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ABSTRACT. In this paper, we investigate the normalized Ricci-Bourguignon
flow with incomplete initial metric on an open surface. We show that such
a flow converges exponentially to a metric with constant Gaussian curva-
ture if the initial metric is suitable. In particular, if the initial metric is
complete, then the metrics converge to the standard hyperbolic metric.
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1. Introduction

Let (M,g(t)), t € [0,T) be an n-dimensional manifold evolving along the
normalized Ricci-Bourguignon flow

dg . 2r
(1) 5¢ = "2Mtic+2pRg+ (1—np)—g,  g(0) = go,
where Ric is the Ricci curvature tensor, R is the scalar curvature, r = ) }4 P;';lf
M

is the average of the scalar curvature R, and p is a real constant. The Ricci-
Bourguignon flow introduced by J. P. Bourguignon in [2]. It should be noted
that the Ricci-Bourguignon flow is a generalization of some other geometric
flows. For instance, when p = 0 the tensor Ric—pRg— (1 —np)~g corresponds
to the tensor Ric— =g and the normalized Ricci-Bourguignon flow (1) becomes
the normalized Ricci flow. When p = 2, the tensor Ric — pRg — (1 — np)Lyg
corresponds to the traceless Ricci tensor. The short time existence and unique-
ness of the solution of the Ricci-Bourguignon flow (1) as a system of partial
differential equations on [0, T") have been established by Catino et al. [3] for the

case p < ﬁ Other recent studies on the flow include [1,4,13].

A smooth surface with a complete metric of Gaussian curvature —1 is called
a hyperbolic surface. Hamilton [9] and Chow [5] proved the normalized Ricci
flow with any initial metric on a compact surface converges to a constant Gauss-
ian curvature metric. Then Shi [15] showed that on complete manifolds with
bounded curvature, a complete Ricci flow g(¢) exists for ¢ € [0,T], for some

O]S]
B azami@sci.ikiu.ac.ir, ORCID: 0000-0002-8976-2014
DOI: 10.22103/jmmr.2023.20469.1358 (© the Author(s)

Publisher: Shahid Bahonar University of Kerman
How to cite: S. Azami, Ricci-Bourguignon flow on open surface, J. Mahani Math. Res.
2024; 13(1): 159-165.

159


https://orcid.org/0000-0002-8976-2014
mailto: azami@sci.ikiu.ac.ir
https://jmmrc.uk.ac.ir/article_3762.html

160 S. Azami

T > 0. In 2009, Ji et al. [10] and Yin [17] studied normalized Ricci flow on
hyperbolic cusp and non parabolic surfaces with additional conditions, respec-
tively. In fact, Ji et al. [10] considered the normalized Ricci flow % =(r—R)g
with the complete metric go on an open surface (that is, a non-compact Rie-
mann surface) M, where M is conformal to a punctured compact Riemannian
surface and gg has ends which are asymptotic to hyperbolic cusps. Then, they
showed that if the Euler number of M, X (M), is less than zero and r < 0,
the flow g(t) converges exponentially to a unique complete metric of constant
curvature § in the conformal class. Yin [17], considered the normalized Ricci
flow on a Riemann surface M, where M is obtained from a compact Riemann
surface by removing finitely many disjoint point and/or closed disks. Also, if
no disk is removed, then he further assumed that X' (M) < 0 and he proved that
there exists on M, a complete hyperbolic metric compatible with the conformal
structure. Note that a conformal structure on a manifold is the structure of
a Riemannian metric modulo rescaling of the metric tensor by the some real
valued function on the manifold. Giesen and Topping [8] considered the Ricci
flow of negatively curved incomplete surfaces and showed such a flow exists for
all time and the normalized Ricci flow converges. In 2013, X. Zhu [18], stud-
ied the normalized Ricci flow with incomplete initial metric on open surfaces.
In 2019, Cortissoz and Murcia [6] investigated the Ricci flow on surfaces with
boundary and in 2022, Dubedat and Shen [7] studied stochastic Ricci flow on
compact surfaces. Also, Katsinis et al. [12] considered geometric flow on mini-
mal surfaces.

Motivated by the above results, we investigate the normalized Ricci-Bourguignon

flow with incomplete initial metric on open surfaces using the same techniques

as in [8,18]. We prove that under certain condition on initial metric, the nor-
malized Ricci-Bourguignon flow always converges exponentially to a metric of
constant Gaussian curvature. In addition, if the initial metric is complete then
the normalized Ricci-Bourguignon flow converges to the hyperbolic metric. We
generalize the results of [18], because assuming p = 0, the results of [18] are
obtained.

The main results of the paper are as follows.

Theorem 1.1. Let M be a Riemann surface equipped with a smooth conformal
metric go of Gaussian curvature Ko < —1. Then flow (2) converges exponen-
tially to a conformal metric with Gaussian curvature —1 for p < % Moreover,
if go is complete, then the solution of this flow converges to the standard hy-
perbolic metric for p < %
From [17] we have the following theorem.

Theorem 1.2 ( [17]). Suppose that M is a Riemann surface obtained from
a compact Riemann surface by removing finitely many disjoint closed disks

and/or points. If no disk is removed, we assume that the Euler number of M
18 less than zero. Then M is a hyperbolic surface.
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Using Theorems 1.1 and 1.2, we obtain the following corollary.

Corollary 1.3. Let N C M be a sub-domain (an open connected subset) of a
punctured and bordered Riemann surface with X(M) < 0. Then N is hyper-
bolic.

A domain in a plane is called a planar domain. By Theorem 1.2, the surface
C\ {p,q} = S?\ {0, p, q} is hyperbolic, so we get the following corollary.

Corollary 1.4. Any hyperbolic planar domain N is covered by the unit disc D.
In particular, any simply connected planar hyperbolic domain is biholomorphic
to the unit disc D.

2. Proof of the main results

On open surfaces the normalized Ricci-Bourguignon flow becomes

9g
2 F=—(1-20)(~Ryg.  9(0)=g0.
Without loss of generality we choose r = —2 through the whole paper. On

open surfaces the normalized Ricci-Bourguignon flow preserves the conformal
class of the initial metric. Then we can write g(t) = e>*(Vgy, u(0) = 0 for
some function v and we have
dult) o o
= (1=2p) (e WA u(t) — 1 — e <f>K), u(0) = 0.

If g(t) is a solution to (2), then its Gaussian curvature K = K evolves by
the equation

Ou(t)
ot

For proving our results we apply the following lemma from Schwarz-Yau [16]:

=(1-2p) (AK +2K* +2K).

Lemma 2.1. Let (X, hy) and (Y, ha) be two Riemann surfaces with two com-
plete conformal metrics h1 and ha and Gaussian curvature Ky, and Kp,, re-
spectively, such that Kp, has lower bound —a; <0 and Kp, < —as < 0. Then
for any conformal mapping f : X — Y, we have f*hy < Z—;hl.

From [11] we have the following definition.

Definition 2.2. A bordered Riemann surface is a connected Hasudorff space
X together with a covering with regions U and homeomorphisms f from U
onto the unit circle D = {z € C||z| < 1} or onto the unit half-circle D = {z €
Cl|z| < 1,Im(z) > 0} such that if U; and U, are any two overlapping regions
of the covering and f; and f5 are the corresponding homeomorphisms, then
homeomorphism fy o f; @ f1(U) — fo(U) is directly conformal.

Proof of Theorem 1.1. Let M be a non-compact Riemann surface. From [14,
Page 199], there exists a sequence My, Ms,--- of compact bordered surfaces
contained in M such that M, C My, and M = U2 M. Thus each M;
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has a complete conformal metric g of Gaussian curvature —k2. Assume that
uy, € C°(Mjy) is a unique function such that g, = e2“*gy. Setting X = My,
Y = M1 in Lemma 2.1 and suppose that f : X — Y is the inclusion map,
then we conclude (k + 1)2gi11 < kg, or equivalently uy, — ugs1 > In % > 0.
Hence, the sequence uy, is pointwisiy decreasing when k — oco. In particular,
this yields for any fixed k and © € My, up+i(z) < up —In((k +1)(k +1)) and
lllglo U1 () = —00.

For ¢ > 0, we consider a smooth function ¢, : R — R such that ¢.(s) =0
for s < —¢, ¢c(s) = s for s > ¢, and ¢/(s) > 0 for all s € R. Therefore
0<@L(s) <1and ¢(s) > s for all s € R. Now, we define new metrics on My,
as g = e2?<(“r) gq. Since ¢(s) > s for all s € R we conclude that ¢ (uy) > .

This results gr > gg. Also, since llim ugyi(xz) = —oo for x € My, we get
—00
lim gr = go. On the other hand, lim wug(x) = 400, thus g is a complete
k—oo x—O M}
metric on Mj. Now, by definition of Gaussian curvature we have
Ky = —e )AL (uy) + o}
(3) = —e 20l {0 () |0 un* + @i (un) Aug + Aug-

If © € My, such that ug(z) > €, then ¢c(ur(x)) = up(x), ¢L(ux(z)) = 1, and
¢! (ur(z)) = 0. Hence, Kz, = K,;, = —k*. When x € My, such that uy(z) <,
because of the compactness reason we have uniform lower bounds for Kj, .
Therefore, in any cases, Kj, has a k-dependent lower bound —C'(k) on M, for
suitable C'(k) > 0. Since ¢! > 0 and 0 < ¢, < 1, from (3) we obtain

Ky, —e 2P (u) =200 Lo (1 ) Ay, + o) + (1 — ¢ (ur)) Aug}
(4) — g 20c(ur)—2uo {¢L(Uk)82uk+2ungkA(Uk + UO)
+(1 — ¢ (ur))e* ™ Ky, }
- 6*2(¢e(w)*uk)¢’€(uk)[(gk +(1— qﬁ’s(uk))e*w‘(“k)f{g

o-
Since K4, = —k2 < —1 and K4, < —1, we conclude
Kj, < — e 2(be(ur)—ur) _ (1- ¢/€(uk))e—2¢e(uk).

Since ¢(s) < €+ s when ¢L(s) # 0 and ¢.(s) < € when ¢.(s) # 1, we infer
Kj, < —e2¢. Therefore, we show that —C(k) < K, < —e 2¢ and obtain a
sequence of complete conformal metric gx with bounded Gaussian curvature
on My. Let gr(t) be the solution to the Ricci-Bourguignon flow with initial
metric gi(0) = gx. From [3,15] there is a maximal existence interval [0, T} ) for
each flow, where T}, > 0 depends only on k and €. Moreover, g (t) are complete
with bounded curvatures.

The corresponding ODE for

(5) 0K = (1 —2p)(AK +2K?* + 2K),
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is % =2(1 —2p)(y* + y). This equation has solution as

= 1
v(t) = et

Applying the maximum principle to the equation (5) we arrive at

1 1
(6) —1 4 e20-2p)t < Ky = —1+ (€26 — 1)e201-20)1°

for 0 < t < Tj. This inequality shows that the maximal existence interval is

(0,00). Also, lim K, ) = —1for p < % Hence the metric g (t) converges to
t—o0

a metric gi(co) of Gaussian curvature —1.

Set u(z,t) € C°(M; x Ry) such that gi(z,t) = e2*@tgg(z). Curvature

equation implies that

- 5u5t(t)

for p < 4. This implies that ug(z,t) > ug(z,0) = ¢c(ux) > 0. Hence, taking
the limit k& — oo, gr(00) > go. Next, we show that gp(oo) is decreasing in k.
For this purpose, we prove uy41(t) < ug(t) for all ¢. Setting

=(1-2p)(Ky1)+1) >0,

1 1
Uk, e(z,t) = up(x, — In(et + 1)) + 3 In(et + 1).
€

We have ug (x,0) = ug(x) and

(8)
{(%uk,e —(1-2p) (672“’“=‘Auk,6 —1- 6721““’6[(0)} (z,t)

1 1
= adr1 {8tuk —(1-2p) (ei%kAUk —-1- 672%[(0)} (@, . In(et + 1))
€ 1
- 4(1- 1— ——
ey TAT20- 5o
€
> -
~ 2(et+1)

> 0,

for p < 1. Let upe(z,t) < upti(z,t) at somewhere in My x [0,00). The
completeness of the metric gx(t) on My, for every time ¢ € [0, 00) implies that
Up,e(x,t) — Upg1(z,t) = +00 as * — OMy,. Thus ug (.,t) — upt1(.,t) achieves
its infimum in M. We assume (zg,t9) € My x [0,00) is one of the points
at which ug e — ugy1 first become negative. At the point (zo,to), maximal

principal yields

Up,e(T0,t0) = uk+1(20,t0), A(uk,e — ugt1)(o,%0) > 0,
O (Up,e — up41) < 0.
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At this point, subtracting the normalized Ricci-Bourguignon flow equation (2)
from (8), we obtain

0 < Oupe— (1—2p) (e <Aup,e — 1 — e > < K)
—{Oups1 — (1= 2p) (6721 Augyy — 1 — e 21K }

= Oy(upe — uns1) — (1 —2p) (7" A(up,e — upt1))
< 0,

which is a contradiction, then ug1(t) < ug(t) for all ¢ and gx(o0) is decreasing
in k. Therefore, g (t) = klim Jr(t) exists and satisfies the normalized Ricci-
— o0

Bourguignon flow equation by regularity theory. Also, goo(00) is defined on the
whole Riemann surface M, larger than gy, and has constant Gaussian curvature
—1. This completes the proof of theorem. |

Proof of Corollary 1.3. We can construct a sequence of bordered Riemann sur-
faces Vi as above. Then, by Theorem 1.2, we can find a hyperbolic metric g
on each Ni. If gg is the restricted hyperbolic metric on M, then we can write
gr = ¥t gy. Using Schwarz-Yau lemma we conclude that u, > upi 1 on Ny
and ug > 0. Let

The function u is a well-defined function on IN. Since

Oug(t)
L = (1= 20) (e + 1)
a standard regularity for elliptic operator shows that u satisfies the equation
ou(t)
2 = (1 - 20) (K + 1)

and consequently g(x) = e*'gg has Gaussian curvature —1 on N. Next, we
prove that the metric g is complete. For this purpose, we assume that v :
[0,T) — N be a maximal geodesic with unit tangent vector g and T' < co. the
length of « is finite for gg when g > gog. Therefore, we can find a point p € N
such that

li t) =np.

lim () = p
Since X' (M) < 0, by the Theorem 1.2 the open surface M\ {p} has a hyperbolic
metric h. We consider the inclusion map

i+ (Nk, gk) = (M \ {p}, h).

It is easy to see that g > h on Ny for all £ and hence g > h. This yields v has
infinite length for g. |

Proof of Corollary 1.4. Theorem 1.2 yields C\ {p,q} = S?\ {o0,p, q} is hyper-
bolic. The remainder of proof is exactly the same as above. O
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