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ABSTRACT. Here, we investigate the existence of solutions for the initial
value problem of fractional-order differential inclusion containing a non-
local infinite-point or Riemann—Stieltjes integral boundary conditions. A
sufficient condition for the uniqueness of the solution is given. The con-
tinuous dependence of the solution on the set of selections and on some
data is studied. At last, examples are designed to illustrate the applica-
bility of the theoretical results.
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1. Introduction

Differential and integral equation models have appeared in a variety of ap-
plications (see [3], [5], [6], [8], [9]- [12]). In physical sciences and applied math-
ematics, boundary value problems involving fractional differential equations
occur. Subsidiary conditions are imposed locally in some of these issues. Non-
local conditions are imposed in other cases. Nonlocal conditions are frequently
preferable to local conditions because the measurements required by a nonlo-
cal condition are sometimes more precise than the measurements provided by
a local condition. As a result, a number of outstanding results on fractional
boundary value problems (abbreviated BVPs) with resonant requirements have
been obtained. Bai [4] investigated a class of fractional differential equations
with m—point boundary conditions. Using the same technique Kosmatov [7]
investigated the fractional order three points BVP with resonant case. Consid-
ering the fact that the study of fractional BVPs at resonance has yielded fruit-
ful results, it should be highlighted that problems involving Riemann-Stieltjes
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integrals are very scarce. As a consequence, the study of fractional BVPs at res-
onance has yielded fruitful results, it should be mentioned that such problems
with Riemann-Stieltjes integrals are very scarce, so it is worthy of additional
study. Riemann-Stieltjes integral has been considered as both multipoint and
integral in one frame, which is more common, see the relevant works due to
Ahmad et. al. [1,2].

Boundary value problems for nonlinear differential equations issues can oc-
cur in a variety of areas, including applied mathematics, physics, and variations
problems of control theory, we refer the reader to the papers [10,12]. In recent
years, several scientists and academics have become interested in the study of
boundary value problems of fractional order, and the topic has grown across
several academic disciplines. The existence of continuous solutions to the non-
local first-order boundary value problem (BVP) using the Liouville-Caputo
fractional derivative was demonstrated in [15]

dx

e fle,D%(x)), ve€ (0,1), 0 < a< 1,

together with either the infinite-point boundary conditions given by
o0
Z ag ,U'(Tk) = o, Ak > OaTk € (Oa 1]a
k=1

or the Riemann-Stieltjes functional integral boundary conditions

T
AM@M@:MW

Some authors have investigated boundary value issues with nonlocal, integral,
and infinite points boundary conditions, we refer the reader to the monographs
(see [6], [8], [13]- [16]).

Based on the above contributions, in this paper, we consider a modified
version of the problem investigated in [15]. Precisely, we study the existence of
solutions for a Caputo type fractional differential inclusion

(1) D'u(x) € @i, I7¢2(r, u(e(x)))), m, o €(0,1), ve (0,7,
provided with Riemann—Stieltjes integro boundary conditions

T
(2) M®+Au@%@=um

where h : [0,7] — R is nondecreasing function, or provided with the infinite-
point boundary conditions with the nonlocal condition

(3) w(0) + > ax plrh) = o, ar > 0,7 € (0,7T],
k=1
where v € I = [0,T1], D" is the Caputo fractional derivative of order n, I? is

the Riemann-Liouville fractional integral operator of order o, and @, : [0, T] x
RT — P(R) is a multivalued map, with P(R) is the family of all nonempty
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subsets of R. Our investigation is built on the selections of the set-valued
function ®; by modifying the inclusion of the functional integral into a coupled
system.

We first find the continuous solution of the problem (1) with the m-point BCs
given by

(4) u(0) + Z ag (k) = po, ar > 0,7, € (0,7
k=1

and after that, by applying the characteristics of the Riemann sum for contin-
uous functions, we study the solutions of the BVP with the Riemann-Stieltjes
integral presented by (1) and (2) in addition the BVP with infinite points pre-
sented by (1) and (3). As a part of the process to achieve the main aim, the
designed problem is transformed into an equivalent integral equation, and the
existences result is proved by applying the Schauder fixed point theorem.

The remainder of the paper is organized as follows: Section 2 contains
our principal result regarding the problems (1)—(4). In light of the develop-
ments conclusion, we investigate the BVP provided by (1)-(2) and by (1)-(3).
We demonstrate sufficient conditions in each for the problem (1) under the
Riemann-Stieltjes functional integral BC (2) and under infinite-point BC (3),
while Section 3 covers the continuous dependence and the uniqueness of solu-
tions. Example is provided in Section 4 to illustrate our results. Conclusion is
mentioned in the last Section 5.

2. Existence of solution

Take into account the following assumptions:
(i) The Lipschitzian set-valued map ®; : I x R — 2® has a nonempty
compact convex subset of 2%, utilizing the Lipschitz constant k& > 0
[@1(v, ) = Pa(v, V)| < K | — vl

Note: The set of Lipschitz selections for ®; is not empty and there
exists ¢1 € @1 ( see [3]), with

|¢1(t7/’6) - ¢1(t7y)| < k |:u_ Vl'

(ii) The function ¢ : I — I is continuous.

(iii) The Caratheodory requirement is satisfied for function ¢ : I x R — R,
i.e., ¢ is measurable in ¢ for any p € R and continuous in p for almost
all t € I. There exists a function a(t) that is measurable bounded and
there is a positive constant b > 0, with

|p2(t, )| < a(r)+ blul, Vv €I and z € R.

(iv) [az;}a lar] + 1S <1, fagp < 1, and Ia() < MV y <
o, ¢c> 0.
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Lemma 2.1. For any p € C(I,R), the solution of the linear fractional bound-
ary value problem

(5) D"M(t) = ¢1(t7 ]U¢2(t,ﬂ<@(t>)))7 o€ (0’ 1)7 vel,

supplemented with the non-local condition (4), is equivalence to the integral
equation

— — . a Tk (Tk_g)n_l o
(6)  u(x)= (uo ;; k/o ) o1(s, 1 ¢2(<,u(<p(<))))d§>

T (t— s)” 1 .
+/o T'(n) D1(s, 172 (s, (<)) ds,

where a = (1+ > 0, ap)~!

Proof. We start by looking at problem (5) with m—point BCs in (4). Integrat-
ing both sides of (5), we obtain

(7) p(v) = p0) + I"Pr(x, I7¢a2 (v, plp(v))))-
Use condition (4), we get

R — G ’
(8) w(x) = po ; k (Tk) +/O ) D1(, 17¢2(s, u((s)))) de.

In fact, when we set v = 75, € [0,T] in Equation (8), we have

n—1

< * (Tk — §) o
9) u(r) = po — kz:: ay, p(7y) /O Ty P1(c, 172(c, u((<)))) de.

So, we have

1

(1) plr) = plx) + /0 T

B / (t_gn)”_l¢1(<7I”¢2(<7u(w(<))))d<-

?1(5, 17 ¢2(s, u(ep(s))))ds

w0 = e = 3 o)+ [ PI a(ntel)) ds

- / (x - 8”1¢1(<,m2<<,u<¢<g>»> d<)

N /Ot (x —F(ii) _1¢1(g,1"¢2(<,u(<ﬂ(<)))) ds.
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As a result, we obtain

A+3 aue) = =3 o [ P ()i
et P 0 n)

by ) [ s ol o)

- * (T _g)n_l o
’u(t) =a (Mo - ; ak/(; kFT(bl(Q I ¢2(<a N(@(g))))d§>

+ /Ot . 1“(2;71¢1(<,IU¢2(9“(¢(§))W§'

Finally, in order to complete the proof of the above Lemma, we show that
Equation (6) satisfies problem (5) together with the m-point BCs in (4). In
fact, upon differentiating (6) with respect to t, we obtain

D u(r) = 1 (v, 17 da(r, u(o(v)))),

and
(1) pm)=a <uo—2ak [ ¢>1(<,I"¢2(<,u(<ﬂ(c)))d<>
k=1
Th (7 — n—1
; / “F(;g D1(s, 17 dals, 1((5))))ds,
S0,
A+ aun) = o / W%(c,l"@(g,u(w(d))) e
k=1 k=1

SRS DY R A N B

Tk (1 — )1t

wlr) + Y arpl(my) = /~Lo+/0 )

$1(s, 17 92(s, u(p(<))))ds,

E
Il
-

then
T — )11

- I L .
12) D auplrn) = o i) + | e o))

From (6) we have

=a — Ny a ™ (Tkig)nil -
w(0) = <ﬂo ; k/o ) p1(s, I ¢>2(<,u(w(<))))d<>-
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Then

um) =u0) + [ P P oals (e
and
13) (0 =t~ [ S o 1 n(e ().

Now we obtain m—point BC (4), by adding (12) and (13),

p(0) + > ak p(rr) = po-
k=1

O

Remark 2.2. Tt is obvious from assumption (i), the set of Lipschitz selection of
Fy is nonempty. Moreover, there exists ¢; € Sg,, such that

[01(v; 1) = o1 (v, )| < Kfp — v,

Hence, clearly, we have

|p1(t, )| < K[u| + ¢, where ¢7 = sup |1(r,0)].
t€[0,7]

Let’s go on to the next step
(14) v(r) = 17¢2(v, u(p(v))) v € 1.

The nonlinear functional integral equation (6) can thus be expressed as

1

. - m . Tk (Tk—§)7’_ ,
(15)  ou()= (uo I A T <<>>d<>

T _ ~\n—1
+ [ e
As a result, the coupled system (14) and (15) and the functional integral equa-
tion (6) are equal.

Now, we investigate the existence of a continuous solution of the Equation
(6), that is a solution of inclusion (1) with nonlocal condition (4), by obtaining
the continuous solution of the coupled system (14) and (15). Now for the
existence of at least one solution, u = (u,v), u,v € C(I) of the coupled system
(14), (15) we have the following theorem.

Theorem 2.3. Assume that assumptions (i) — (iv) hold. Then problems (14),
(15) have at least one continuous solution u = (u,v), u,v € C(I,R).

Proof. Let @, be defined as
Qr = {u = (M, V) € RQJ HUH < T}7
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where
alpol + [0ty lax] + 1205 bT° ., MT°7
r=1r1+ry = (n+1) ( ) 1
=7ri+re = — .
— oy Jal + AL To+1) Tlo—7+1)

It is clear that the set ), is nonempty, bounded, closed and convex.
Afterwards, let indicate by A the operator defined on the space C(I,R) by

Au(r) = A(p, v)(v) = (Arv(v), Aop(v)),

All/(t)
- m . Tk (Tk _C)nfl , T (t_g)nfl ,
> o | et + [ oo
and
T _ o—1
Aop(r) = /0 =9 F(?) da(s, u(p(s))) ds v e I.
Hence, according to u = (u,v) € Q,
|A1v(v)]
R Y A k) =gt
- ,; . /0 (6 + /0 REECICEONLY
- (. —9) Lt=59)
< auo|+a;ak/ Ll ol + [ o o)l
- (klv| + 7)1
< a\uo|+[akZ:1|ak|+1]W’
then
(k|v| + ¢t
Il < ol vl 3 bl + 1T
el + X e + U
' — oy lal + 180
Also
Al = | [ L o
o—1
< [l o @

< [ “;(ij;’_l[a@ b o)) ).
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Hence

Now

[ Aullx

Hence
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IN

o] o
)(7—1

7a(x) + brs /O ) (t}(ga) de
I ()+br210()

_ U y—1 T _ o—1
M/ d<+br2/ (F=9)"" 4
0

M o7 L 124
-7 Ty ———
To—~+1) >T(o+1)

M T~ bry T°

= Tlo—q+1) Tlo+1)

IN A

IN

IA

:T27

bTT 4 MT7
IFo+1)" T(o—~+1)

7’2:( —

lAwvlc + |[Aepllc < 1+ 7’2
G;‘,LLO|+[ Zk} 1|ak|+ ] B“Fl) b1

v _ ~\o—1 T _ \o—1
/a@EAif&+/bmwwﬁiiLf
0 0

MT7=7

1—Ja Zk:1|ak|—|— ]F(,@-i-l) ( _F(J-ﬁ-l))i I'oc—v+1) -

the class {Au}, u € @, is uniformly bounded for AQ, C Q..

Currently, for u = (u,v) € Q. for all e > 0, § > 0 and for each vy, € [0, T,
t] < tg such that vy — 1| < 4, we get

IN

IN

IN

|A1v(r2) — Arv(v |

k=1
3 (=" (e =)t
_1ak/0 ) ¢1(s,v(c))ds) /0 0
Ty ( , —§)77 1
11 ngy v
(g =)t B (v1 —9)
/o { T'(n) () }dﬁ( (<))lds

— " — — n ol
(k|V+¢>1k)(;2nt1)+(k|1/|+¢T) ( (t2n t1) L

n_.n
L—1%

(klv| +¢’I)(m)’
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and

|A2p,(t2) Azp(tr)]
< | [T r e - [T alcnteo)ad
< |/ Z); P2(s (w(c)))ck—/o (Q;(?) $2(s, 1(p(s)))ds|

—¢)7 !
o[ satelis - [T

< 1 [ et +| [ RS o o)
- [ s uteonad

o—1
< / S ot ulpte)lds

—. il tl_g)al\%(gu(@(?)))\dg

< / fa+ b2 I_,(;))Uldg

+ / [+ bluy _g)a;&gtl—@"ldg

< ) 52 Eé)f_ T
< (atbrl (_”1); (a + bry) (‘&fjfll))a s - e 1))
< (a—i—brg)(rg_ ‘8

For the operator A and u € Q,., we have

Au(ey) — Au(rr) = A(p,v)(v2) — A, v)(v1)
= (Azp(v2), Arv(ra)) — (A2p(r), Arv(rr))
= (Aap(ra) — Agp(r1), A1v(v2) — Arv(r)),

then

|[Au(ts) — Au(t)|x = [A(,y)(v2) — A(p, y) (1) x,
= [Av(r2) — Arv(va)|c + |A2pu(re) — Aop(ri)|c
§ —f)

(vq —7) (v
o+ oD o) S
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As a result, the class of functions {Au} is equi-continuous on Q,. The
operator A is compact as a result of the Arzela-Ascoli Theorem [14]. The con-
tinuity of A : @, — @, still needs to be proven. Let wu, = (un,v,) be a
sequence in Qr with p, — p, and y, — y and since ¢o(t, u(t)) is continuous
in C(I,R), then ¢a(r, iy (r)) converges to ¢a(t, u(r)), thus ¢ (t, iy (¢(r))) con-
verges to ¢o(t, u(p(r))), using assumptions (iii)-(iv) and applying the Lebesgue
Dominated Convergence Theorem, we get

T _ \o—1 T _ \o—1
Jin [ o) ds = [ ST atsntelo) s,
then
lim Aspn(x) = /0 t(t;(i;f_ggg b2(s, i (0()))ds
B /r (t— §)071 de— A
=/, Wrﬁz(c,u(w(d)) s = Aop(r)
. _ U AN ST K
Jim Ay() = apo ];ak/o '}Wnlggo@(avn(c))d@
+ /Ot (x }8;_1 Jim_ ¢ (s, vn(s))ds
_ - T (g — )1t
= aleo =P [ et
- t “Fi];’ br(6,v())ds = Arv(e)
So,
Tim Aug(t) = Tim (A1 (0), Aspin(¥))

(lim Ay (0), 1 Aopn (1)) = (A (), Asp(r) = Au(v).

Then Awu,, — Au as n — oco. The operator A is continuous as a result. While
all criteria of the Schauder fixed-point theorem [6] have achieved, then A has a
fixed point u € @, and then Problems (14)-(15) have at least one continuous
solutions u = (u,v) € Q,, u;v € C(I,R).

Therefore, there is at least one solution p € C(I,R) to the functional inte-
gral Equation (1).
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Conversely, by differentiating (6), we get

me = 1l N [T
Du(t)—D{ (uo ;;1 k/o ) o1(s, (<))d<>

fle—n!
+/O w%(gl/(())ck},
v(t) = I7¢a (v, u(ep(r))).

Additionally, we derive from the integral equation (14)—(15)

1

w(me) = a ( Ho — Z ag /Tk (Tkl—‘_id)l(gv’/(g)) dg)

™ (7k )
» 4 / o T = " (6(s)) de.
m g)nfl
w(0) = ( ; / W%(QV@)) d§> ;
v(t) = 17 ga(t, u(e(v))),

and

> arp(te) =a)_ay <Mo - /Om (T]CI:(;);_¢1(<7V(<))d<>

k=1 k=1 k=1
17 i Tk (1, — )11
(a7) —I—Zak/o ( kr(;)) $1(s,v(s))ds,

From (16) and (17), we have

m B m m T ( - C)B 1
O S S B S R
k=1 k=1 k=1 0 n
m T P— B—1
+3 [P s

0)+ Y ax plr) = o
k=1

Consequently, the nonlocal problem of functional differential inclusions (1)-(4)
have at least one solution u € C'(I,R). O
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2.1. Riemann-Stieltjes integral BCs (2). Let u € C(I,R) represent the
solution to the non localproblem of (1) — (4). Let ax = h(tg) — h(tg—1), the
function h is nondecreasing, 7, € (tp—1,tk), 0 =9 < t1 < ta--- < T. The
nonlocal condition (4) will then take the following form

p(0) + > p(mr) (Aler) = h(tr-1)) = po-

k=1

We derive from [14] as m — oo the continuation of the solution of the nonlocal
problem (1) — (4).

m

Jim 37 ) (hen) = hei) = [ u) anco)

k=1

that is, the nonlocal conditions (4) is a modification to the Riemann-Steltjes
integral condition as m — oo

m

T
p(0)+ tim 37 () (he) = b)) =0+ [ ) dh(s) = e
k=1

Theorem 2.4. Assume that assumptions (i)-(iv) of Theorem 2.3 hold and
h : I — I is an increasing function, then the Riemann-Stieltjes functional
integral condition (2) and the nonlocal problems (1) have a solution u € C(I,R)
that is represented by

A8)  pl®) = (14 h(T)—h(0) " po — (1 + H(T) — h(0))""
(19) x /T T (e 17 (e (<)) dA(S)
0o Jo F(ﬁ) e 2

o [ e ot et
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Proof. The nonlocal problem (1) — (4) will have the following solution as m —
00:

1i(t)
= Jm <1+21;”1ak>(“° - Z/ k (Tkr_mgin_¢1<<J”¢z<<,u<w<<>>>>d<)
= k=1
o[ ng, 17 (s, 1((6)))ds
= i (e = Jm (ke — b))

k=1

Tk (7 — n—1
y / (krg%¢1(<,IU¢2(€7#(<P(§))))d<>

. / C O™ (e, 1o, n(ol6))) ds
0

I'(n)
T+ h(Tl) — o)) e _/0 /O (t_r(i?;_¢1<<7I”(ﬁz(c,u(w(c))))dcdh)
i / = . 17 lo(6)) ds
o T ’ ’ '

O

As a result, the solution p € C(I,R) of the first-order nonlinear differential
Equation (1) with the Riemann-Stieltjes integral condition (2) is represented
by (18).

Consequently, there exists at least one solution pu € C(I,R) of the nonlocal
problem of functional differential inclusion (1)-(2).

2.2. Infinite-point boundary condition (3). Take into account that u €
C(I,R) is the solution to the nonlocal problem presented by (1) and (3).

Theorem 2.5. Assume assumptions (i)—(iv) of Theorem 2.3 hold and let
Bt =1+ 3", ay is convergent sequence. Then the nonlocal problem of
(1)-(3) represented by the integral equation

IREL O A N eI
(c—g)!

+/OtFn)¢1(g,1"¢2(c,u(s0(<))))d<a

has at least one solution u € C(I,R).



98 I.H. Kaddoura, Sh.M. Al-Issa, H. Hamzae

Proof. Let assumptions of Theorem 2.3 be satisfied, and let ZZLI ar be con-
vergent. Then

(21)

1 P ARG K o
bon(®) = TS (uo ~ ;ak/o '“FT%(QI ¢2(<»N(@(§))))d§>

v -1
+/o - F(?) 016, 172(S, pm (<)) .

Consider the limit to (21), as m — 0o, we obtain

lim iy (v)

m— 00

_ 1 - (e =) o
= n%gnoo |:M:ZL_1CLI¢) (,Uo - ;ak/o W@Sl(gal ¢2(§7N(¢(§))))d§)

b [ b ot el ]

1

- [uo Yo [T s et
=1 k=1

3 -1
. (x—9)"
+ lim
m=o0 Jo L'(n)

$1(5, 17 92(s, m((s)))) ds.

Now |ag ()| < |ak|||p]], so using a comparison test > 7" | arp(7y) is conver-
gent. Also

/” e = O (o 17 (s, (<)) ds
o T S
n—1

Tk (7_ —g) i *
/0 ICFW(’“ [17a(s, 1w (s)))] + ¢7)ds

L (o)
b e+ [ e a0 s

* (Tk? — g)n_l *
i / Ty %
m

Tk (Tk _§)77—1 — . S (§— 9)0—1 . T
k/o U OB 2/0 s + 6

Tk (Tk _ g)7771 S (§ _ e)af'yfl
war [0 ) Sy s

(= )T [ (s — 9)7 ! ¢ T
+ kobr / / df ds +
Jo T Jo T(o) T(n+1)
T [k M To- 7+l k brg To+1
I'(n+1)

IN

IN

IN

IN

I'o—v+1) * I'(c+1) + df{} =N
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then

LU
anl | [ O (6 17l nli(6)) ] < fan] N,
0 I'(n)
and by the comparison test >, ax [i" (T’“I:(gn))n_l 1(5, 17 ¢a(s, u(p(c)))) ds is
convergent.
Using assumptions (i) — (i4¢) and applying Lebesgue Dominated convergence
Theorem [2], from (20) we obtain (22). Furthermore, from (20), we have

1+ au(n)
k=1

m Tk (. — -1
= BB By Bn Yo | e S o161l (o (€))s

" (=) .
o w) [ Il el

™ W@(g,]"@(@#(@(g)))) ds

Il
=
o|
N
=
S—

T — )1t

22 3 apln) = o - pln) + [ o I gl ()

1(0) = a (uo - w /Oﬂ W¢1(<,I”¢2(<,u(s@(<))))d<>

) = (o =S [ ottt )

1
N / (T = (6, 17 (s, wlp(6)))ds.
0

So
1

u0) = () = [ PSS s e
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Going back to (22) we obtain infinite-point BC (3)
p0) + > an pulmh) = p

Consequently, the nonlocal problem of functional differential inclusion (1)-(3)
has at least one solution z € C'(I,R). O

3. Existence of unique solutions

The necessary condition for the uniqueness result for nonlocal problems (1)-
(4) is provided in this section. Assume the following assumption.
(#i1)* Suppose that ¢o : I x R — R, is a continuous function that satisfies
the Lipschitz condition, with |¢2(t, 1) — ¢2(t,v)| < ¢ |p — v|.
Theorem 3.1. Assume that assumptions of Theorem 2.8 hold with condition
(iii) replaced by (iii)*, if
(a Y0, ap+1) T 7ot | ¢
Fn+ (o +1)
Then the nonlocal problem (1)-(4) has a unique solution x € C(I,R).

<1

Proof. let pi(r) and pa(r) be two solutions of the functional integral equation
(6). Then

pa(t) — pa(r)

-« (uo S [ ’“‘(;;as (<,I”¢2(<,u1(w(<))))d<>

1

(=)

-1

k=
+ /Ot F(gn) D1(, 17 ¢2(s, 1 ((<))))ds

\/
3

1

— a o Zak/m '“(3¢>1(<,I”¢2(<,uz(w(<))))d<>

k=1 0
T 1
- / <F<))¢ (6, 1% (s, 12(0(6))))ds
1 (€) — o (¢)|
m T N -1
< o Ya(f 2 < (6, I a (s, pa(p(s))))ds
k=1 0

n—1

/o (F(f,§¢ (.7 a(s, w1 (9(<)))) do)
+ |/0( §)n

) [01(5, 17 da(s, 1 ((5)))) — d1(s, 17 Pa(s, pa(p(s))))] ds]
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< @Yol [ O I o)

— bl I7dals, p (<)) do)
R .
+ /0 5 01(S, 17 P2(s, p1(0(s)))) — @1(s, 17 P2(s, pa(w(s))))lds.

I'(n)
Lipschitz condition for ¢, allows us to obtain
1 (x) — )|
< a Z ap k ; |IU</)2(§ p1(2(s))) = I7¢a(s, p2(p(s)))| ds
k=1
v 1
ik / 4 f)) 117 a(s. 1 (2(5))) — 17 ol 2(0(5)))] s
0
7_ _ 77 1 S T o—1
< azakk | [ S et o)

- ¢z(T u2(<p(7)))\d7d<

(t—¢)" ! (§—T)U_1
N k/o I'(n) /0 (o) |p2(7, 11 (p(7))) — B2(T, pa(p(7)))|drds.

Lipschitz condition for ¢o allows us to obtain

1 (v) = pa ()]

m Tk (Tk _ g)77—1 S (g _ 7_)0'—1
< oY ake / 1 () — iz (o))l s
kzz:l 0 I'(n) 0 (o)
T p— —
(t—9)" l/g (c—m)"
ey 1 (9()) — palp(r) |dr ds
o T Jo r<o> ' ’
77 1 S c—T o—1
< aZakkcllm ol / S ( F(U)) drds
S (g —r )ofl
k dr dg.
+ ke — gl / / o dr s
Then
(a >y ap+1) T 7ot |
_ < = _ .
Hence
(1 (e 3hy et ) T T ke ) I —pof <0
Fn+1)T(c+1) -
Since {2 Z;"=1F<(1;1-11))FZE)T°“ M° <1, we have p1(r) = pa(r), therefore

the solution of the integral equation (6) is unique, and consequence the integral
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equation (6) has a unique solution, and as a result, this establishes the existence
of unique solutions to the nonlocal problem (1)-(4). O

3.1. Continuous dependence.

Theorem 3.2. Assume assumptions of Theorem 3.1 hold. Then the solution
of the nonlocal problem (1)-(4) is continuously dependent on the S¢, the set of
all Lipschitzian selections of ®1.

Proof. Let ¢1(t, pu(r)) and @7 (¢, u(r)) be two separate Lipschitzian selections of
4 (r, u(r)), so that

|¢1(v, u(v)) — @1 (v, u(x)| <€, €>0, vel,
then we have the following for the two related solutions pg, (t) and pg:(t) of
(6).
W)l( t) — pg, (v)]

= \az / Tk ¢1(<J G2, 1(p(5))) — 1 (v, 17 Pa (s, 1™ (0(5)))] ds
" / “‘F(jj; 1[¢1(<7I"¢2(€7u(<ﬁ(<)))—dff(t,f"qﬁz(sﬂ*(w(c)))] s |

< aiak/ \¢>1(< 17¢2(s, 1(p(<))) = D1 (v, 17 da (s, 1™ (0(<)))|ds
+ /0 (t_(g)) 1|¢1(<J"¢2(<,u*(@(<)))—¢T(<J"¢>z(<,u*(s@(<)))|d<

< ik [ P o 17l — s s o))
+ aéakfo (Tk(;;nl¢1(<J"¢1(<7u*(<p(<)))—¢’{(<J"¢z(<7u*(<p(<)))ld<

+ /Ot : F(g?z) |61(6, 17 da (s, 1(p(<))) = d1(s, I7da(s, 1 ((5)))| ds
c)"

<[5 P 106 I n s (£() — 61 T, 1 (0()] s
0 n

< ai @k /Oﬂc W(I%(c,l"ﬂéz(c,u@@))) = ¢1(6, 172(s, 1™ (¢(<)))] + d)ds

t _ A\n—1
o [ o 7 baleonols)) — a7l (o)) e

)
(v—9) !
+ /0 ) 0 dg
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< oYk / 1 dale, w0(e))) — 17 (e, 1 ()] de + 6 WT—_"H))
wokf t (t_r(i;;_U”(bz(t’M(@(t))) -1 gale (O b+
N G L A Ch o i .
< a3 (| P [ (el bt ot
o T"
D)
ok [ [ et balra (o)) dr ds
6T
* I'(n+1)
" (g — ) [ (g — 1) .
< a kol [P [T o) o
oT"
T
v _ ~\n—1 S — T o—1 n
+ ke / = F(j) / (© F((j) () — 1 (<)) drds + F(‘;ﬁ 5
m Tk _ C)n_l S (§ _ 7_)0—1
< - wle 3 ke / o [ s
(v— g)"_l (s — 7')‘7_1 5 Tn
+ kc/o F(U) /0 F(cr) deg Zakkc—i— 1 +1)
For v € I, we have
g, — g |
(ad0, a + 1)kcTotn “ o1
Then
1ty — gy

(a > pyap+ L)keTomm\ ™ 5 "
< (1- = § ke+ 1)
= ( In+ Do + 1) G Ko NCES

Hence,

gy =ty
It demonstrates the solution on the set Sg, of all Lipschitzian selection of ®;
is continuous dependence. O
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Theorem 3.3. Assume assumptions of Theorem 3.1 hold. Then the solution
of the nonlocal problem (1)-(4) depends continuously on the Lipschitz function

P2

Proof. Let ¢o(r, pu(r)) and ¢3(r, pu(r)) be two different Lipschitz functions such
that

‘d)g(t,ﬂ(t)) - (,ZS;(‘C“U,(t)‘ < 67 J > Oa LS 17

then for the two corresponding solutions p and p* of (6), we have
() — 1" (v)]
= * (Tk — g)n_l o
> | e s (o)
P1(5, 1793 (s, ™ (0(<))))lds
‘ (ti g)n71 o o * *
+ /O 91(c, 17 da(s, 1 ((c)))) — dals, I75(s, 1™ (@(<))))] ds

IN

I'(n)
< ok [ TRl ) 176 (O] de
+ ok [T o 6l0) - gl (ple)] s

NG K
0 L'(n

117 ¢2(s, 1(p(s))) — 17 pals, " (¢()))| ds

INA
=)
NE
S
ol
S—

)
m Tk (g, — )11
woa S ak [ STl (pl6) — 13l (o)

(t—¢)"™
* ’“/ ()

T _ n—1
+ k/ s 117 d2(s, w (p(s))) — 173(s, 1™ (¢(s)))| ds
0 n

Ju

117 d2(s, u(p(s))) — 172(s, u* (¢(s)))| ds

)0'71

- T (g — )1 [ (e =T
e L A e R L))
(s 1" (0(s)))|dTds

¢
Tk (7. _g)n—l S (g_T)g_l . ) )
" /0 : ) /0 (o) @27, 17 (p(7))) = ¢5(7, 1" (p(7)))] dr dg}

Gy K A G i )
i k[/o I'(n) /0 I'(0) |27, 1(p(7))) = (s, 1 (0(<)))| dr ds

+

IRy Kl A Gty i . o
/O r /O F(U) ‘¢2(7'7M (410(7'))) _¢2(T’M (30(7')))| dr d§:|
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. TE (=) (¢ —T1)° ! )

- a§akkc/o T'(n) /O (o) [u(e(r)) = (@())| + ko] drds
¢ (’C - §)17_1 < (( _ 7—)0—1 .
ke /O I'(n) /0 I'(o) [m(@(ﬂ) — 1 (o(m)] + k 5] dr dg
a . a c — ok ™ (Tk _§)n_1 < (C—T)U_l _
< ,;1 wlk el —p H+k5]/0 = /0 e
+ ke llp—pl+k 5]/0 “;8; /0 <<—F(ra>; e
. . o+

< a ; ag k[ c|p—p*l+ 5]%“)%“)

7o+

+ klclp—pl+ 5]1“(a+1)1“(n+1)'

Hence
H _ *H < (azzn:l ar + 1)k CTU+17 || 3 *” N (azzn:l ap + l)k CTU+17
Empl = T(o+00(n+1) HH T(oc+1)0(B+1)
e —ptll < (1- (a3 ijax+1) ke T‘H—n)q (ad iy ap + 1k Tt .
= T(o+ DI(n + 1) T(c+10(+1)
Then
[ —p|| <,

which proves the continuous dependence of the solution on the Lipschitz func-
tion ¢2. O

Theorem 3.4. Assume assumptions of Theorem 3.1 hold. Then the solution
of the nonlocal problem (1)-(4) depends continuously on initial data ..
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Proof. Let u(t) and p*(r) be two solutions of the integral equation (6). Then
we have

IN

IN

IN

+

IN

+

(€)= 1" ()]
m Tk _ —1

|a (uo Zak/o K (;i |¢>1(<,I“¢2(<,u2(@(€)))d€>
k=

/o N

B

ol n - ki e F_(;))n_l¢1(€7I”¢2(<7u*(¢(<)))d<>
J A R e

alpo = pig]

“i k /Tk (m: ;;n_l [P1(5, 17 Pa(s, ul(s)))

I
G1(s; I7¢a(s, p “(e())lds
/ “Ff)) 62(6. I76n(s, 1(9(6)) — 615,17 (s, 1" (o(<))) s

; 5+a2akk | P 1 onts el - 1°nlson” ({6l

f [ ("ré% 117 6a(6. 1(0(6))) — 17 a(s, w* (o()] ds

Tk Tk o §)77 1 (( _ 7_)071
W+ azakk | [ S teatrateto)
bl ) N

fole—q)nt (c—7)°t B i}
k/o I'(n) /0 NG |p2(7, u(p(7))) — (T, 1" (p(7)))| drds

)
- (=7 [ (=) :
o +a) auke | [ S et - ot laras

T )
ve [ SR [ ot — et dr

o—1

a6+a2akk‘c||,u u||/ Tk_;; /0< (g;(ra)) dr dg

i} S (c—1)° -1
’“”""“‘”/o r(n) / i)
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Then
la ity ar+ 1] ke Tt

ok < K} %
lu—p*] < ad + To+ T+ 1) i — ]
@ >0, a+1 keTot
< (1- = §=e.
=l =« T(o+ DI+ 1) =
Hence

I —p*ll <e
Thus, the integral equation (6) has a continuous dependence on .. So the the

nonlocal problem (1)-(4) its solution depends continuously on initial data ..
U

4. Example
Consider the following Caputo fractional differential inclusion:
(23) CDnN(t) € (I)l(ta IU¢2(t7 N(@(t)))v te [07 1]7 g€ (07 1)

with infinite point boundary condition
1 k-1

(24) p0) + D o5 w(=5—) = po-
k=1

We choose ®; : [0,1] x R — 28" in (23) as

(5 Prinen(9) = 0.6+ 14 [ EZOE (contuto) + 1)+ 20 ],

and set

u(()).

es

6a( (1)) = 5 (cos(a(<) + 1) +

Notice that for ¢, € S,, then we have
|61 (5, T3 (v, p(p(x)))) = b1 (x, I3 da(x, v(p(¥))))] <

and

|2 (v, u(x))| < %I cos(pu(r) +1)[ + @

As a result, conditions (i) and (iii) are held with k = 5 elﬁl) ~ 0.1889 < 1,
4
a(t) = 1 cos(u(t) +1) € L'0,1], b = 5= and the series Y~ 7 is conver-

gent. Also, [a 3001, |ax| + 1)y ~ 0.6136 < 1 and 255 &~ 0.2029 < 1.

we deduce from Theorem 2.3 that the nonlocal problem (23)-(24) has at least
one continuous solution.
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5. Conclusion

We presented the existence criteria for solutions to Caputo fractional differ-
ential equations and inclusions of order in (0,1) complemented with nonlocal
infinite-point and Riemann—Stieltjes integral boundary conditions (BCs). We
first transformed the nonlinear Caputo type fractional boundary value problem
into a fixed point problem. We have demonstrated that, if we can get the con-
tinuous solutions to boundary value problem with m-point BCs, we can easily
get the solutions to these problems with integral BCs or with infinite-point
BCs. For the single-valued case, we established the existence of a continuous
solution using Schauder’s fixed point theorem, the uniqueness solution, and
the continuous dependence of the functional differential inclusion on the set
of selections and some data were studied. To ensure the validity of all the
obtained theoretical results, suitable examples were provided to support their
validity. This study would make a significant contribution to the literature
on qualitative theory. Which may include the expansion of the concept intro-
duced in this study area and the likelihood of other generalizations in a wide
range of exclusive outputs for applications and theories. Here, one suggestion is
that it Future works may be expanded to discuss the existence and uniqueness
of solutions for the other types of nonlinear Hadamard-type fractional differ-
ential inclusion with infinite-point boundary conditions or integral boundary
conditions.
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