [14]; Barndorff-Nielsen [5]). Therefore, finding powerful
goodness of fit tests for the IG distribution is an important issue. In this arti-
cle, we investigate different goodness of fit tests for the IG distribution using a
simulation study.
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Assuming that X1, ..., Xn is the sample from a distribution F , we wish to
assess whether the unknown F (x) can be satisfactorily approximated by a IG
model G(x). Goodness-of-fit (GOF) tests are designed to measure how well the
observed sample data fits some proposed model. One class of GOF tests that
can be used consists of tests based on the distance between the empirical and
hypothesized distribution functions. Five of the known tests in this class are
Cramer-von Mises (W 2), Kolmogorov-Smirnov (D), Kuiper (V ), Watson (U2),
and Anderson-Darling (A2). For more details about these tests, see D’Agostino
and Stephens [7].

Many researchers have been interested in goodness of fit tests for differ-
ent distributions and then different tests are developed in the literature. For
example, see D’Agostino and Stephen [7] and Huber-Carol et al. [13].

Goodness of fit tests for the IG distribution are investigated by some authors
including O’Reilly and Rueda [18], Gunes et al. [11], Henze and Klar [12], Al-
Omari and Haq [2], Ofosuhene [17], Allison et al. [1].

Zhang [24] introduced three goodness of fit test statistics based on the em-
pirical distribution function and applied them for testing normality and showed
that the new tests have higher power than the competing tests. In the present
paper, we will apply these test statistics to test the hypothesis of the IG dis-
tribution and compare the power of these tests with the other tests.

Recently, Torabi et al. [20] proposed a new test statistic based on the em-
pirical distribution function and then constructed a test of fit for the normal
distribution and show their test is powerful against some alternatives. Also,
Torabi el al. [21] again used their test statistic and suggested a test for the ex-
ponential distribution. Here, we investigate the behavior of Torabi el al. [20]’s
test for the IG distribution and propose some test statistics for test of fit for
IG model.

The main contribution of the paper can express as follows. In this paper,
we apply EDF-tests for the IG distribution. Moreover, the methods of Zhang
[24] and Torabi el al. [20] are stated and based on these methods, we propose
some goodness of fit tests for the IG distribution. Table of critical values and
properties of the tests are presented. Through extensive simulation studies, we
find the powerful tests for different choices of sample sizes and alternatives. We
also investigate the behavior of the tests for the IG model with real data.

In Section 2, we consider goodness of fit test statistics based on the empirical
distribution function and apply them for the IG distribution. In Section 3, the
critical points and the actual sizes of the test are obtained by Monte Carlo sim-
ulations. Then power values of the tests are computed and then compared with
each other. All simulations were carried out by using R 4.1.1 and with 100,000
replications. Section 4 contains applications of the tests in real examples. The
following section contains a brief conclusion.
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2. The Test Statistics

The GOF test checks whether our sample data is likely to be from a specific
theoretical distribution. We have a set of data values, and an idea about how
the data values are distributed. The test gives us a way to decide if the data
values have a “good enough” fit to our idea, or if our idea is questionable.
GOF tests are designed to measure how well the observed sample data fits
some proposed model.

Given a random sample X1, . . . , Xn from a continuous probability distri-
bution F with a density f(x) over a non-negative support, the hypothesis of
interest is

H0 : f(x) = f0(x;µ, λ) =
(

λ
2πx3

)1/2
exp

{
− λ

2µ2x (x− µ)
2
}
, x > 0, for some (µ, λ) ∈ Θ ,

where µ and λ are unspecified and Θ = R+ ×R+. The alternative to H0 is

H1 : f(x) 6= f0(x;µ, λ), for any (µ, λ) ∈ Θ .

Here, we consider the popular and common tests which are used in practice
and statistical software. The test statistics of these tests are briefly described
as follows. For more details about these tests, see D’Agostino and Stephens
[7].

Let X(1) ≤ X(2) ≤ ... ≤ X(n) are the order statistics based on the random
sample X1, ..., Xn.

1. The Cramer-von Mises statistic [22]:

W 2 =
1

12n
+

n∑
i=1

(
2i− 1

2n
− F0(X(i); µ̂, λ̂)

)2

.

2. The Watson statistic [23]:

U2 = W 2 − n
(
P̄ − 0.5

)2
,

where P̄ is the mean of F0(X(i); µ̂, λ̂), i = 1, ..., n.
3. The Kolmogorov-Smirnov statistic [15]:

D = max(D+, D−),

where

D+ = max
1≤i≤n

{
i

n
− F0(X(i); µ̂, λ̂)

}
; D− = max

1≤i≤n

{
F0(X(i); µ̂, λ̂)− i− 1

n

}
.

4. The Kuiper statistic [16]:

V = D+ +D−.

5. The Anderson-Darling statistic [3]:

A2 = −n− 1

n

n∑
i=1

(2i− 1)
{

logF0(X(i); µ̂, λ̂) + log
[
1− F0(X(n−i+1); µ̂, λ̂)

]}
.
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In the above test statistics, F0(x) is the cumulative distribution function

of the IG distribution and (µ̂, λ̂) are the maximum likelihood estimates of the
parameter (µ, λ).

Moreover, we consider the EDF-based tests proposed by Zhang [24]. Briefly,
the approach of Zhang [24] for the IG distribution is described as follows. Let

Ht : F (t) = F0(t) =
1

1 + exp {−(t− µ)/σ}
,

and H̄t : F (t) 6= F0(t). According Zhang [24], testing H vs H̄ is equivalent to
testing Ht vs H̄t for every t ∈ (0,∞) in the sense that

H =
⋂

t∈(0,∞)

Ht and H̄ =
⋃

t∈(0,∞)

H̄t .

Now, define a binary random sample to test Ht vs H̄t for each t;

Xit = I (Xi ≤ t) i = 1, 2, ..., n,

where P (Xit = 1) = F (t) and P (Xit = 0) = 1− F (t).
Let Zt denotes a statistic based on Xit for testing Ht vs H̄t where large

values of Zt reject Ht. For testing H vs H̄, Zhang [24] proposed two test
statistics given by

Z =
∫
Ztdw(t) and Zmax = sup

t∈(0,∞)

[Ztw(t)] ,

where w(t) is some weight function. Also, large values of these statistics reject
H.
Zhang [24] for Zt considered Pearson’s Chi squared statistic

X2
t =

n[Fn(t)− F0(t)]
2

F0(t) [1− F0(t)]
,

and the likelihood ratio statistic

G2
t = 2n

{
Fn(t) log

Fn(t)

F0(t)
+ [1− Fn(t)] log

1− Fn(t)

1− F0(t)

}
,

where Fn(t) is the empirical distribution function. If we set Zt = X2
t with

w(t) = n−1F0(t) [1− F0(t)], dw(t) = n−1F0(t) [1− F0(t)] dF0(t),

and w(t) = F0(t), then the traditional Kolmogorov–Smirnov, Cramer–von
Mises and Anderson–Darling statistics are obtained.

Moreover, if we consider Zt = G2
t with w(t) = 1, dw(t) = F0(t)−1[1− F0(t)]

−1
dF0(t)

and dw(t) = Fn(t)−1[1− Fn(t)]
−1
dFn(t), respectively, and further, Fn(X(i)) =

i−0.5
n , then the test statistics proposed by Zhang [24] are obtained. These test

statistics for the IG distribution are as

ZA = −
n∑
i=1

 logF0(X(i); θ̂)

n− i+ 0.5
+

log
[
1− F0(X(i); θ̂)

]
i− 0.5

 ,
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ZC =

n∑
i=1

(
log

{
F0(X(i); θ̂)

−1
− 1

(n− 0.5)/(i− 0.75)− 1

})2

,

ZK = max
1≤i≤n

(
(i− 0.5) log

{
i−0.5

nF0(X(i);θ̂)

}
+ (n− i+ 0.5) log

{
n−i+0.5

n(1−F0(X(i);θ̂))

})
.

It is obvious that for large values of the above test statistics the null hy-
pothesis H0 will be rejected.
Given X and Y two absolutely continuous random variables with cdfs F0 and
F , respectively, Torabi et al. [20] defined the following discrepancy measure:

D(F0, F ) =

∫ ∞
−∞

h(
1 + F0(x)

1 + F (x)
)dF (x) = EF

[
h(

1 + F0(x)

1 + F (x)
)

]
,

where EF [.] is the expectation under F and h : (0,∞) → R+ is a continuous
function, decreasing on (0,1) and increasing on (1,∞) with an absolute mini-
mum at x = 1 such that h(1) = 0. For this measure, D(F, F0) = 0 if and only
if F = F0 , almost everywhere.
Torabi et al. [20] proposed to use this measure as a criterion of goodness of fit
of an iid sample X1, ..., Xn with empirical distribution function Fn, to a given
distribution F0. It is clear that D(F, F0) = 0 can be estimated by

Hn = D(F0, Fn) =
1

n

n∑
i=1

h

(
1 + F0(X(i))

1 + Fn(X(i))

)
=

1

n

n∑
i=1

h

(
1 + F0(X(i))

1 + i/n

)
,

and we can consider it as a test statistic. Here, we construct tests for the IG
distribution based on Hn as follows.
Let X(1) ≤ X(2) ≤ ... ≤ X(n) are the order statistics based on the random
sample X1, ..., Xn. Applying the Torabi et al. [20] distance we have

Hn =
1

n

n∑
i=1

h

(
1 + F0(X(i))

1 + Fn(X(i))

)
=

1

n

n∑
i=1

h

(
1 + F0(X(i); µ̂, λ̂)

1 + i/n

)
,

where F0(x) is the cumulative distribution function of the IG distribution. The
test statistic Hn is expected to take values close to zero when H0 is true. Hence,
the null hypothesis is rejected for large values of Hn. Here, we consider the
following functions for h.

h1(x) = x log(x)− x+ 1 ,

h2(x) =

(
x− 1

x+ 1

)2

.

These functions are suggested by Torabi et al. [20].
Note that hk : [0,∞) → R+ is a non-negative function with the absolute

minimum at x = 1, such that hk(1) = 0, k = 1, 2. Under H0, we expect that

Fn(x) ≈ F0(x). Hence hk

(
1+F0(X)
1+Fn(X)

)
≈ 0, since hk(1) = 0. Thus the value

of test statistic is expected to be near zero when H0 is true. Therefore, it is
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justifiable to reject H0 for large values of Hn. Finally, we can write the test
statistic as follow.

H(k)
n =

1

n

n∑
i=1

hk

(
1 + F0(X(i); µ̂, λ̂)

1 + i/n

)
,

where k = 1, 2.

Corollary 2.1. From Proposition 2.3 of Torabi et al. [20], we have that for
all x ∈ R,

0 ≤ hk
(

1 + F0(X)

1 + Fn(X)

)
≤ max (hk(1/2), hk(2)) =

{
0.38629 k = 1
0.11111 k = 2

and since H
(k)
n is the mean of hk(.) over the transformed data, the support of

statistics H
(k)
n , k = 1, 2, can be obtained as:

supp(H(1)
n ) = [0, 0.38629], supp(H(2)

n ) = [0, 0.11111] .

Proposition 2.2. Let F1 be an arbitrary continuous cdf in H1. Then under
the assumption that the observed sample have cdf F1, the test based on Hn is
consistent.

Proof. Based on Glivenko-Cantelli theorem, for n large enough, we have that
Fn(x) ≈ F1(x), for all x ∈ R. Therefore,

Hn = 1
n

n∑
i=1

h
(

1+F0(X(i);µ̂,λ̂)

1+Fn(X(i))

)
= 1

n

n∑
i=1

h
(

1+F0(Xi;µ̂,λ̂)
1+Fn(Xi)

)
≈ 1

n

n∑
i=1

h
(

1+F0(Xi;µ̂,λ̂)
1+F1(Xi)

)
≈ 1

n

n∑
i=1

h
(

1+F0(Xi;µ̂,λ̂)
1+F1(Xi)

)
→ EF1

[
h
(

1+F0(Xi;µ̂,λ̂)
1+F1(Xi)

)]
= D(F0, F1), as n→∞.

Note that the convergence holds by the law of large numbers and D(F0, F1) is
a divergence between F0 and F1. So, the test based on Hn is consistent. �

3. Simulation Study

3.1. Critical values and the actual sizes. At the significance level α, we
reject H0 if the value of the test statistic is greater than C(α), where the critical
value C(α) is obtained by the (1 − α)−quantile of the distribution of the test
statistic under the null hypothesis H0.

Distribution of the test statistics W 2, D, V, U2, A2, ZA, ZC , ZK , H
(1)
n and

H
(2)
n under the null hypothesis cannot be evaluated analytically. Therefore, the

critical values of the test statistics are computed by the Monte Carlo method.

For each test statistic {W 2, D, V, U2, A2, ZA, ZC , ZK , H
(1)
n , H

(2)
n }, its sam-

ple values is calculated for 100,000 simulated random samples of size n from
the IG with parameters 1 and 1. Since α = 0.05 = 5000/100000, the 5000-th
order statistic is evaluated and the critical value C(α) is specified. The critical

values obtained for the statistics W 2-H
(2)
n and sample sizes 10 ≤ n ≤ 100 are
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given in Table 1.

Table 1. Critical values of the statistics at level 0.05%

n W2 D V U2 A2 ZA ZC Zk H
(1)
n H

(2)
n

10 0.8015 0.2859 0.4420 0.1213 0.1455 3.4978 6.5460 1.2207 0.003722 0.001996

20 0.8376 0.2094 0.3236 0.1241 0.1515 3.4446 8.8848 1.5360 0.001862 0.000968

30 0.8522 0.1736 0.2678 0.1250 0.1541 3.4154 10.3074 1.7162 0.001235 0.000635

40 0.8482 0.1511 0.2332 0.1254 0.1541 3.3943 11.2712 1.8166 0.000922 0.000471

50 0.8523 0.1355 0.2097 0.1247 0.1549 3.3815 12.1254 1.9161 0.000736 0.000374

60 0.8576 0.1240 0.1919 0.1254 0.1550 3.3718 12.7786 1.9936 0.000610 0.000309

70 0.8606 0.1155 0.1785 0.1263 0.1559 3.3638 13.2940 2.0712 0.000525 0.000266

80 0.8587 0.1082 0.1670 0.1262 0.1555 3.3576 13.8307 2.1221 0.000458 0.000232

90 0.8603 0.1020 0.1579 0.1257 0.1559 3.3524 14.2463 2.1671 0.000410 0.000207

100 0.8660 0.0970 0.1503 0.1264 0.1569 3.3476 14.6298 2.2225 0.000369 0.000186

Table 2. Type I error control of the tests for the nominal
significance level α = 0.05.

IG(µ, λ) n W2 D V U2 A2 ZA ZC ZK H
(1)
n H

(2)
n

IG(0.5, 0.5) 10 0.0506 0.0499 0.0506 0.0505 0.0509 0.0515 0.0514 0.0492 0.0516 0.0516
20 0.0483 0.0498 0.0486 0.0491 0.0493 0.0497 0.0493 0.0495 0.0486 0.0487
30 0.0497 0.0498 0.0510 0.0511 0.0489 0.0496 0.0497 0.0493 0.0498 0.0495
50 0.0492 0.0503 0.0506 0.0499 0.0498 0.0492 0.0511 0.0501 0.0496 0.0497

IG(0.5, 1) 10 0.0376 0.0380 0.0451 0.0440 0.0407 0.0495 0.0508 0.0371 0.0383 0.0386
20 0.0369 0.0393 0.0466 0.0452 0.0406 0.0530 0.0537 0.0419 0.0367 0.0368
30 0.0372 0.0399 0.0470 0.0458 0.0399 0.0525 0.0524 0.0427 0.0369 0.0365
50 0.0359 0.0368 0.0455 0.0437 0.0378 0.0524 0.0531 0.0429 0.0362 0.0362

IG(0.5, 2) 10 0.0301 0.0312 0.0433 0.0411 0.0352 0.0510 0.0532 0.0305 0.0322 0.0327
20 0.0298 0.0302 0.0428 0.0405 0.0348 0.0546 0.0543 0.0342 0.0285 0.0290
30 0.0283 0.0306 0.0444 0.0401 0.0334 0.0540 0.0554 0.0362 0.0300 0.0299
50 0.0278 0.0304 0.0430 0.0396 0.0326 0.0545 0.0559 0.0420 0.0298 0.0296

IG(1, 0.5) 10 0.0693 0.0666 0.0576 0.0591 0.0668 0.0530 0.0515 0.0670 0.0650 0.0643
20 0.0688 0.0666 0.0577 0.0580 0.0665 0.0493 0.0483 0.0679 0.0648 0.0641
30 0.0717 0.0683 0.0604 0.0606 0.0692 0.0484 0.0480 0.0665 0.0671 0.0664
50 0.0672 0.0674 0.0563 0.0557 0.0648 0.0459 0.0455 0.0600 0.0689 0.0687

IG(1, 1) 10 0.0498 0.0503 0.0504 0.0510 0.0501 0.0495 0.0496 0.0501 0.0504 0.0504
20 0.0500 0.0505 0.0495 0.0514 0.0498 0.0499 0.0494 0.0508 0.0488 0.0491
30 0.0494 0.0504 0.0506 0.0498 0.0494 0.0493 0.0493 0.0502 0.0497 0.0495
50 0.0492 0.0498 0.0505 0.0497 0.0488 0.0493 0.0501 0.0500 0.0489 0.0494

IG(1, 2) 10 0.0378 0.0393 0.0457 0.0451 0.0405 0.0507 0.0511 0.0378 0.0405 0.0407
20 0.0372 0.0397 0.0461 0.0458 0.0405 0.0514 0.0518 0.0408 0.0370 0.0373
30 0.0348 0.0381 0.0451 0.0434 0.0384 0.0511 0.0522 0.0401 0.0377 0.0373
50 0.0352 0.0368 0.0444 0.0432 0.0378 0.0517 0.0522 0.0420 0.0361 0.0365

IG(2, 0.5) 10 0.0890 0.0826 0.0663 0.0681 0.0866 0.0567 0.0536 0.0886 0.0795 0.0776
20 0.0919 0.0860 0.0655 0.0687 0.0885 0.0529 0.0493 0.0897 0.0820 0.0816
30 0.0969 0.0887 0.0688 0.0713 0.0928 0.0512 0.0493 0.0901 0.0870 0.0858
50 0.0935 0.0844 0.0680 0.0682 0.0902 0.0472 0.0456 0.0814 0.0872 0.0862

IG(2, 1) 10 0.0683 0.0651 0.0566 0.0591 0.0661 0.0516 0.0504 0.0668 0.0649 0.0640
20 0.0687 0.0655 0.0557 0.0581 0.0667 0.0520 0.0503 0.0677 0.0659 0.0658
30 0.0700 0.0678 0.0581 0.0595 0.0669 0.0493 0.0492 0.0661 0.0653 0.0646
50 0.0705 0.0668 0.0606 0.0594 0.0674 0.0474 0.0466 0.0625 0.0670 0.0670

IG(2, 2) 10 0.0503 0.0500 0.0518 0.0519 0.0511 0.0501 0.0504 0.0506 0.0499 0.0497
20 0.0485 0.0500 0.0476 0.0491 0.0488 0.0492 0.0501 0.0501 0.0494 0.0495
30 0.0496 0.0504 0.0503 0.0492 0.0495 0.0493 0.0507 0.0497 0.0515 0.0509
50 0.0482 0.0486 0.0513 0.0486 0.0490 0.0490 0.0497 0.0492 0.0494 0.0490

In Table 2 the estimated type I error control using the 0.05 percentiles of the
tests are evaluated (α = 0.05). The results are presented in Table 2. According
to the results of Table 2, the value of the type I error increases with the increase
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of the value of µ/λ, so that if µ/λ ≈ 1, then α is close to the nominal value.
We see that the actual sizes of the tests based on ZA and ZC are acceptable
and therefore we can use these tests in practice. The actual sizes of the other
tests are more (or less) than the nominal size for different values of µ and λ.
Moreover, it is evident that for all tests, when the parameters are equal the
type I error are acceptable.

3.2. Power comparison. The power of each test is studied by means of Monte
Carlo simulations. In power comparison, we considered the following alterna-
tives.

• the exponential distribution Exp(θ) with density θ exp(−θx);

• the Weibull distribution with density θxθ−1 exp
(
−xθ

)
, denoted by W (θ);

• the gamma distribution with density Γ(θ)−1xθ−1 exp (−x), denoted by
Γ(θ);

• the half-normal HN distribution with density Γ(2/π)1/2 exp
(
−x2

/
2
)
;

• the lognormal distribution LN(θ) with density (θx)−1(2π)−1/2 exp
(
−(log x)

2
/

(2θ2)
)

;

• the Pareto distribution Pa(θ) with density θ
/
xθ+1 ;

• the uniform distribution U with density 1, 0 ≤ x ≤ 1;

• the Beta distributionBeta(α, β) with density xα−1(1− x)
β−1
/
Beta(α, β), 0 ≤

x ≤ 1 ;

• the modified extreme value EV (θ), with distribution function 1−exp
(
θ−1(1− ex)

)
;

• the linear increasing failure rate law LF (θ) with density (1+θx) exp
(
−x− θx2

/
2
)
;

• Dhillon’s (1981) distribution with distribution function 1−exp
(
−(log(x+ 1))

θ+1
)

;

• Chen’s (2000) distribution CH(θ), with distribution function 1−exp
(

2
(

1− exθ
))

.

The powers of the tests based on W 2, D, V, U2, A2, ZA, ZC , ZK , H
(1)
n and

H
(2)
n statistics are computed by Monte Carlo simulation. Under each alterna-

tive, 100,000 samples of size 10, 20, 30 and 50 are generated. Then, the power
of the corresponding test was estimated by the frequency of the event “the test
statistic is smaller than the critical point”. The power estimates are presented
in Tables 3–6.



Monte Carlo comparison of goodness-of-fit tests for ... – JMMR Vol. 13, No. 1 (2024) 79

For each alternative, the bold type in these tables indicates the test achieving
the maximal power.

Table 3. Monte Carlo power estimates of the tests for n = 10
and at the significance level α = 0.05.

Alternative W2 D V U2 A2 ZA ZC ZK H
(1)
n H

(2)
n

Exp(1) 0.4182 0.3847 0.2977 0.3320 0.4223 0.3859 0.3646 0.3878 0.2822 0.2498
W (0.5) 0.7950 0.7628 0.6818 0.6972 0.8079 0.7622 0.7255 0.7884 0.6762 0.6465
W (2) 0.1811 0.1609 0.1391 0.1597 0.1916 0.2174 0.2144 0.1564 0.0938 0.0751
Γ(0.5) 0.7527 0.7189 0.6341 0.6594 0.7606 0.7106 0.6822 0.7359 0.6301 0.5984
Γ(2) 0.1731 0.1563 0.1220 0.1401 0.1783 0.1842 0.1772 0.1532 0.0924 0.0752
HN 0.4271 0.3917 0.3146 0.3557 0.4330 0.4134 0.4002 0.3917 0.2867 0.2522

LN(0, 0.5) 0.0380 0.0376 0.0468 0.0454 0.0430 0.0618 0.0624 0.0365 0.0322 0.0319
LN(0, 1) 0.1045 0.0966 0.0711 0.0773 0.1041 0.0973 0.0884 0.0962 0.0672 0.0609
LN(0, 2) 0.4827 0.4337 0.3221 0.3367 0.5037 0.4312 0.3696 0.4726 0.3220 0.2878
Pa(0.5) 0.2353 0.1932 0.1865 0.1999 0.2596 0.2363 0.2405 0.2343 0.3423 0.3495
Pa(1) 0.3581 0.2962 0.3025 0.3229 0.3607 0.3812 0.3908 0.2897 0.4913 0.5007
Pa(2) 0.3338 0.2679 0.3251 0.3418 0.3673 0.4551 0.4584 0.2588 0.4476 0.4575
U 0.5341 0.4795 0.4445 0.4849 0.5559 0.5633 0.5629 0.4804 0.3620 0.3189

Beta(2, 2) 0.2535 0.2188 0.2098 0.2351 0.2739 0.3161 0.3164 0.2132 0.1292 0.1033
Beta(2, 0.5) 0.6005 0.4831 0.6214 0.6238 0.6557 0.7539 0.7552 0.4920 0.3767 0.3239
Beta(0.5, 2) 0.7666 0.7343 0.6496 0.6819 0.7755 0.7271 0.7079 0.7499 0.6430 0.6113
Beta(2, 5) 0.1984 0.1764 0.1482 0.1713 0.2100 0.2300 0.2266 0.1722 0.1014 0.0815
CH(0.5) 0.7736 0.7397 0.6559 0.6784 0.7833 0.7337 0.7053 0.7591 0.6529 0.6224
CH(1) 0.4386 0.4029 0.3216 0.3631 0.4451 0.4191 0.4059 0.4038 0.2936 0.2589
CH(1.5) 0.2908 0.2593 0.2208 0.2526 0.3025 0.3201 0.3160 0.2549 0.1670 0.1377
LF (2) 0.4093 0.3758 0.3047 0.3443 0.4158 0.4020 0.3911 0.3750 0.2718 0.2390
LF (4) 0.3877 0.3561 0.2927 0.3296 0.3958 0.3911 0.3821 0.3531 0.2588 0.2269
EV (0.5) 0.4398 0.4024 0.3207 0.3625 0.4459 0.4202 0.4055 0.4040 0.2923 0.2580
EV (1.5) 0.4444 0.4064 0.3421 0.3846 0.4539 0.4464 0.4390 0.4051 0.2975 0.2614
DL(1) 0.1599 0.1460 0.1091 0.1250 0.1628 0.1627 0.1521 0.1442 0.0909 0.0756
DL(1.5) 0.1203 0.1101 0.0900 0.1017 0.1264 0.1405 0.1352 0.1079 0.0628 0.0518

Table 4. Monte Carlo power estimates of the tests for n = 20
and at the significance level α = 0.05.

Alternative W2 D V U2 A2 ZA ZC ZK H
(1)
n H

(2)
n

Exp(1) 0.6787 0.6309 0.5197 0.5686 0.6804 0.6390 0.6314 0.6306 0.5826 0.5569
W (0.5) 0.9637 0.9508 0.9106 0.9224 0.9659 0.9433 0.9355 0.9557 0.9389 0.9321
W (2) 0.3415 0.2955 0.2573 0.2957 0.3613 0.4220 0.4194 0.3068 0.2412 0.2157
Γ(0.5) 0.9521 0.9363 0.8887 0.9074 0.9535 0.9278 0.9228 0.9393 0.9174 0.9088
Γ(2) 0.3034 0.2676 0.2067 0.2416 0.3141 0.3335 0.3335 0.2714 0.2181 0.1956
HN 0.7046 0.6538 0.5689 0.6178 0.7112 0.6995 0.6954 0.6553 0.6048 0.5780

LN(0, 0.5) 0.0362 0.0365 0.0465 0.0458 0.0417 0.0691 0.0691 0.0413 0.0326 0.0317
LN(0, 1) 0.1423 0.1247 0.0867 0.0995 0.1418 0.1370 0.1306 0.1294 0.0964 0.0858
LN(0, 2) 0.7217 0.6672 0.5238 0.5531 0.7307 0.6368 0.5987 0.6885 0.6126 0.5871
Pa(0.5) 0.4541 0.3582 0.3473 0.3584 0.4808 0.4957 0.4716 0.3904 0.5873 0.5990
Pa(1) 0.7189 0.6121 0.6635 0.6604 0.7428 0.8236 0.7994 0.6386 0.8190 0.8258
Pa(2) 0.6754 0.5456 0.6733 0.6686 0.7338 0.8685 0.8454 0.6698 0.7806 0.7883
U 0.8481 0.7826 0.7883 0.8033 0.8702 0.9081 0.8971 0.7964 0.7407 0.7142

Beta(2, 2) 0.5009 0.4216 0.4257 0.4602 0.5415 0.6451 0.6298 0.4442 0.3602 0.3262
Beta(2, 0.5) 0.9248 0.8252 0.9439 0.9304 0.9556 0.9905 0.9855 0.9588 0.8221 0.7974
Beta(0.5, 2) 0.9606 0.9453 0.9066 0.9249 0.9633 0.9449 0.9425 0.9487 0.9286 0.9212
Beta(2, 5) 0.3770 0.3252 0.2793 0.3182 0.3967 0.4483 0.4447 0.3334 0.2678 0.2410
CH(0.5) 0.9606 0.9463 0.9030 0.9201 0.9621 0.9385 0.9336 0.9504 0.9292 0.9218
CH(1) 0.7197 0.6679 0.5791 0.6276 0.7262 0.7099 0.7061 0.6684 0.6161 0.5892
CH(1.5) 0.5413 0.4761 0.4278 0.4749 0.5619 0.6098 0.6029 0.4835 0.4165 0.3855
LF (2) 0.6855 0.6355 0.5549 0.6034 0.6934 0.6888 0.6854 0.6361 0.5834 0.5563
LF (4) 0.6630 0.6094 0.5367 0.5843 0.6727 0.6800 0.6754 0.6114 0.5621 0.5359
EV (0.5) 0.7216 0.6685 0.5810 0.6297 0.7281 0.7103 0.7059 0.6702 0.6167 0.5901
EV (1.5) 0.7407 0.6856 0.6242 0.6693 0.7522 0.7630 0.7568 0.6874 0.6377 0.6101
DL(1) 0.2639 0.2328 0.1711 0.1994 0.2685 0.2757 0.2722 0.2372 0.1890 0.1701
DL(1.5) 0.2050 0.1784 0.1417 0.1638 0.2150 0.2455 0.2456 0.1856 0.1388 0.1213
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Table 5. Monte Carlo power estimates of the tests for n = 30
and at the significance level α = 0.05.

Alternative W2 D V U2 A2 ZA ZC ZK H
(1)
n H

(2)
n

Exp(1) 0.8294 0.7864 0.6874 0.7323 0.8316 0.7968 0.7951 0.7882 0.7673 0.7506
W (0.5) 0.9945 0.9912 0.9784 0.9825 0.9948 0.9881 0.9864 0.9922 0.9892 0.9880
W (2) 0.4821 0.4159 0.3698 0.4166 0.5093 0.5835 0.5781 0.4545 0.3894 0.3643
Γ(0.5) 0.9902 0.9853 0.9684 0.9754 0.9904 0.9819 0.9810 0.9856 0.9832 0.9810
Γ(2) 0.4259 0.3742 0.2948 0.3398 0.4393 0.4658 0.4679 0.3945 0.3386 0.3145
HN 0.8588 0.8151 0.7481 0.7884 0.8651 0.8622 0.8594 0.8184 0.7961 0.7800

LN(0, 0.5) 0.0360 0.0369 0.0470 0.0462 0.0426 0.0726 0.0748 0.0482 0.0338 0.0325
LN(0, 1) 0.1721 0.1497 0.1052 0.1202 0.1740 0.1704 0.1693 0.1617 0.1274 0.1154
LN(0, 2) 0.8503 0.8077 0.6785 0.7078 0.8553 0.7705 0.7480 0.8173 0.7816 0.7661
Pa(0.5) 0.6399 0.5167 0.5173 0.5076 0.6780 0.7494 0.6964 0.5790 0.7623 0.7708
Pa(1) 0.8970 0.8137 0.8710 0.8563 0.9193 0.9712 0.9566 0.9078 0.9455 0.9485
Pa(2) 0.8669 0.7469 0.8743 0.8563 0.9136 0.9829 0.9712 0.9369 0.9291 0.9317
U 0.9572 0.9201 0.9361 0.9347 0.9692 0.9887 0.9833 0.9525 0.9150 0.9037

Beta(2, 2) 0.6929 0.5933 0.6137 0.6404 0.7402 0.8515 0.8276 0.6752 0.5722 0.5427
Beta(2, 0.5) 0.9904 0.9623 0.9953 0.9910 0.9968 0.9999 0.9997 0.9995 0.9664 0.9601
Beta(0.5, 2) 0.9937 0.9894 0.9782 0.9834 0.9943 0.9910 0.9906 0.9902 0.9878 0.9861
Beta(2, 5) 0.5279 0.4575 0.4017 0.4498 0.5562 0.6255 0.6171 0.4869 0.4258 0.3978
CH(0.5) 0.9929 0.9887 0.9741 0.9797 0.9933 0.9862 0.9854 0.9894 0.9872 0.9857
CH(1) 0.8706 0.8265 0.7564 0.7966 0.8767 0.8693 0.8650 0.8292 0.8075 0.7910
CH(1.5) 0.7183 0.6476 0.6028 0.6486 0.7422 0.7933 0.7843 0.6715 0.6194 0.5940
LF (2) 0.8424 0.7979 0.7321 0.7726 0.8498 0.8531 0.8488 0.8027 0.7812 0.7636
LF (4) 0.8236 0.7772 0.7159 0.7562 0.8320 0.8434 0.8398 0.7854 0.7604 0.7429
EV (0.5) 0.8706 0.8270 0.7565 0.7959 0.8769 0.8694 0.8651 0.8287 0.8070 0.7910
EV (1.5) 0.8891 0.8458 0.8045 0.8369 0.8987 0.9115 0.9056 0.8512 0.8301 0.8151
DL(1) 0.3544 0.3118 0.2323 0.2705 0.3626 0.3701 0.3735 0.3302 0.2831 0.2629
DL(1.5) 0.2844 0.2474 0.1945 0.2261 0.2999 0.3394 0.3439 0.2725 0.2139 0.1954

Table 6. Monte Carlo power estimates of the tests for n = 50
and at the significance level α = 0.05.

Alternative W2 D V U2 A2 ZA ZC ZK H
(1)
n H

(2)
n

Exp(1) 0.9554 0.9324 0.8777 0.9052 0.9558 0.9412 0.9405 0.9317 0.9343 0.9288
W (0.5) 0.9998 0.9997 0.9988 0.9992 0.9998 0.9995 0.9994 0.9997 0.9998 0.9998
W (2) 0.7032 0.6209 0.5682 0.6205 0.7306 0.8014 0.7915 0.6837 0.6260 0.6062
Γ(0.5) 0.9997 0.9993 0.9977 0.9985 0.9997 0.9992 0.9992 0.9992 0.9994 0.9993
Γ(2) 0.6186 0.5477 0.4489 0.5063 0.6319 0.6626 0.6643 0.5812 0.5491 0.5291
HN 0.9717 0.9523 0.9237 0.9416 0.9740 0.9756 0.9732 0.9546 0.9551 0.9506

LN(0.0.5) 0.0379 0.0379 0.0483 0.0475 0.0446 0.0800 0.0847 0.0580 0.0354 0.0343
LN(0.1) 0.2295 0.1937 0.1360 0.1584 0.2333 0.2272 0.2366 0.2179 0.1841 0.1720
LN(0.2) 0.9572 0.9358 0.8620 0.8815 0.9580 0.9115 0.9022 0.9356 0.9357 0.9309
Pa(0.5) 0.8684 0.7541 0.7878 0.7384 0.9024 0.9703 0.9388 0.9123 0.9331 0.9368
Pa(1) 0.9906 0.9655 0.9874 0.9804 0.9950 0.9998 0.9992 0.9989 0.9971 0.9973
Pa(2) 0.9857 0.9422 0.9884 0.9806 0.9946 0.9999 0.9997 0.9995 0.9952 0.9954
U 0.9980 0.9918 0.9964 0.9950 0.9990 0.9999 0.9998 0.9995 0.9933 0.9923

Beta(2, 2) 0.9039 0.8222 0.8527 0.8627 0.9331 0.9842 0.9747 0.9372 0.8370 0.8231
Beta(2, 0.5) 0.9999 0.9994 1.0000 0.9999 1.0000 1.0000 1.0000 1.0000 0.9994 0.9993
Beta(0.5, 2) 0.9999 0.9997 0.9993 0.9995 0.9999 0.9999 0.9999 0.9997 0.9997 0.9997
Beta(2, 5) 0.7565 0.6718 0.6159 0.6655 0.7820 0.8521 0.8364 0.7267 0.6742 0.6560
CH(0.5) 0.9998 0.9997 0.9988 0.9993 0.9998 0.9995 0.9995 0.9997 0.9998 0.9997
CH(1) 0.9750 0.9561 0.9274 0.9448 0.9774 0.9772 0.9748 0.9580 0.9594 0.9558
CH(1.5) 0.9091 0.8536 0.8265 0.8572 0.9229 0.9530 0.9448 0.8874 0.8605 0.8494
LF (2) 0.9653 0.9439 0.9130 0.9338 0.9683 0.9707 0.9683 0.9469 0.9464 0.9413
LF (4) 0.9574 0.9321 0.9013 0.9238 0.9614 0.9674 0.9650 0.9388 0.9357 0.9303
EV (0.5) 0.9754 0.9564 0.9271 0.9448 0.9771 0.9775 0.9754 0.9576 0.9604 0.9567
EV (1.5) 0.9834 0.9673 0.9544 0.9653 0.9861 0.9912 0.9890 0.9739 0.9696 0.9664
DL(1) 0.5117 0.4537 0.3520 0.4016 0.5198 0.5283 0.5372 0.4874 0.4515 0.4331
DL(1.5) 0.4260 0.3664 0.2901 0.3374 0.4426 0.4908 0.4985 0.4187 0.3623 0.3434
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From Tables 3-6, we observe that no single test can be said to perform the
best against all alternatives. However, for almost alternatives the tests based on
A2, ZA, and ZC statistics have the most power. Differences of power between
these tests with each other are small. So, generally, three tests A2, ZA, ZC
have a good performance. Also, we can see that for small sample sizes and

against alternatives Pa(0.5) and Pa(1) the test H
(2)
n has the most power.

We can see that the power values of the tests increase when the sample sizes
increase. Also, the test ZA has a good performance when n increases.
Power study reveals the tests A2, ZA, and ZC have a high power and generally
they outperform the other tests under the different alternatives. The power
differences between these tests and the other tests are substantial.
In other hand, from Table 2, we found that the actual sizes of the tests based
on ZA and ZC were acceptable. Consequently, the tests based on ZA and ZC
statistics should be recommended in practice. Since for small sample sizes, the
test based on ZA has a better performance than test based on ZC , we can
generally conclude that the test ZA has a good performance against almost
alternatives and this test can be confidently recommended in practice.

4. An Illustrative Example

In this section, we illustrate how the tests can be applied to test the goodness-
of-fit for the IG distribution when the observations are available.

Example 4.1. Folks and Chhikara [9] considered the following dataset, con-
sisting of 19 fracture toughness of MIG (metal inert gas) welds.
54.4, 62.6, 63.2, 67.0, 70.2, 70.5, 70.6, 71.4, 71.8, 74.1, 74.1, 74.3, 78.8, 81.8,
83.0, 84.4, 85.3, 86.9, 87.3.
They concluded by using the KS statistic that the IG distribution is a reasonable
fit. The empirical distribution function of the considered data set is presented
in Figure 1.

Here, we apply the tests to this data set. First, the ML estimates of and are
computed as:

µ̂ = 74.3 and λ̂ = 4923.952 .

Then, the value of each test statistic is computed and also the critical value of
each test at the significance level 0.05 is obtained by Monte Carlo simulation.
Results are summarized in Table 7.

Because the value of each test statistic is smaller than the corresponding
critical value, the IG hypothesis is not rejected for these data at the significance
level of 0.05. Therefore, we can conclude that the underlying distribution of
these data is an IG distribution.
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Figure 1. The empirical distribution function of data and a
fitted IG distribution function.

Table 7. The value of the test statistics and critical values
at 5% level.

Test Value of the test statistic Critical value Decision

W2 0.05379 0.83473 Not reject H0

D 0.13339 0.21478 Not reject H0

V 0.24056 0.33114 Not reject H0

U2 0.05030 0.12381 Not reject H0

A2 0.37997 0.83192 Not reject H0

ZA 3.3847 3.4489 Not reject H0

ZC 5.6173 8.7055 Not reject H0

ZK 0.5517 1.52196 Not reject H0

H
(1)
n 0.000576 0.00195 Not reject H0

H
(2)
n 0.000292 0.00101 Not reject H0

5. Conclusion

In this paper, we have evaluated the empirical distribution function-based
goodness-of-fit tests for the IG distribution, and have shown that the considered
tests have a good performance. Critical points of the test statistics have com-
puted and then the actual sizes of the considered tests have obtained. Through
Monte Carlo simulations, we have carried out an extensive power study on
the considered tests. It is shown that some of the tests outperform in most
cases all other tests. Finally, we have used a real data set and have illustrated
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how the considered tests can be applied to test the goodness-of-fit for the IG
distribution when a random sample is available.
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