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Abstract The purpose of this research was to compare different statistical 

methods such as GBLUP, BayesA, BayesB, BayesC, BayesL, Ridge regression, 
Boosting and SVM for genomic evaluation of traits with additive and dominance 
genetic architecture. A genome consisting of 5 chromosomes was simulated, with 
1000 single nucleotide polymorphism markers (SNP) uniformly distributed on 
each chromosome. In two different scenarios, 50 and 500 quantitative trait loci 
(QTL) were considered and in each scenario of QTL number, 0.00, 10, 20, 50 
and 100% of QTLs were given dominance genetic effect. The prediction 
accuracy, bias and reliability of genomic breeding values were used for analyzing 
the results and comparing the methods. The results showed that not separating 
the dominance effects from the additive effects lead to a decrease in the accuracy 
and reliability and an increase in the bias of the predicted genomic breeding 
values. In all examined scenarios of the QTL number and percentages of QTLs 
with dominance effect, the Bayesian methods had higher prediction accuracy and 
reliability and their predictions had the least bias. Boosting predicted the genomic 
breeding values with the lowest accuracy and reliability and highest bias. The 
performance of SVM and Ridge regression was better than Boosting, but lower 
than Bayesian methods and GBLUP. In terms of computing speed, GBLUP and 
Boosting were, respectively, the fastest and the slowest method. It can be 
concluded that to increase the efficiency of genomic selection, first, the 
dominance genetic effects need to be included in the model and, second, 
methods with the highest predictive performance should be used.  

  
Keywords: dominance genetic effect, genomic evaluation, genetic architecture, 
QTL, SNP 
 

Introduction 
ng values estimated with animal models using phenotyp-  

 In animal breeding, the main goal is to increase profitability of  ic records and pedigree information (Amiri Roudbar et al.,   
 

 production system through increasing the animal performanc- 2017). This strategy has made significant progress in ec-  
 

 e and reducing production costs (Amiri Roudbar et al., 2018). onomic traits of livestock (Hill, 2008). Today, with the ad-  
 

 Most economic traits are multifactorial inheritance, that is, th- vance in DNA science and molecular techniques, a large   
 

 ey are under the control of a large number of genes (polygen-  number of genetic markers, especially single nucleotide   
 

 ic inheritance) and are also influenced by the environmental -  polymorphism (SNP) markers have been identified by w-   
 

 factors (Falconer and MacKay, 1996). Selection as an efficie- hich it has become possible to estimate genomic breedi-  
 

 nt strategy has been adopted to improve these traits. Traditi- ng values (GBVs) of candidate animals by summing the  
 

 onally, selection of superior animals is based on their breedi- effects of thousands of SNPs that cover their entire geno-  
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me (Mohammadabadi et al., 2010). This method is 
termed "genomic selection" (Meuwissen et al., 2001). 
The advantages of genomic selection includes reducing 
the generation interval, increasing the accuracy of 
selection, reducing inbreeding rate, and increasing the 
annual genetic gain (Ahmadi et al., 2021). Currently, in 
most developed countries, traditional methods have 
been replaced with genomic selection. Genomic 
selection is done in two steps.  First, a predictive model 
is developed for estimating the effect of SNPs in the 
reference population using both genotypic and 
phenotypic data and the effect of each SNP is estimated. 
This prediction equation is then used to estimate the 
breeding values of candidate animals whose phenotypic 
information is unknown (Meuwissen et al., 2001). 
Therefore, making decision to select superior individuals 
can be done at early ages without needing their 
phenotypic information, with a higher accuracy than the 
average accuracy of the breeding values of the parents. 
It is why application of genomic selection specially in 
dairy herds is increasing at a remarkable rate. Instead of 
waiting for the records of the daughters of a bull, which 
can last 5-6 years, young bulls can be selected at birth 
by genotyping and estimating their breeding values 
(Schefers and Weigel, 2012) 

Several methods have been developed to estimate 
the effect of SNPs. These methods belong to three 
groups of parametric methods (such as GBLUP and 
Bayesian methods), quasi-parametric methods (such as 
reproducing kernel Hilbert space, RKHS) and non-
parametric methods (such as machine learning 
methods). These methods have been compared in 
different scenarios of heritability levels, number of QTLs 
and distributions of QTL effects. However, in nearly all of 
the studies, only additive effects of genes were 
considered and other gene effects such as dominance 
and epistasis were not investigated (see for example 
Neves et al., 2012; Howard et al., 2014; Sahebalam et 
al., 2019, Ahmadi et al., 2021). Recent studies have 
shown that part of the phenotypic variation in the 
economic traits of domestic animals is caused by non-
additive gene effects (such as dominance), which is 
significant for some traits (Ebrahimi et al., 2017; Sadeghi 
et al., 2019). In some studies, in addition to additive 
genetic effects, the dominance effects (Aliloo et al., 
2016) led to an increase in the accuracy of genomic 
evaluation. A common finding of these studies is that if 
the relative share of the dominance genetic effects in the 
phenotypic variation of the trait is high and it has not been 
considered in the model, then, it lead to inaccurate and 
biased estimates of the genomic breeding values 
(Mohammadi and Sattaei Mokhtari, 2018).  

Genomic selection methods predict the GBVs with 
different accuracy because different methods have 
different assumptions about the distribution of the marker 
effects, the selection of covariates and/or the genetic 
variances and (co)variances matrix. Different 
combinations of these assumptions modify the genetic 
variation explained by the markers, which directly reflects  

 
 
on the accuracy (Andrade et al., 2019). Therefore, 
inclusion of the non-additive genetic effects could affect 
the predictive performance of genomic selection 
methods. Hence, it is necessary to compare the 
predictive performance of different genomic selection 
methods in the presence of both the additive and 
dominance genetic effects. Therefore, this study was 
conducted to compare the accuracy, bias and reliability 
of the genomic breeding values predicted by parametric 
and non-parametric methods for traits with additive and 
dominance genetic architecture. 

 

Materials and methods 
 
Population and genome simulation 
 
Genome and population were simulated with the 
package hyperd in R software (Technow, 2013). Five 
chromosomes formed the genome, on each of which 
1000 SNPs were uniformly distributed. To simulate the 
population, first a base population including 50 males 
and 50 females was simulated and by using random 
mating for 50 generations, the LD between the marker 
and QTL was established. LD was calculated using the 
r2 statistic of Hill and Robertson (1968) as follows: 

r² = D2/freq(A1) ∗ freq(A2) ∗ freq(B1) ∗ freq(B2) 
freq (A1) is the frequency of A1 allele in the population 
likewise for other alleles in the population. D is the 
deviation of parental genotypes from the recombinant 
genotypes and estimated using the haplotype 
frequencies as follow: 

D=freq(A₁-B₁)*freq(A₂-B₂)-freq(A₁-B₂)*freq(A₂-B₁) 
The size of the population in the 51st generation was 
increased to 1000 individuals. These animals had both 
genotypic and phenotypic information and formed the 
reference population. The phenotype of the animals was 
obtained through the sum of the genetic value of QTLs 
and an environmental component obtained from a 
normal distribution with a mean of zero and a standard 
deviation equal to the square root of the environmental 
variance. Then the generation 52 was generated from 
individuals of the reference population. Individuals in 
generation 52 only had genotypic information but no 
phenotypic information and labeled as validation 
population for which the genomic breeding values had to 
be predicted (Table 1).  
 

Table 1. Parameters used for simulation program 

Genome size 500 cM 
Number of chromosomes 5 
Number of  marker 5000 
Distribution of additive QTL effects Gamma 
Number of QTL 50, 500 
Effective population size (Ne) 100 
Heritability 0.5 
Historical population Generations 1-50 
Reference population Generation 51 
Validation population Generation 52 
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Scenarios examined 
 
Number of QTL: The number of QTL was considered as 
the percentage of the total number of SNPs (1% and 
10%, namely 50 and 500 QTLs( 
Dominance genetic effects: To assign dominance effects 
to QTLs, different scenarios were considered: in the first 
scenario, all QTLs were given only an additive effect 
(scenario A). In the second scenario, all QTLs were given 
an additive effect and 10% of them were given a 
dominant effect (scenario A+10%D). In the third 
scenario, all QTLs were given an additive effect and 25% 
of them were given a dominance effect (scenario A + 
25% D). In the fourth scenario, an additive effect was 
given to all QTLs and a dominance effect was considered 
for 50% of them (scenario A + 50% D). In the fifth 
scenario, all QTLs were given both additive and 
dominance effects (scenario A+100%D). 

 

Genomic evaluation method 
 
Genomic best linear unbiased prediction (GBLUP): The 
statistical model was as follows (VanRaden, 2008(: 

y = μ+ Xb + e 
where y is the vector of phenotypic observations and µ 
is the overall mean. X matrix elements include codes 0, 
1 and 2, which indicate the number of alleles related to 
each of the SNPs for each individual. b is the vector of 
genomic breeding values and e is the vector of residual 
effects. BGLR package (de los Campos and Perez-
Rodriguez, 2020) was used for GBLUP analyses.  
Bayesian method A (BayesA): The main assumption of 
BayesA is that of total number of loci underlying a 
quantitative trait, only a small numbers have large effects 
and remained others have small effects. BayesA was 
fitted using following model: 

𝒚 = 𝑿𝜷 + 𝒖 + ∑ 𝑧𝑘

𝒌

𝒌=𝟏

𝑎𝑘 + 𝒆 

where y is the vector of phenotypic observations, X is an 
incidence matrix associating observations to fixed effects 
in β, u is the vector of polygenic effects, k denotes the 

number of SNPs, 𝑧𝑘  is an N × 1 vector of genotypes at 

SNP k, 𝑎𝑘is the additive effect of that SNP, and e is a 
vector of residual effects. The prior for u is constant, the 
prior for 𝛿𝑢

2 is assumed to follow normal distribution, N(0, 

A𝛿𝑢
2) where A is the numerator-relationship matrix and 𝛿𝑢

2 
is additive genetic variance apart from that explained by 
SNPs. The BayesA was run using package BGLR in R 
(de los Campos and Perez-Rodriguez, 2020).  
Bayesian method B (BayesB): In BayesB, it is assumed 
that only parts of the loci explain the entire genetic 
variance, and many loci do not contribute to genetic 
variance. BayesB can be written as follows: 

𝒚𝒊 = 𝝁 + ∑ 𝒙𝒊𝒋𝜷𝒋𝜹𝒋 + 𝒆𝒊

𝒌

𝒋=𝟏

 

where y is the phenotype of the animal i, μ is the mean, 
k is the number of marker loci, x is the genotype of the 
marker at the locus j (ith allele) which is encoded as 0, 1  
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and 2 (number of copies of the SNP allele carried by the 
ith animal). βj is the effect of allelic substitution at position 
j and δj which coded as 0 and 1 indicates the absence 
(with probability π) or the presence (with probability 1- π) 
of the locus j in the model (Meuwissen et al., 2001). To 
implement Bayesian method B, BGLR package (de los 
Campus and Perez-Rodriguez, 2020) was used.  
Bayesian method C: (BayesC): BayesC is a special type 
of Bayes B, and in some articles it is also referred to as 
Bayes Cπ. In BayesC, the normal distribution is used 
instead of the t distribution to model the marker effects, 
and as a result, the posterior distribution will also be 
normalized (Baneh et al., 2017). 
 
Bayesian Lasso (BayesL): In BayesL, marker effects are 
assigned to markers using the bi-exponential prior 
probability density function (Baneh et al., 2017) as 
follows: 

𝐷𝐸(𝛽𝑗|𝛾2, 𝜎𝜀
2) = ∫ 𝑁(𝛽𝑗 |0, 𝜎𝜀

2, 𝜏𝑗
2)𝐸𝑥𝑝(𝜏𝑗

2|
𝛾2

2
) 

The lambda parameter has a gamma distribution with the 
lambda shape parameter and the t scale. 
 
Ridge regression BLUP (RidgeR): In RidgeR, the 
predicted GEBVs are obtained by the summing of all the 
marker effects of an individual. Marker effects were 
estimated using the following mixed model: 

y = 1nμ + Zg + e  
where y is the vector of observed phenotypes, 1n is a 
column vector of n ones and μ is a common intercept, Z 
is the design matrix for the random marker effects; g is 
the vector of random marker effects. In RidgeR, the 
residuals and marker effects follow normal distributions 
with constant variance, i.e., e ~ N (0, I𝜎𝑒

2) and g ~ N(0, 

I𝜎𝑔
2), where I is an identity matrix. The R package BGLR 

(de los Campos and Perez-Rodriguez, 2020) was used 
to run RidgeR.  
Boosting: Boosting is based on the idea that it is easier 
to find and average many rough rules of thumb, than to 
find a single, highly accurate prediction rule (Hastie et al., 
2009). In fact it is a numerical optimization technique for 
minimizing the loss function by adding, at each step, a 
new tree that best reduces the loss function. It can model 
interactions between predictive variables (SNPs) and is 
capable of variable selection. In addition, it is robust to 
outliers, missing data and numerous correlated and 
irrelevant variables. The following model was used to fit 
Boosting algorithm (Hastie et al., 2009). 

𝑓(𝑥) = ∑ 𝛽𝑚
𝑀
𝑚=1 𝑏(𝑥; 𝛾𝑚)  

where 𝛽𝑚 , m =1, 2,…, M are the basis expansion 

coefficients, and b(x, 𝛾 ) are simple functions of the 

multivariate argument x, with a set of parameters 𝛾 
=( 𝛾1, 𝛾2,…, 𝛾M). The R package gbm (Ridgeway, 2013) 
was used to run Boosting. Tuning parameters in 
Boosting are number of tree (ntree), tree depth or tree 
complexity (tc) and shrinkage rate or learning rate (lr). 
We specified a series of values for each parameter with 
R coding. The model which provided the least error was: 
ntree =1500, tc = 7 and lr =0.02. These tuning paramet- 
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ers then used for analyzing the data in all the scenarios. 
Support Vector Machines (SVM): The SVM introduced in 
1992 by Boser et al. (1992) belong to the general 
category of kernel methods and has been widely used in 
bioinformatics due to its high accuracy, ability to deal with 
high-dimensional data such as gene expression, and 
flexibility in modeling diverse sources of data (Schölkopf 
and Smola, 2005). For quantitative responses, a kind of 
SVM which termed Support Vector Regression (SVR) is 
used. The SVR uses linear models to implement 
nonlinear regression by mapping the input space (the 
marker dataset) to a feature space of a different 
dimension (lower in the case of GS) using a nonlinear 
kernel function followed by linear regression in this 
feature space. Using Radial kernel, SVR was fitted by the 
following model (Hastie et al., 2009): 

𝑓(𝑥) = 𝛽0 + ℎ(𝑥)𝑇𝛽  

where the basic functions, ℎ(𝑥)𝑇, is a linear (or nonlinear) 
transformations of one (or more) predictor variables (x), 
are additively combined with the vector of weights (𝛽) 
(Hastie et al., 2009). Important tuning parameters in SVR 
are cost parameter (λ) and gamma which were 
predefined with a tuning function letting the parameters 
take a range of different values and identifying the value 
that corresponds to the best model performance 
assessed by cross-validation. The outputs of the tuning 
function were: λ =2 and gamma= 0.01. Using these 
values for λ and gamma, SVR was run using the R 
package “e1071” (Meyer et al., 2013). 
 

Analysis of genomic breeding values (Legarra and 
Reverter, 2018) 
 
Prediction accuracy: This criterion was calculated as the 
Pearson's correlation between predicted and true 
(simulated) breeding values. 

 

 

Pearson′s correlation =
𝑐𝑜𝑣(𝑡𝑟𝑢𝑒, 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑)

√𝑣𝑎𝑟(𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑)𝑣𝑎𝑟(𝑡𝑟𝑢𝑒)
 

Bias: This criterion was calculated as the difference 
between the average predicted breeding values and true 
breeding values. 

 𝐵𝑖𝑎𝑠 = 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ − 𝑡𝑟𝑢𝑒̅̅ ̅̅ ̅̅   

Reliability: This is the slope of the regression of predicted 
breeding values on true breeding values.  

𝑅𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 =
𝑐𝑜𝑣(𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑, 𝑡𝑟𝑢𝑒)

𝑣𝑎𝑟(𝑡𝑟𝑢𝑒)
 

Each scenario of number of QTL and percentage of 
QTLs with dominance effect was analyzed 10 times and 
the average of 10 replications was reported. 

 
Results  
 
In all methods, with the increase in the percentage of 
QTLs with dominance effect from 0.00% (scenario A) to 
100% (scenario A+ 100%D), the prediction accuracy 
decreased, bias increased and reliability decreased. In 
the 500 QTLs scenario, decrease in accuracy was 
between 20% (BayesA, BayesB) to 24% (RidgeR) and in 
the 50 QTLs scenario, it was between 20% (BayesL) to 
25% (BayesB) (Table 2). In addition, by increasing the 
percentage of QTLs with dominance effect from 0.00% 
(scenario A) to 100% (scenario A+ 100%D), the bias 
increased between 25% (BayesA) and 29% (Boosting) in 
the 500 QTLs scenario and between 18% (BayesA) and 
22% (Boosting) in 50 QTLs scenario (Table 3). The 
reliability of GBVs decreased between 0.20 (RidgeR) to 
38% (Boosting) in 500 QTLs scenario and from 0.20 
(BayesB and RidgeR) to 29% (Boosting) in 50 QTLs 
scenario by increasing the percentage of QTLs with 
dominance effect from 0.00% (scenario A) to 100% 
(scenario A+ 100%D) (Table 4). 
 

Table 2. Prediction accuracy of genomic breeding values in different scenarios of QTL number and percentage of QTLs 

with dominance effect 

A+100%D A+50%D A+25%D A+10%D A  
     500 QTLs 

0.61 0.63 0.71 0.74 0.76 GBLUP  
0.62 0.67 0.73 0.75 0.78 BayesA 
0.64 0.69 0.75 0.79 0.80 BayesB 
0.61 0.67 0.75 0.77 0.77 BayesC 
0.63 0.69 0.77 0.77 0.79 BayesL 
0.59 0.64 0.72 0.72 0.78 RidgeR 
0.54 0.62 0.63 0.64 0.64 Boosting 
0.57 0.64 0.68 0.72 0.73 SVM 
      
     50  QTLs 

0.60 0.64 0.71 0.75 0.80 GBLUP 
0.62 0.66 0.75 0.79 0.82 BayesA 
0.63 0.68 0.73 0.78 0.84 BayesB 
0.62 0.70 0.74 0.78 0.79 BayesC 
0.62 0.69 0.76 0.76 0.78 BayesL 
0.58 0.66 0.70 0.74 0.76 RidgeR 
0.53 0.60 0.62 0.66 0.65 Boosting 
0.59 0.64 0.71 0.74 0.76 SVM 
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In the scenario of 500 QTLs, the Bayesian methods 

had higher accuracy compared to other methods in 
almost all scenarios. The GBLUP, RidgeR and SVM 
were ranked next. Boosting had significantly lower 
accuracy than other methods. In the 50 QTLs scenario, 
the difference between the methods regarding the 
accuracy of prediction was more significant compared to 
500 QTLs scenario. Here too, Bayesian methods had  
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higher accuracy, followed with the GBLUP, RidgeR, 
SVM and Boosting. 

Regarding bias in estimates of the genomic breeding 
values, in 50 and 500 QTLs scenarios, the Bayesian 
methods had lower bias compared to other methods in 
almost all scenarios of %QTLs with dominance effects. 
Genomic breeding values predicted by Boosting had 
maximum bias and bias of SVM and RidgeR were 
intermediate among other estimates.  

 
Table 3. Bias of genomic breeding values in different scenarios of QTL number and percentage of QTLs with 

dominance effect 

A+100%D A+50%D A+25%D A+10%D A  

     500 QTLs 

929.3 899.0 832.4 793.4 765.4 GBLUP 
975.6 894.2 827.1 805.4 778.8 BayesA 
924.3 866.4 791.6 774.4 746.3 BayesB 
901.6 831.3 784.2 753.5 744.0 BayesC 
943.3 854.8 791.2 764.7 756.1 BayesL 
936.9 843.2 780.6 747.7 732.2 RidgeR 

1224.6 1089.5 994.3 966.5 947.9 Boosting 
1031.8 931.4 867.7 836.3 815.6 SVM 

      
     50 QTLs 

835.2 786.3 734.1 721.7 694.6 GBLUP 
811.5 774.9 741.3 717.4 687.8 BayesA 
789.3 736.6 707.4 683.5 659.6 BayesB 
803.4 777.4 722.0 705.3 685.6 BayesC 
839.6 778.2 739.5 711.3 693.4 BayesL 
841.6 793.5 754.7 732.5 701.2 RidgeR 

1076.9 978.8 936.7 894.2 875.7 Boosting 
890.5 835.9 789.4 745.8 734.7 SVM 

 
For reliability of GBVs, similar result was observed in 

a way that while Bayesian methods provided GBVs with 
higher reliability, predictions of SVM and Boosting had 
minimum reliability. For all methods studied, in the 50 
QTLs scenario, the accuracy and reliability were higher 
and bias was smaller than those observed in 500 QTLs 
scenario. 

The computing time of different methods is shown in 
Figure 1. As shown, the GBLUP with 0.5 minute was the 
fastest method and Boosting with 9.53 minutes was the 
slowest method. Although the predictive performance of 
the Bayesian methods was higher than other methods, 
they were relatively slow. RidgeR and SVM methods 
were in the middle. 

 
Table 4. Reliability of genomic breeding values in different scenarios of QTL number and percentage of QTLs with 

dominance effect 
A+100%D A+50%D A+25%D A+10%D A  

     500 QTLs 
0.45 0.52 0.58 0.61 0.63 GBLUP 
0.48 0.55 0.62 0.65 0.65 BayesA 
0.42 0.56 0.61 0.63 0.64 BayesB 
0.43 0.54 0.57 0.60 0.62 BayesC 
0.42 0.50 0.55 0.58 0.60 BayesL 
0.51 0.57 0.63 0.63 0.64 RidgeR 
0.33 0.41 0.47 0.50 0.53 Boosting 
0.41 0.48 0.55 0.57 0.59 SVM 
      
     50 QTLs 

0.49 0.55 0.60 0.63 0.64 GBLUP 
0.52 0.55 0.58 0.62 0.63 BayesA 
0.53 0.57 0.62 0.65 0.66 BayesB 
0.49 0.56 0.59 0.62 0.64 BayesC 
0.50 0.55 0.57 0.59 0.61 BayesL 
0.52 0.57 0.60 0.62 0.62 RidgeR 
0.39 0.48 0.45 0.53 0.55 Boosting 
0.45 0.51 0.57 0.60 0.60 SVM 
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Figure 1. Computing time for the studied methods 

 

Discussion 
 

Dominance effects and genomic evaluation 
 
In most studies on genomic evaluation, whether using 
real or simulated data, only the additive genetic effects 
of genes were considered and non-additive effects such 
as epistasis and dominance were ignored (Neves et al., 
2012; Abdullahi Arpanahi et al., 2013; Wang et al. 2013; 
Zhang et al., 2017; Sahebalam et al., 2019; Ahmadi et 
al., 2021; Sahebalam et al., 2022). In the present study, 
in different scenarios, different percentages of QTLs 
were given dominance but a purely additive model was 
used, i.e., no attempt was made to separate the additive 
effects from dominance effects. The results showed that, 
if there are dominance effects but not separated from 
additive genetic effects, a decrease in the accuracy, an 
increase in bias and a decrease in reliability of genomic 
breeding values should be expected, which was in 
agreement with Aliloo et al. (2016). Using computer 
simulation, Mohammadi and Sattaei Mokhtari (2018) 
showed that by separating the dominance effects from 
the additive effects, the accuracy of genomic evaluation 
increased from 0.63 to 0.69 in the BayesA, and from 0.65 
to 0.67 in the BayesL.  

 

Comparison of methods 
 
When comparing different methods for genomic 
evaluation, several factors should be considered such as 
the prediction performance, computing time, and 
memory requirement (Ahmadi et al., 2021). A method 
with accuracy close to one, bias close to zero and 
reliability close to one is desirable for genomic evaluation 
(Macedo et al., 2020). According to the current results, 

the Bayesian methods had higher prediction accuracy in 
most of the examined scenarios, and at the same time, 
their estimates of genome breeding values had the least 
bias and maximum reliability. On the other hand, 
predictions of Boosting had the lowest accuracy and 
reliability and highest bias. Therefore, if the dominance 
genetic effects contribute to the phenotypic variation of 
the trait, but not included in the statistical model, or if no 
information is available about the contribution of the 
dominance genetic effects to the phenotypic variation of 
the trait, parametric methods such as Bayesian methods 
and GBLUP should be preferred to non-parametric 
methods. This result has been reported when only 
additive effects of genes were considered in genomic 
evaluation and a purely additive model was used. For 
example, Moradi et al. (2017) compared the GBLUP and 
BayesB parametric methods, the semi-parametric 
method RKHS and the non-parametric methods 
Random Forest in the genomic evaluation of traits with 
additive genetic architecture and reported that GBLUP 
and BayesB performed better than semi-parametric and 
non-parametric methods. Ghasemi (2019) compared the 
performance of SVM, GBLUP and BayesB methods 
aiming at introducing a method with the highest 
prediction accuracy for genomic evaluation of threshold 
traits. In general, in almost all the examined scenarios of 
threshold number, QTL number and distribution of QTL 
effects, BayesB and GBLUP had higher prediction 
accuracy than SVM method, which is supported by our 
findings. They suggested that the SVM method should 
not be used for the genomic evaluation of threshold 
traits. Howard et al. (2014) with a simulation study, 
reported that if the genetic architecture of the trait is 
based on additive genetic effects, parametric methods 
(Bayesian methods) outperformed non-parametric 
methods (SVM and RKHS), but by including the domina- 
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nce genetic effects in the model and separating them 
from additive effects, the accuracy of genomic prediction 
of non-parametric methods was higher than parametric 
methods. Salehi et al. (2021) compared the predictive 
performance of the GBLUP and BayesB with the two 
nonparametric methods BagBLUP and Random Forest. 
In the purely additive scenario, the BayesB method had 
the highest prediction accuracy (0.73) and the GBLUP, 
BagBLUP, and Random Forest methods ranked next 
with 0.63, 0.63, and 0.54, respectively. But in the 
additive-dominance-epistasis scenario, Random Forest 
and BayesB ranked first with prediction accuracy of 0.46 
and 0.45, respectively, and BagBLUP and GBLUP 
methods with prediction accuracy of 0.37 and 0.36 were 
in the next ranks. Mohammadi and Sattaei Mokhtari 
(2018) simulated a trait with additive and dominance 
genetic architecture and compared the accuracy of 
Bayesian methods (BayesA, BayesB and BayesL) with 
RKHS method and reported that while BayesB 
outperformed other methods in terms of accuracy and 
bias, by increasing the ratio of dominance genetic 
variance to phenotypic variance, the accuracy increased 
with higher rate in RKHS method. As a result, when 
genetic architecture includes only additive effects of 
genes, parametric methods specially Bayesian methods 
have been proved to predict GBVs with higher accuracy 
and less bias. But when genetic architecture includes 
both additive and non-additive effects, it seems that one 
particular method cannot be introduced as the superior 
method and, therefore, a series of parametric, non-
parametric and semi-parametric methods should be 
tested to select the best method to analysis data. More 
research is needed in this area. 

One of the factors that affect the efficiency of genomic 
evaluation methods is the computing time. In this 
research, GBLUP and Boosting were the fastest and 
slowest methods, respectively. Ghafouri-Kasbi et al. 
(2016) used Boosting, Random Forest, SVM and 
GBLUP for genomic evaluation. In their study, GBLUP, 
SVM, Random Forest and Boosting were ranked first, 
second, third and fourth with 10 minutes, 15 minutes, 75 
minutes and 600 minutes respectively, which is in 
consistent with the results of the present study. Our 
results showed that even though Bayesian methods had 
high accuracy, they were relatively slow. It can be a 
serious limitation for these algorithms, especially when a 
large dataset need to be analyzed. Since genotyping 
cost is decreasing with a significant rate, the number of 
SNPs in the SNP chips used in genomic prediction is 
increasing. Meanwhile, by genotyping more animals, the 
size of the reference populations has been increased. 
Therefore, the size of the genotypic matrix whose 
dimensions are equal to the number of individuals × 
number of SNP will be increased exponentially. 
Therefore, computing time and memory requirement of 
genomic prediction methods should be improved. 
Dealing with large datasets, methods that have high 
accuracy and perform calculations in a shorter time will 
be preferred (Ahmadi et al., 2021). 

Comparing genomic prediction models 

 
Conclusions 
 
In conclusion, when an additive model was used, 
increasing the percentage of QTLs with the dominance 
effect led to a decrease in the accuracy and reliability 
and an increase in bias of GBVs. When QTLs had only 
additive effects and even when QTLs had additive and 
dominance genetic effects, the Bayesian methods were 
superior to other methods. Boosting and SVM did not 
show a decent performance. Regarding the computing 
time, GBLUP and Boosting were the fastest and slowest 
methods, respectively. 
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