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Abstract. In this paper the meanings of neutrosophic special n-dominating

set, neutrosophic special n-domination number, inverse neutrosophic spe-
cial domination set (number) and inverse neutrosophic special n-domination

number are introduced and some of related results are investigated. Fi-

nally, an application of inverse neutrosophic special dominating set in
decision making under ashy clauses between certainty and uncertainty is

provided. In fact, we present a decision-making problem in real-world

applied example which discusses the factors influencing a companys effi-
ciency. The presented model is, in fact, a factor-based model wherein the

impact score of each factor is divided into two types of direct and indirect

influences.
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cial domination set (number), Inverse neutrosophic special n-domination
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1. Introduction

For the very first time, Smarandache [17] offered the idea of neutrosophic sets
(NSs) as an extension of the fuzzy sets [23], intuitionistic fuzzy sets [4], interval-
valued fuzzy sets [20] and interval-valued intuitionists fuzzy sets [5] theories.
The (NS) is a highly applicable to solve hybrid issues in various fields with
incomplete, indeterminate and inconsistent information in real world. Smaran-
dache [18, 19] defined two principal classes of neutrosophic graphs. Further,
Satham Hussain, Jahir Hussain and Smarandache [16] offered the notion of
domination in neutrosophic soft graphs. Banitalebi and Borzooei [11] pre-
sented the meaning of neutrosophic special domination in neutrosophic graphs.
In some scientific studies, fuzzy sets do not have the necessary yield to dis-
play and resolve mental obscurity and neutrosophic sets show more flexibility
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and capability in this field. In recent years, research on Single-Valued Neutro-
sophic and neutrosophic soft graphs has been done by Akram et. al. [1–3] and
interesting results have been obtained. In recent studies, various models and
methods in the field of decision making Presented by Zhan et. al. [13,14,21,22].
Characteristics of neutrosophic graphs urged us to examine different meanings
regarding their domination sets and in the following, expand the factor-based
decision modeling technique Banitalebi et. al. [6–11], this time in neutrosophic
cognitive maps. In this modeling method, optimization and modeling solutions
are proposed using the concept of governing sets, and by reducing the domi-
nating set size, the effective weight of the graph of factors on the control goal
increases. The principal aim of this article is to discuss the meanings of neutro-
sophic special n−dominating set, neutrosophic special n−domination number,
inverse neutrosophic special n−dominating set and inverse neutrosophic special
n−domination number in neutrosophic graphs and finally, a model for optimiz-
ing the neutrosophic special domination parameter will be offered, where in it
will be feasible to optimize the neutrosophic special domination number pa-
rameter more precisely in a partial way.

2. Preliminaries

A fuzzy graph GF = (κ, τ) on crisp graph GC = (AV,BE) is a pair of functions
κ : AV → [0, 1] and τ : BE → [0, 1] wherever, for any qp ∈ BE, τ(qp) �
min{κ(q), κ(p)}.

Definition 2.1. [17] If AV is a space of nodes with universal elements in AV
marked by q, then the neutrosophic set HNe is an object having the form

HNe = {< q : ξHNe
(q), $HNe

(q), %HNe
(q) >, q ∈ AV},

wherever the functions ξ,$, % : AV →]−0, 1+[ describe respectively, the truth-
membership function, the indeterminacy-membership function and the falsity-
membership function of the element q ∈ AV to the set HNe.

Definition 2.2. [12] A neutrosophic graph ( NG) on crisp graph GC =
(AV,BE) is marked by GNe = (χ, π), wherever χ = (ξχ, $χ, %χ) so that ξχ, $χ, %χ :
AV → [0, 1] with the clause

0 ≤ ξχ(q) +$χ(q) + %χ(q) ≤ 3,

for all q ∈ AV and π = (ξπ, $π, %π) wherever ξπ, $π, %π : BE → [0, 1]. With
clauses

ξπ(qp) ≤ ξχ(q) ∧ ξχ(p),

$π(qp) ≥ $χ(q) ∨$χ(p),

%π(qp) ≥ %χ(q) ∨ %χ(p),

and 0 ≤ ξπ(qp) +$π(qp) + %π(qp) ≤ 3 for all qp ∈ BE.
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Definition 2.3. [15] Let GNe = (χ, π) be a NG on crisp graph GC = (AV,BE)
and i, j ∈ AV. Afterward,
(1) ξ-strength of connectedness between i and j is

ξ∞π (ij) = sup{ξsπ(ij)
∣∣s = 1, 2, . . . , r},

and

ξsπ(ij) = min{ξπ(it1), ξπ(t1t2), . . . , ξπ(ts−1j)
∣∣i, t1, . . . , ts−1, j ∈ AV, s = 1, 2, . . . , r}.

(2) $-strength of connectedness between i and j is

$∞π (ij) = inf{$s
π(ij)

∣∣s = 1, 2, . . . , r},
and

$k
π(ij) = max{$π(it1), $π(t1t2), . . . , $π(ts−1j)

∣∣i, t1, . . . , tn−1, j ∈ AV, s = 1, 2, . . . , r}.
(3) %-strength of connectedness between i and j is

%∞π (ij) = inf{%sπ(ij)
∣∣s = 1, 2, . . . , r},

and

%nπ(ij) = max{%π(it1), %π(t1t2), . . . , %π(ts−1v)
∣∣i, t1, . . . , tn−1, j ∈ AV, s = 1, 2, . . . , r},

wherever it1t2ts−1j a path from i to j in GC.

Definition 2.4. [15] Let GNe = (χ, π) be a NG on crisp graph GC = (AV,BE).
An arc qp ∈ BE is named a neutrosophic strong arc if

ξπ(qp) ≥ ξ∞π (qp) , $π(qp) ≤ $∞π (qp) and %π(qp) ≤ %∞π (qp).

Definition 2.5. [11] Let GNe = (χ, π) be a NG. Afterward,

(1) the neutrosophic order of GNe is as follows,

|AV| =
∑
qi∈AV

(
3 + ξχ(qi)− ($χ(qi) + %χ(qi))

2

)
,

(2) the neutrosophic size of GNe is as follows,

|BE| =
∑
qiqj∈E

(
3 + ξπ(qiqj)− ($π(qiqj) + %π(qiqj))

2

)
,

(3) the neutrosophic cardinality of GNe is as follows,

|G| = |AV|+ |BE|,

(4) for any M ⊂ AV, the neutrosophic node cardinality of M is marked by O(M)
and is as follows,

O(M) =
∑
qi∈M

(
3 + ξχ(qi)− ($χ(qi) + %χ(qi))

2

)
,
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(5) for any P ⊂ BE, the neutrosophic arc cardinality of P is marked by S(P)
and is as follows,

S(P) =
∑

qiqj∈P

(
3 + ξπ(qiqj)− ($π(qiqj) + %π(qiqj))

2

)
.

Definition 2.6. [11] Let GNe = (χ, π) be a NG. Afterward,
(1) an arc a = qp in GNe is named a neutrosophic highly strong arc (HS), if

ξπ(qp) > ξ∞π (qp) , $π(qp) < $∞π (qp) , %π(qp) < %∞π (qp).

(2) The neutrosophic highly strong neighborhood of q ∈ AV is marked by Nhs(q)
and is as follows,

Nhs(q) = {p ∈ AV | qp is a highly strong arc in GNe}.

(3) A node q ∈ AV of a NG GNe said to be a neutrosophic slightly isolated node
(Ǐn ) if Nhs(q) = ∅.

Definition 2.7. [11] Let GNe be a NG on crisp graph GC = (AV,BE) and
q, p ∈ AV. Afterward:
(1) q specially dominate p in GNe, if there exists a HS between q and p.

(2) S ⊂ AV is named a neutrosophic special dominating set (S̃pD ) in GNe, if
for any p ∈ AV \ S, there exists q ∈ S wherever q specially dominates w.

(3) A S̃pD M in GNe is named a minimal S̃pD if no proper subset of M is

a S̃pD .

(4) Minimum neutrosophic node cardinality amidst all minimal S̃pDs of GNe
is defined lower neutrosophic special domination number of GNe and is marked
by ŇAV(GNe).
(5) Maximum neutrosophic node cardinality amidst all minimal S̃pDs of GNe
is defined upper neutrosophic special domination number of GNe and is marked
by N̂AV(GNe).
(6) The neutrosophic special domination number of GNe is marked by N̄(GNe)
and interpreted with

N̄(GNe) =
ŇAV(GNe) + N̂AV(GNe)

2
.

Definition 2.8. [11] Let GNe be a NG. Afterward:
(1) Two nodes q, p ∈ AV are named neutrosophic slightly independent if there
is not any HS between them.
(2) S ⊂ AV is defined a neutrosophic slightly independent set (ǏS) in GNe if for
anyq, p ∈ S, ξπ(qp) ≤ ξ∞π (qp), $π(qp) ≥ $∞π (qp) and %π(qp) ≥ %∞π (qp).
(3) A ǏS M in GNe said to be a maximal ǏS if for any node q ∈ AV \M, the
set M ∪ {q} is not ǏS.
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(4) Minimum neutrosophic node cardinality amidst all maximal ǏSs is de-
fined lower neutrosophic slightly independent number of GNe and is marked by
Ň(Ǐ)(GNe).
(5) Maximum neutrosophic node cardinality amidst all maximal ǏSs is de-
fined upper neutrosophic slightly independent number of GNe and is marked by
N̂(Ǐ)(GNe).
(6) The neutrosophic slightly independent number of GNe is marked by N̄(Ǐ)(GNe)
and interpreted as follows,

N̄(Ǐ)(GNe) =
Ň(Ǐ)(GNe) + N̂(Ǐ)(GNe)

2
.

From now on, in this article we suppose that GNe = (χ, π) be a neutrosophic
graph on crisp graph GC = (AV,BE) and marked by NG.

3. Neutrosophic special n−dominating set and Inverse ˜Spn−D
in NGs

Definition 3.1. DNSp ⊂ AV is named a neutrosophic special n−dominating

set ( ˜Spn−D) of GNe if for any node q ∈ AV \ DNSp we get q specially dominate
by at least n nodes in DNSp.

Definition 3.2. (1) An ˜Spn−D DNSp of GNe is named a minimal ˜Spn−D

if no proper subset of DNSp is a ˜Spn−D of GNe.
(2) Minimum neutrosophic node cardinality amidst all minimal ˜Spn−Ds of
GNe is defined lower neutrosophic special n−domination number of GNe and
marked by Ňn

AV
(GNe).

(3) Maximum neutrosophic node cardinality amidst all minimal ˜Spn−Ds of
GNe is defined upper neutrosophic special n−domination number of GNe and
marked by N̂n

AV
(GNe).

(4) The neutrosophic special n−domination number of GNe is marked by
(N̄)n(GNe) and interpreted with:

(N̄)n(GNe) =
Ňn

AV
(GNe) + N̂n

AV
(GNe)

2
.

Example 3.3. Let a NG GNe as Figure 1. Afterward, u1u3 and u3u4 are
neutrosophic highly strong arcs and It is obvious that D2 = {u1, u2, u4} is
a neutrosophic special 2-dominating set of GNe. Accordingly, Ň2

AV
(GNe) =

N̂2
AV

(GNe) = ¯(N)
2
(GNe) = 4.55.

Theorem 3.4. Let GNe be a NG and DNSp be a neutrosophic slightly inde-

pendent and ˜Spn−D of GNe. Afterward DNSp is a minimal S̃pD of GNe.
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Figure 1. NG GNe.

Proof. If DNSp is a neutrosophic slightly independent and ˜Spn−D of neutro-

sophic graph GNe, then DNSp is a S̃pD of GNe and DNSp − {d} is not a S̃pD

for any d ∈ DNSp. Accordingly DNSp is a minimal S̃pD of GNe. �

Theorem 3.5. A ˜Spn−D DNSp of a neutrosophic graph GNe is a minimal

˜Spn−D if and only if for each node t ∈ DNSp, one of the following qualifica-
tions holds.
(1)

∣∣Nhs(t) ∩ DNSp
∣∣ ≤ n− 1,

(2) there are nodes s ∈ AV \ DNSp and u1, u2, u3, . . . , un−1 ∈ DNSp so that
Nhs(s) ∩ (DNSp − {t}) = {u1, u2, u3, . . . , un−1}.

Proof. Presume that DNSp is a minimal ˜Spn−D of GNe. Afterward, for

any node t ∈ DNSp, DNSp − {t} is not a ˜Spn−D. Hence there is s ∈
AV \ (DNSp − {t}) which is not specially dominated by n nodes in DNSp−{t}.
If s = t, then

∣∣Nhs(t) ∩ DNSp
∣∣ ≤ n− 1. If s 6= t, then s is not specially

dominated by n nodes in DNSp − {t}, but is specially dominated by n nodes
in DNSp. Accordingly there are nodes u1, u2, u3, . . . , un−1 ∈ DNSp so that
Nhs(s) ∩ (DNSp − {t}) = {u1, u2, u3, . . . , un−1}.
Conversely, presume that DNSp is not a minimal ˜Spn−D. Afterward there is

a node t ∈ DNSp so that DNSp − {t} is a ˜Spn−D. Thus t is a neutrosophic
highly strong neighbor of at least n nodes in DNSp − {t}, and so (1) does not
hold. Also, every node in AV \ DNSp is a neutrosophic highly strong neighbor
of at least n nodes in DNSp−{t}, and so (2) does not keep, which is a inconsis-
tency. Hereupon at least one of the clauses must be kept. Accordingly, DNSp
is a minimal ˜Spn−D. �
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Proposition 3.6. (1) If |Nhs(v)| ≤ n− 1, for v ∈ AV, then v in any ˜Spn−D
of GNe.
(2) Every ˜Spn−D of GNe is a S̃pD .

(3) Ňn
AV

(GNe) ≥ ŇAV(GNe), N̂n
AV

(GNe) ≥ N̂AV(GNe) and so

(N̄)n(GNe) ≥ N̄(GNe).

Proof. The proofs are obvious. �

Note. If M is a minimal S̃pD of a neutrosophic graph GNe = (χ, π) without

Ǐn , then AV \M is a S̃pD of GNe.

Theorem 3.7. Put DNSp (n > 1) be a minimal ˜Spn−D of GNe. Afterward

AV \ DNSp is not necessarily ˜Spn−D of GNe.

Proof. Suppose that q ∈ AV and |Nhs(q)| ≤ n− 1. Afterward q in any ˜Spn−D
of GNe. Hereupon q ∈ DNSp and so q does not belong to AV \ DNSp. Accord-

ingly, AV \ DNSp not included a ˜Spn−D of GNe. �

Definition 3.8. Put D ⊂ AV be a minimal S̃pD of GNe. Afterward:

(1) D−1 ⊆ AV \ D is defined an inverse S̃pD of GNe regarding to D if D−1 is a

S̃pD of GNe.
(2) An inverse S̃pD D−1 ⊆ AV \ D said to be a minimal inverse S̃pD of GNe
regarding to D if no proper subset of D−1 is a S̃pD .
(3) The lower inverse neutrosophic special domination number of GNe is marked
by Ň−1AV

(GNe) and clarified as is explained:

Ň−1AV
(GNe) = min

{
O(D−1)

∣∣D−1is a minimal inverse S̃pD of GNe
}
.

(4) The upper inverse neutrosophic special domination number of GNe is marked

by N̂−1AV
(GNe) and clarified as is explained:

N̂−1AV
(GNe) = max

{
O(D−1)

∣∣D−1is a minimal inverse S̃pD of GNe
}
.

(5) The inverse neutrosophic special domination number of GNe is marked by
N̄−1(GNe) and clarified as is explained:

N̄−1(GNe) =
Ň−1AV

(GNe) + N̂−1AV
(GNe)

2
.

Example 3.9. Let be a NG GNe as in Figure 2. Clearly, D = {a, d} is a
minimal neutrosophic special dominating set in GNe. Also, AV \D = {b, c} is a
neutrosophic slightly independent dominating set of GNe. Accordingly, AV \ D
is a minimal neutrosophic special dominating set of GNe. Therefore, AV \D is
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Figure 2. NG GNe.

a minimal inverse neutrosophic special dominating set of GNe regarding to D.
By simple computations,

Ň−1AV
(GNe) = ŇAV(GNe) = 1.425, N̂−1AV

(GNe) = N̂AV(GNe) = 1.525,

and so

N̄−1(GNe) = N̄(GNe) = 1.475.

Theorem 3.10. A minimal S̃pD D of GNe is a minimal inverse S̃pD if and
only if GNe has no Ǐn .

Proof. Presume that M is a minimal inverse S̃pD and GNe has a Ǐn u ∈ AV, by

the contrary. Afterward u in any S̃pD of GNe. Hereupon u does not belong to

AV\M. Accordingly, AV\M not included S̃pD of GNe, which is a inconsistency.
Accordingly, GNe has no Ǐn.

Conversely, let M be a minimal S̃pD of GNe and GNe have no Ǐn. Afterward
any node in M is specially dominated by at least one node in AV \ M and

AV \M is a S̃pD and hereupon AV \M contains a minimal S̃pD M−1 of GNe.
Accordingly, M is a minimal inverse S̃pD of GNe regarding to M−1. �

Theorem 3.11. If GNe has a Ǐn u ∈ AV, then N̄−1(GNe) = 0.

Proof. Assume that u ∈ AV, so that
∣∣Nhs(u)

∣∣ = 0. Afterward u in any S̃pD D
of GNe. Hereupon u does not belong to AV \ D. Hence, AV \ D not included

S̃pD of GNe. Accordingly, N̄−1(GNe) = 0. �

Note. For any NG GNe without Ǐn, we have

ŇAV(GNe) ≤ Ň−1AV
(GNe).
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Theorem 3.12. If GNe is an NG and M is a minimal S̃pD of GNe, afterward

O(M) +O(M−1) ≤ |AV|.

In addition, equality is established if GNe has no Ǐn and AV \M is a ǏS.

Proof. Let GNe be an NG, M be a minimal S̃pD and M−1 be a minimal inverse

S̃pD regarding to M of GNe. Afterward M−1 ⊆ AV \M. Thus O(M−1) ≤
O(AV \M), and so O(M−1) ≤ |AV| −O(M). Accordingly,

O(M−1) +O(M) ≤ |AV|.

If GNe has no Ǐn and M is a minimal S̃pD , then AV \M is a S̃pD and so

AV \M is an inverse S̃pD regarding to M. Since AV \M is a ǏS of GNe, we

obtain AV \M is a minimal inverse S̃pD of GNe regarding to M. �

Corollary 3.13. If GNe has an inverse S̃pD , afterward

ŇAV(GNe) + Ň−1AV
(GNe) ≤ |AV|.

Note. If M ⊂ AV is a minimal S̃pD of GNe, afterward S̃pD M−1 ⊆ AV \M
is a minimal inverse S̃pD of GNe regarding to M if and only if for any node
s ∈M−1, one of the following qualifications correct.
(1) Nhs(s) ⊆ AV \M−1,
(2) there is a node t ∈ AV \M−1 where Nhs(t) ∩M−1 = {s}.

Theorem 3.14. If ŇAV(GNe) ≥
|AV|

2
, then GNe does not have inverse S̃pDs.

Proof. Assume that M is a minimal S̃pD of GNe and O(M) = dAV(G) ≥ |AV|
2
.

If M−1 ⊆ AV \M is a minimal inverse S̃pD regarding to M and Ň−1AV
(GNe) ≤

O(M−1), by the contrary, afterward by Theorem 3.12,

O(M) +O(M−1) ≤ |AV|,

and so,

O(M−1) ≤ |AV| −O(M),

afterward,

O(M−1) <
|AV|

2
,

hereupon,

Ň−1AV
(GNe) < ŇAV(GNe),

which is a a inconsistency. Accordingly, GNe has no inverse S̃pD . �

Corollary 3.15. If GNe has an inverse S̃pD, then ŇAV(GNe) ≤
|AV|

2
.
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If in a graph GC = (AV,BE) we add an arc e to BE, afterward we denote
it by BEe = BE ∪ {e} and GCe = (AV,BEe). Moreover, if a NG GNe = (χ, π)
on GC extends on GCe, then we characterize it by GeNe = (χe, πe). If arc e
in NG GeNe is a HS, afterward we characterize GhsNe = (χhse , π

hs
e ) instead of

GeNe = (χe, πe).

Theorem 3.16. Let GNe have no Ǐn and a = uv be an additional HS in GCa.
Afterward,

(N̄)−1(GaNe) ≤ N̄−1(GNe).

Proof. If M is a minimal inverse S̃pD of GNe and u, v ∈ M so that Nhs(u) ⊆
AV \M, afterward by adding a = uv, M \ {u} is a minimal inverse S̃pD in

GaNe. Otherwise, M is a minimal inverse S̃pD in GaNe. Accordingly,

(N̄)−1(GaNe) ≤ (N̄)−1(GNe).

�

Definition 3.17. Let DNSp ⊂ AV be a minimal ˜Spn−D of GNe. Afterward:

(1) D−1NSp ⊆ AV \ DNSp is named an inverse ˜Spn−D of GNe regarding to DNSp
if D−1NSp is a ˜Spn−D of GNe.
(2) An inverse ˜Spn−D D−1NSp ⊆ AV \ DNSp said to be a minimal inverse

˜Spn−D of GNe regarding to DNSp if no proper subset of D−1NSp is a ˜Spn−D.

(3) The lower inverse neutrosophic special n−domination number of GNe is
marked by (Ňn

AV
)−1(GNe) and clarified as is explained:

(Ňn
AV

)−1(GNe) = min
{
O(D−1NSp)

∣∣D−1NSpis a minimal inverse ˜Spn−D of GNe
}
.

(4) The upper inverse neutrosophic special domination number of GNe is marked

by (N̂n
AV

)−1(GNe) and clarified as is explained:

(N̂n
AV

)−1(GNe) = max
{
O(D−1NSp)

∣∣D−1NSpis a minimal inverse ˜Spn−D of GNe
}
.

(5) The inverse neutrosophic special n−domination number of GNe is marked
by (N̄)n)−1(GNe) and clarified as is explained:

((N̄)n)−1(GNe) =
(Ňn

AV
)−1(GNe) + (N̂n

AV
)−1(GNe)

2
.

Theorem 3.18. A minimal ˜Spn−D DNSp of GNe is a minimal inverse

˜Spn−D if GNe has no node q ∈ AV wherever
∣∣Nhs(q)∣∣ ≤ n− 1.

Proof. Suppose that DNSp is a minimal inverse ˜Spn−D and GNe has a node

q ∈ AV so that
∣∣Nhs(q)∣∣ ≤ n− 1, by the contrary. Afterward q in any ˜Spn−D
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of GNe. Hereupon q ∈ DNSp and so q does not belong to AV \ DNSp. Ac-

cordingly, AV \ DNSp not included ˜Spn−D of GNe, which is a inconsistency.
Accordingly, GNe has no node q ∈ AV so that

∣∣Nhs(q)∣∣ ≤ n− 1. �

Theorem 3.19. If GNe has a node q ∈ AV wherever
∣∣Nhs(q)∣∣ ≤ n− 1, then

((N̄)n)−1(GNe) = 0.

Proof. Suppose that q ∈ AV wherever
∣∣Nhs(q)∣∣ = n − 1. Afterward q in any

˜Spn−D of GNe. Hereupon q ∈ DNSp and so q does not belong to AV \
DNSp. Accordingly, AV \ DNSp not included ˜Spn−D of GNe. Accordingly,
((N̄)n)−1(GNe) = 0. �

Note. (1) If GNe has no node q ∈ AV wherever
∣∣Nhs(q)∣∣ ≤ n− 1, we have

Ňn
AV

(GNe) ≤ (Ňn
AV

)−1(GNe).

(2) If GNe is a neutrosophic graph and DNSp is a minimal ˜Spn−D of GNe,
afterward

O(DNSp) +O(D−1NSp) ≤ |AV|.

(3) If GNe has an inverse ˜Spn−D, afterward

Ňn
AV

(GNe) + (Ňn
AV

)−1(G) ≤ |AV|.

(4) If Ňn
AV

(GNe) ≥
|AV|

2
, afterward GNe has no inverse ˜Spn−D.

Theorem 3.20. GNe has at least two distinct ˜Spn−Ds if and only if (N̄)n)−1(GNe) >
0.

˜Spn−Ds

Proof. Assume that M1 and M2 are two distinct ˜Spn−Ds of GNe. Afterward

M1 and M2 contain minimal ˜Spn−Ds M′

1 and M′

2, respectively. Accordingly,

M′

1 ⊆ AV \M
′

2 is a minimal inverse ˜Spn−D of GNe regarding to M′

2 and M′

2 ⊆
AV \M

′

1 is a minimal inverse ˜Spn−D of GNe regarding to M′

1. Accordingly,
(N̄)n)−1(GNe) > 0.

Conversely, suppose that (N̄)n)−1(GNe) > 0, MNSp is a minimal ˜Spn−D and

M−1NSp is a minimal inverse ˜Spn−D regarding to MNSp of GNe. Afterward, it

is obvious that MNSp and M−1NSp distinct. �

4. Application of the inverse S̃pD in decision making under
ashy clauses between certainty and uncertainty

NG models are more flexible than other uncertainty models in dealing with
human-collected data. In this study, we proffered the concept of a inverse
˜Spn−D in NG theory. The inverse ˜Spn−D in the neutrosophic network can
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be useful to solve many real-life problems. By understanding the concept of

inverse neutrosophic special domination, it can be concluded that inverse S̃pDs
play a valuable role in helping to control and manage neutrosophic graphs.

Monitoring and confirming the decisions in various dimensions of a corpora-
tion with favorable and prearranged yield ideals is one of the principal missions
of a corporation. It performs a substantial role in elevating the yield level as
well as the influence rate of the corporation. Hence, designing, structuring and
optimizing the map assist to advance the goals of a corporation. With regards
to the affecting factors, the yield of a corporation is one of the substantial
issues investigated by the chiefs of a corporation. The set of affecting agents
and the yield of a corporation can be presumed as a NG. We characterize the
ξ-strength, $-strength and %-strength values in any node and arc (path) as is
explained. For any q, p ∈ AV and qp ∈ BE, we obtain:
ξχ(q): The heaviness of the direct influence of factor q on the corporation’s
yield in ashy clauses.
$χ(q): The heaviness of the inefficient of factor q on the corporation’s yield in
ashy clauses.
%χ(q): The heaviness of the indirect efficacy of factor q on the corporation’s
yield in ashy clauses.
ξπ(qp): The heaviness of direct capability qp on the corporation’s yield in ashy
clauses.
$π(qp): The heaviness of the inefficient qp on the corporation’s yield in ashy
clauses.
%π(qp): The heaviness of indirect capability qp on the corporation’s yield in
ashy clauses.
Hereon, the following relationships befit logically:

ξπ(qp) ≤ ξχ(q) ∧ ξχ(p), $π(qp) ≥ $χ(q) ∨$χ(p), %π(qp) ≥ %χ(q) ∨ %χ(p).

The relevance between q and p is effectual when the qp is a HS. Hence, the

S̃pD of this graph comprise factors that other factors are speciality dominated

by at least one of the factors of this set. The S̃pD creates a chance for of-
ficiares and commanders of the corporation to concentrate on the factors of

the S̃pD instead of paying attention and monitoring other decision agents.
This helps the corporate commanders and officiares make the best decisions
in a short time interval. For example, Figure 3, shows the graph of effica-
cious agents on the yield of a corporation, in which the set of {u1, u7} is a

minimal S̃pD (with minimum neutrosophic node cardinality 2.3) and the set

of {u2, u3, u4, u5, u6, u8} is an inverse S̃pD of GNe regarding to D (with neu-
trosophic node cardinality 7.05). In other words, instead of controlling the 7
agents, only agents u2, u4, u7 can be controlled and observed and ensure de-
sirable performance in the decision-making process. It is notable that some
agents, as standard computational indices between two agents, dependent cal-
culation formula, and relevance between the variables calculating the indices
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of the agents, play a substantial role in establishing effective relevance between
them. For instance, in Figure 3, indicates that the most favorable effective
weight of the agent graph(S(P) wherever P is the set of all highly strong arcs
of GNe) is 5.5.

Figure 3. Neutrosophic graph GNe.

As we checked in [11], it is feasible to increase the most favorable effective weight
of the agent graph on favorable yield achievement by amplifying the relevance
between the agents of the neutrosophic special dominating set. which leads
to raise exactitude and certitude in the decision-making process and reduc-

ing the neutrosophic node cardinality of the S̃pD. Here, if feasible, to amplify

the relevance between the agents of the S̃pD, the inverse S̃pD can be used

and with reinforcing the relevance between the factors of the inverse S̃pD, the
most favorable effective weight of the agent graph can be increased. While the

neutrosophic node cardinality of minimal S̃pD is also fixed, in some cases it
also reduces the neutrosophic special domination number of the agent graph on

favorable yield achievement by substituting the minimal S̃pD. For instance, in
Figure 4, by making an effective relevance with the coordinates (0.4, 0.6, 0.8)
between the agents u2 and u8 of D−1, the effective weight of the graph enhance
to 6.5 while the minimal neutrosophic special dominating set is still constant
and also neutrosophic special domination number of the agent graph reduced.

D D−1 O(D) O(D−1) N̄(GNe) S(P)
D = {u1, u7} D−1 = {u2, u3, u4, u5, u6, u8} 2.3 7.05 4.675 5.5

D = {u1, u7} (D−1)
′

= {u3, u4, u5, u6, u8} 2.3 5.85 4.175 6.5

D = {u1, u7} (D−1)
′′

= {u2, u3, u4, u5, u6} 2.3 6.05 4.175 6.5



140 S. Banitalebi, R.A. Borzooei

Figure 4. D−1 and (D−1)
′
.

The advantage of using the inverse neutrosophic special n-dominating set tech-
nique in the presented method, compared to other methods, suggests the opti-
mization, promotion and development solutions while the minimal neutrosophic
special dominating set is still constant and neutrosophic special domination
number decreased

5. Conclusion

Graphs are very suitable tools for displaying many issues in various fields.
The concept of domination in graph is also very useful in theoretical and de-
velopmental researches. In this paper, we introduced for the first time the

meanings of ˜Spn−D and inverse ˜Spn−D in a NG. Finally, by applying the

meaning of inverse S̃pD and the reduction effect of an additional HS on the
neutrosophic special domination number parameter, a model for optimizing the
neutrosophic special domination parameter was presented. The advantage of
this model over the model introduced in [11] is to optimize the neutrosophic
special domination number parameter in specific and targeted sections more
exactly while ensuring the stability or reduction of the neutrosophic special
domination number parameter in neutrosophic network. In future works, we
plan to study the notions of special regular and irregular NGs.
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