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Abstract The present study was performed to quantify a latent variable for body 

size (BS) from the five linear body measurements, including body length (BL), 
body height (BH), chest width (CW), chest girth (CG), and tube girth (TG). The 
study population consisted of N= 5573 Yorkshire pigs, 592 individuals out of them 
were genotyped using a PorcineSNP80 BeadChip. The body size latent variable 
was determined using Confirmatory Factor Analysis (CFA). Then, the accuracy 
of breeding values was obtained using pedigree-based best linear unbiased 
prediction (PBLUP), genomic best linear unbiased prediction (GBLUP), and 
single-step genomic best linear unbiased prediction (ssGBLUP) models. The 
overall fit indices, including standardized root mean square residual (SRMR), root 
mean square error of approximation (RMSEA), Tucker-Lewis Index (TLI), and 
comparative fit index (CFI) were obtained for the BS as 0.03, 0.09, 0.93, and 0.96, 
respectively which imply the adequacy of the considered model for BS construct. 
The performance of models was measured in a 5-fold cross-validation with 10 
repeats to get a more accurate measure of the model's performance. The 
accuracy of models was compared via the correlation between predicted breeding 
values (PBV) and estimated breeding values (EBV) metric which was 0.37, 0.30, 
and 0.28 for PBLUP, ssGBLUP, and GBLUP, respectively. Furthermore, the 
goodness of fit is measured by the mean square of error (MSE) and Pearson's 
correlations r(y, �̂� ) between observed and predicted phenotypes. The lowest 
MSE and the highest Pearson's correlations were obtained under PBLUP while 
the highest MSE and the lowest Pearson's correlations were obtained under 
GBLUP. The obtained results showed the GBLUP method generally provided 
lower prediction accuracies than PBLUP and ssGBLUP methods, and also 
ssGBLUP generated lower prediction accuracy than traditional PBLUP. The 
performance of ssGBLUP and GBLUP was lower than expected mainly due to 
the small number of genotyped animals.  
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Introduction 
generation (Song et al., 2019). To further expedite genetic   

 Genetic improvement of the production traits in an animal popu- improvement, the genomic data can be integrated with -  
 

 lation has mainly been achieved by selecting the best animals -      the relevant statistical models for selection, called ‘geno-  
 

 among the current generation to be served as parents of the next  mic selection’ (Meuwissen et al., 2001). Generally,  geno-  
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mic prediction employs information on all genotyped 
animals, however, in some breeding programs having 
genotypic information for all individuals may not be 
possible. The single-step BLUP (ssGBLUP) is a 
beneficial method that combines information from 
pedigree and genomic marker data which results in more 
accurate predictions of breeding values (Legarra et al., 
2009; Christensen and Lund, 2010). Many important 
traits in domestic animals could be characterized by a set 
of traits, which often are quantitative (Leal-Gutierrez et 
al., 2018). In the animal breeding and genetics context, 
economically important traits are analyzed routinely by 
applying the multi-trait mixed models (MTM) which 
provide important insights regarding the genetic and 
phenotypic correlations among the traits (Silva et al., 
2021). 

A typical characteristic of the MTM is the increase in 
the number of parameters with the increase in the 
number of the traits involved in genetic analysis, which 
may compromise the feasibility of genetic analysis (Silva 
et al., 2021). On the other hand, certain relationships 
also exist among these traits given that they measure 
some common attributes of the system (Leal-Gutierrez et 
al., 2018). Dimension reduction models can be applied 
to phenotypic data to improve the prediction of complex 
traits and reduce computational complexity. For 
example, Silva et al. (2021) showed that a small group of 
latent variables can be used to reduce the data 
dimensionality and, consequently, the complexity 
attributed to the model over-parameterization. Latent 
variables are defined as variables that are not directly 
measurable but can be characterized by several 
observed phenotypes. Latent variable modeling provides 
the opportunity to investigate biologically complex 
phenomena by reducing at the same time data 
dimensionality because many phenotypes are combined 
to represent a few underlying concepts of interest (Leal-
Gutierrez et al., 2018). The latent traits are assumed to 
be unobserved, but they are believed to explain the 
covariation among the observed variables. Confirmatory 
Factor Analysis (CFA) is a method that can be used to 
reduce the dimensionality of phenotypic data in genomic 
prediction. CFA is usually used to test the hypothesis that 
a set of observed variables are related to a smaller 
number of latent factors, also known as latent variables 
or latent traits (Momen et al., 2021). 

The body size (BS) trait is an important trait that can 
reflect the overall appearance of animals (Liu et al., 
2021). Body size is a typical quantitative (or complex) 
trait; understanding the genetic mechanism of body size 
differences among individuals can effectively help control 
the growth and production of animals (Niu et al., 2013). 
Compared with the description of physical appearance, 
body size traits can objectively reflect the response of 
pigs to their environment and other aspects (Ohnishi and 
Satoh, 2018). In pig breeding, the body shape character 
index is often used as the most direct production index 
of a pig (Liu et al., 2021). Body measurement and 
morphological traits such as body length, body height,  

 
 
chest width, rump width, and heart girth have been 
considered as measures of body size in sheep 
(Kominakis et al., 2017, goat (Rahmatalla et al., 2018) 
and pig (Song et al., 2019; Liu et al., 2021) species. 

The purpose of this study is to identify and quantify a 
latent variable for body size (BS) from five linear body 
measurements of Yorkshire pigs and compare the 
performance of the GBLUP, ssGBLUP, and PBLUP 
methods. Identifying which of the models used provides 
the most accurate breeding values, which can be used 
to make informed decisions in the breeding program of 
the pig industry to improve the body size characteristics. 

 

Materials and methods 
 
Data source and phenotypes 
 
The data used in the present study originated from an 
elite Chinese pig breeding farm that is a descendant of 
American Yorkshire populations and was downloaded 
from http://figshare.com/articles/single-step-
strategies/7434203. The phenotypic records comprised 
linear body measurements including body length (BL), 
body height (BH), chest width (CW), chest girth (CG), 
and tube girth (TG) of 5573 pigs. In total, 7,020 animals 
were traced back to construct a pedigree relationship 
matrix. CFC program was used for checking errors in the 
pedigree, preparing it for the subsequent analyses, and 
computing inbreeding coefficients of animals (Sargolzaei 
et al., 2006). The pedigree structure of the data set used 
is shown in Table 1. Descriptive statistics for the 
considered body measurement traits used for 
constructing BS latent variable are shown in Table 2.  
More detailed information about the animals and 
phenotypes was presented by Song et al. (2019) and Liu 
et al. (2021). 
 

Genotype data, quality control, and imputation 
 
In the present study, genotype data on 592 out of 5573 
Yorkshire pigs (Song et al., 2019) were used. Animals 
were genotyped using the PorcineSNP80 Bead Chip 
(Illumina, San Diego, CA, United States), which includes 
68,528 SNPs across the whole pig genome. PLINK 
software version 2.0 (Purcell et al., 2007) was used for 
quality control of genotype data and SNPs with a 
maximum missing rate of 0.10, a maximum individual 
missing rate of 0.10, a minor allele frequency ≤ 0.01, and 
Hardy-Weinberg equilibrium with a P-value < 10−7 were 
excluded. Missing genotypes were imputed using Beagle 
software version 5.4 (Browning and Browning, 2009). 
After quality control, all genotyped individuals remained 
and 52,710 SNPs were finally used for further analysis. 
 

Latent variable modeling by confirmatory Factor 
Analysis (CFA) 
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The confirmatory factor analysis (CFA) technique is used 
to extract the underlying latent factors that contribute to 
variations in body size measurements. To conduct a CFA 
for extracting body size latent factor, one needs to 
specify a measurement model, which defines the 
relationships between the observed variables and the 
latent factor(s). The following CFA model was 
considered in this study: 

X =Λξ + δ 
where X is the matrix of measured variables (BL, BH, 

CW, CG, and TG), ξ is the vector of latent factors, Λ 
matrix contains the factor loadings that associate these 
factors to the measured variables, and δ the residuals 
vector. The model was fitted by applying the maximum 
likelihood estimation. The lavaan package (R Core 
Team, 2021; Rosseel, 2012) was employed to fit the 
above CFA model.  

The overall fit of the models was evaluated by using 
fit indices, including standardized root mean square 
residual (SRMR) (Bentler., 1990), root mean square 
error of approximation (RMSEA) (Steiger., 1990), 
Tucker-Lewis Index (TLI) (Bentler., 1990), and 
comparative fit index (CFI) (Bentler., 1990). 
 

Statistical prediction models 
 
Pedigree-based BLUP 
 
The values obtained for BS latent variable were 
standardized for the subsequent analyses. The breeding 
values for BS were predicted using the traditional animal 
model with a pedigree-based relationship matrix as 
follows: 

y = Xb + Zg + e 
where, y is the vector of records for BS, b, g, and e, 

are the vectors of fixed effects (herd-year-season-sex), 
additive genetic effects, and residual effects, 
respectively. The incidence matrices of X and Z 
associate b and g with y, respectively. Furthermore, the 
body weight of animals was considered a covariate. It is 
assumed that additive genetic effects followed a normal 

distribution of g~N(0, Aσg
2), in which A is the matrix of 

additive pedigree-based relationships and σg
2  is the 

variance of additive genetic effects. e is the vector of 

random residuals with the distribution of e~N(0, Iσe
2), in 

which I is the identity and σe
2 is the residual variance. The 

BW of pigs was considered a linear covariate for BS. 
 

Genomic BLUP (GBLUP) 
 
The GBLUP model uses a genomic relationship matrix 
(G) derived from the SNP markers instead of the 
pedigree-based numerator relationship matrix. To 
predict GEBV of all genotyped individuals the following 
GBLUP (VanRaden, 2008) model was used: 

y = Xb + Za + e 
where y, X, b, and e are as defined previously. a is a 

vector of genomic breeding values and Z is a design 
matrix associating genomic breeding values to records.  

Model comparison for genetic evaluation of body size in pig 

 
It is assumed that genomic breeding values followed a 

normal distribution of a~N(0, Gσa
2 ), in which G is the 

genomic relationship matrix (VanRaden, 2008) and σa
2 is 

the variance of genetic effects for this model. 

 
Single step GBLUP (ssGBLUP) 
 
The ssGBLUP model exploits the information of both 
genotyped and non-genotyped animals by joint using the 
marker and pedigree information for genetic evaluations. 
The single-trait ssGBLUP has the same model as BLUP, 
except vector g is assumed to follow a normal distribution 

g~ N(0, Hσg
2). Following Aguilar et al. (2010), the H was 

defined as: 

𝐇 =  [
𝐀𝟏𝟏 +  𝐀𝟏𝟐𝐀𝟐𝟐

−𝟏 (𝐆𝐰 −  𝐀𝟐𝟐)𝐀𝟐𝟐
−𝟏𝐀𝟏𝟐

′ 𝐀𝟏𝟐𝐀𝟐𝟐
−𝟏𝐆𝐰

𝐆𝐰𝐀𝟐𝟐
−𝟏𝐀𝟏𝟐

′ 𝐆𝐰

] 

in which A11, A12, and A22 were the sub-matrices of A, 
and subscripts 1 and 2 denote non-genotyped and 
genotyped animals, respectively. The inverse of H was: 

𝐇−𝟏 =  [𝐆𝐰
−𝟏 − 𝐀𝟐𝟐

−𝟏 𝟎
𝟎 𝟎

] +  𝐀−𝟏 

For avoiding problems due to singularity, Gw = 
0.95Ga + 0.05A22 (Aguilar et al., 2010). Ga is an adjusted 
G, to avoid the differences in scale and location between 
the coefficients of G and the pedigree relationship matrix 

(A22), the G matrix was adjusted ( 𝐆adj) according to 

Christensen et al. (2012): 
𝐆adj =  β𝐆 +  α 

where α and β are adjustment factors derived from 
the following equations: 
Avg. diag (𝐆)β +  α = Avg. diag(A22) 

Avg. offdiag (𝐆)β +  α = Avg. offdiag(A22) 
where Avg. diag is the average of the diagonal 

elements, and Avg. offdiag is the average of the off-
diagonal elements. 
 

Model’s comparison  
 
The goodness of fit for the considered models was 
evaluated using two statistical measures: mean square 
of error (MSE) and Pearson's correlation coefficient r(y, 
�̂�), between observed and predicted records. The MSE 
is a measure of the deviation between the observed and 
predicted values, while Pearson's correlation coefficient 
measures the strength of the linear relationship between 
the observed and predicted values. A five-fold cross-
validation scheme was conducted to evaluate the 
models’ performance. This method of evaluation involves 
dividing the data into five equal parts, where one part is 
held out as a validation set and the model is trained on 
the remaining four parts. This process is repeated five 
times, with each of the five parts held out once. This 
allows for a more robust evaluation of the model's 
performance and helps to avoid overfitting. 

The cross-validation process was then replicated ten 
times, resulting in ten averaged accuracies of genomic 
prediction metrics. For PBLUP, GBLUP, and ssGBLUP,-  
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the validation set was the same in each replicate of the 
five-fold cross-validation. 

The accuracy of genomic prediction was evaluated 
via two methods, the first as r(PBV, EBV), the correlation 
between predicted breeding values (PBV) in the 
validation population, and estimated breeding value 
(EBV). The second method was by using the following 
formula: 

√1 − 
𝑃𝐸𝑉

𝜎𝑎
2

 

where, PEV is prediction error variance and  𝜎𝑎
2  is 

additive genetic variance. Model fitting and genetic 
analysis were carried out using the WOMBAT program 
(Meyer, 2013). 

 
Results and discussion 
 

 

Table 1 presents the pedigree structure of the population 
used in this study. Registered animals originated from 
194 sires and 1444 dams. Among them, 23.33 % had 
progeny while the remaining had no progeny. Animals 
with both parents known, both parents unknown, and one 
parent known comprised 96.60%, 3.18%, and 0.22 %, 
respectively, implying high quality of the pedigree for 
genetic analysis. Average inbreeding coefficients in all 
and inbred animals were 1.38% and 2.17%, respectively.  
The average inbreeding coefficient in pigs can vary 
depending on the population and breeding program. In 
commercial pig populations, the average inbreeding 
coefficient is generally between 0.01 and 0.05, with some 
higher values being observed in specialized or closed 
populations. The range of the inbreeding coefficient in 
pigs can also vary, but it usually falls between 0 and 0.2 
(Dekkers et al., 2011; Lopes et al., 2019). 

 
Table 1. Pedigree structure of the population 

Item Numbers 

Individuals in total 7019 
Inbreds in total 4484 
Sires in total 194 
Dams in total 1444 
Individuals with progeny 1638 
Individuals with no progeny 5381 
Founders 223 
Individuals with both parents known 6781 
Individuals with both parents unknown 223 
Individuals with one parent unknown 15 
Average inbreeding coefficients (%) 1.38 
Average inbreeding coefficients in the inbreds (%) 2.17 
Maximum of inbreeding coefficients (%) 31.25 
Minimum of inbreeding coefficients 0.04 

 
Figure 1 provides a comprehensive representation of 

the underlying relationships within the system under 
investigation and incorporates BS as a latent variable in 
the center of the five measured variables. The goodness 
of fit metrics including CFI (0.96), TLI (0.93), RMSEA 
(0.09), and SRMR (0.03) indicated the adequacy of the 
confirmatory factor model proposed for the latent 
variable of BS. Leal-Gutierrez et al. (2018) applied a 
similar methodology to that used in the present study for 
defining the latent variable of carcass quality by applying 
observed variables of quality grade, fat over ribeye, and 
marbling in beef cattle. 

Factors lodings or structural coefficients for BL, CG, 
TG, BH, and CW were 0.62, 0.84, 0.57, 0.54, and, 0.63, 
respectively. Positive loading factors indicate that an 
increase in the observed variable is associated with an 
increase in the latent variable, while negative loading 
factors indicate the opposite relationship. In this study, 
the CG variable had the strongest relationship with the 
BS latent variable based on the estimated loading 
factors. The direction of the loading factors with BS is 
positive and agrees with the theoretical model where the 
considered observed variables are positively related to 
BS. The positive direction was expected given that the 

BS construct reflects mainly body measurement traits 
(Kominakis et al., 2017). 

Table 3 presents the goodness of fit metrics for the 
evaluated models, which were determined using both 
mean square error (MSE) and Pearson's correlation 
coefficient between observed and predicted body size 
(BS). The lowest MSE and the highest Pearson’s 
correlation values were obtained under the PBLUP 
model while the highest MSE and the lowest correlation 
were obtained under GBLUP. In other words, the 
considered models can be ranked as PBLUP, ssGBLUP, 
and GBLUP in terms of goodness of fit. 

The prediction accuracies for BS using different 
models are shown in Table 4. For the cross-validation 
assessment scheme, a subset of approximately 100 
genotyped individuals was randomly chosen and 
considered as the validation set. The remaining 
genotyped individuals were considered as the reference 
population, and all non-genotyped animals were included 
in the analysis for both PBLUP and ssGBLUP models. 
Due to the limited size of the genotyped population, the 
correlation coefficient (r) between the estimated breeding 
values (EBVs) and the predicted breeding values (PBVs) 
as a measure of the accuracy of predictions under the 
GBLUP method was found to be lower (0.28) than the c- 
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orresponding values under both PBLUP (0.37) and 
ssGBLUP (0.30) models. This suggests that the PBLUP 
method performed better than GBLUP in terms of the 
accuracy of predictions. A similar trend was also 

observed applying the second method (√(1- (PEV/𝜎𝑎
2 )) 

used for computing the accuracies of breeding values 
under the considered models. As presented in Table 4, 
the PBLUP method yielded the highest accuracy with a 
value of 0.74, followed by the ssGBLUP method with 
0.58 and the GBLUP method with 0.52. Forni et al. 
(2011) reported that there was no large difference in the 
accuracy of breeding values obtained from the genomic 
relationship (0.799) and traditional pedigree-based 
(0.791) matrices in a pig population. 

In the present study, for taking advantage of all 
available information, all the genotyped and non-
genotyped individuals were considered to construct the 
H matrix in ssGBLUP. As both the genomic and pedigree 
information was utilized by ssGBLUP, previous studies 
have shown that the ssGBLUP method was superior to 
both the GBLUP method (Christensen et al., 2012; Song 
et al., 2019) and traditional pedigree-based BLUP (Gao 
et al., 2012; Koivula et al., 2015), in which only genomic 
or pedigree information was used. 
 

Model comparison for genetic evaluation of body size in pig 

 
 

 

Fig. 1. Relationship between observed variables and the latent 

variable of body size (BS) in the final structural equation model. 
Body length (BL), body height (BH), chest width (CW), chest 
girth (CG), and tube girth (TG) 

 

Table 2. Descriptive statistics for the body measurement traits 

Trait a No. of records Mean S.D. C.V. (%) Min. Max. 

BL (cm) 5573 108.89 6.18 5.67 88 134 
BH (cm) 5573 62.87 2.92 4.64 51 75 
CW (cm) 5573 29.75 2.31 7.76 19 38 
CG (cm) 5573 104.58 5.75 5.50 85 126 
TG (cm) 5573 17.98 1.03 5.73 13 23 

a body length (BL), body height (BH), chest width (CW), chest girth (CG), and tube girth (TG) 

Table 3. Comparison of the goodness of fit metrics for PBLUP, ssGBLUP, and GBLUP genomic 

prediction models for body Size latent trait (BS) 

Model a Measure 

r(y, �̂�)  b MSE b 

PBLUP 0.859 *** 0.356 
GBLUP 0.315 *** 0.943 
ssGBLUP 0.660 *** 0.566 

a PBLUP: Pedigree-based BLUP (based on pedigree relationship matrix), GBLUP: Genomic BLUP (based on 
genomic relationship matrix), ssGBLUP: single-step GBLUP. 

b r(y, �̂�) : Pearson,s correlation coefficient between the observed and predicted values of body size, MSE: mean 
square of the error 

Table 4. Accuracy of the breeding values of animals under the considered models  

Model a r (EBV and PBV) b 
√1 −  

𝑃𝐸𝑉

𝜎𝑎
2    c 

P-BLUP 0.37 0.74 
G-BLUP 0.28 0.52 
ss-GBLUP 0.30 0.58 

a PBLUP: Traditional BLUP (based on pedigree relationship matrix), GBLUP: Genomic BLUP (based on genomic 
relationship matrix), ssGBLUP: single-step GBLUP. 

b Based on a five-fold cross-validation evaluation, EBV: estimated breeding value (considering all animals). 
c PBV: predicted breeding value (in the validation set) 𝜎𝑎

2: additive genetic variance 
 

The lower performance of ssGBLUP might be 
explained by several reasons. Firstly, the genotyped 
individuals were not large enough to improve the 
accuracy of genomic predictions. In other words, 
approximately 400 genotyped reference individuals 

could not probably provide more extra information in 
comparison with the pedigree information available from 
about 7,000 individuals. Similar to us, the lower accuracy 
of GBLUP than PBLUP was reported by Song et al. 
(2019) for body measurement traits in pigs. In a simula- 

65 

TG 

BS 

BL 

CW CG 

BH 



 Sanjari Banestani et al. 
 
tion study, they also demonstrated that GBLUP yielded 
lower prediction accuracy than PBLUP, even when the 
genotyped reference population size reached 3,000, but 
it was still very small compared to non-genotyped 
individuals of 26,000 utilized by the PBLUP. Lourenco et 
al. (2014) also reported that GBLUP performed worse 
than PBLUP and ssGBLUP in terms of the accuracy of 
breeding values in a relatively small genotyped dairy 
population. In contrast, a study by Choi et al. (2017) that 
compared the accuracy of breeding values for the 
intramuscular fat in Hanwoo (Korean beef cattle) using 
different genomic and pedigree-based relationship 
matrices, found that the accuracy of the genomic-based 
model was 1.5 times higher than that of the pedigree-
based model. 

Secondly, in our study, the heritability estimate for the 
latent variable of BS was a high value of 0.45, which can 
obtain sufficient accuracy for the traditional BLUP 
method, and improvement from genomic prediction was 
not large as expected. Goddard and Hayes (2009) 
pointed out that for the traits with medium to high 
heritably small progress will be obtained when using a 
small reference population. Therefore, it is important to 
consider the population size and heritability when 
choosing a genomic prediction method and interpreting 
the results. 

 

Conclusion 
 
Latent variable modeling can be used to identify latent 
variables, which are variables that are not directly 
measurable but can be characterized by several 
observed phenotypes. This can help researchers in 
genetics to understand the underlying concepts that 
drive the covariation among the observed variables and 
make more accurate predictions about complex traits. 
Here, we showed that the CFA can be used to reduce 
the dimensionality of phenotypic data in genomic 
prediction and also to test the hypothesis that a set of 
observed variables are related to a smaller number of 
latent factors, also known as latent variables or latent 
traits like body size in pigs. Because the body size in pigs 
can objectively reflect the response of animals to their 
environment and other aspects. In pig breeding, the 
body shape character index is often used as the most 
direct production index of a pig. Overall, we showed that 
dimension reduction models and their application to 
phenotypic data can provide you with the tools and 
knowledge to analyze large sets of data and extract 
meaningful insights in the field of genetics and animal 
breeding. This can help you make more accurate 
predictions, understand the underlying concepts that 
drive complex traits, and make more informed decisions 
in research and breeding.  
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