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Abstract. In this paper, we investigate the normalized Ricci-Bourguignon
flow with incomplete initial metric on an open surface. We show that such

a flow converges exponentially to a metric with constant Gaussian curva-

ture if the initial metric is suitable. In particular, if the initial metric is
complete, then the metrics converge to the standard hyperbolic metric.
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1. Introduction

Let (M, g(t)), t ∈ [0, T ) be an n-dimensional manifold evolving along the
normalized Ricci-Bourguignon flow

(1)
∂g

∂t
= −2Ric+ 2ρRg + (1− nρ)

2r

n
g, g(0) = g0,

where Ric is the Ricci curvature tensor, R is the scalar curvature, r =
∫
M
Rdµ∫

M
dµ

is the average of the scalar curvature R, and ρ is a real constant. The Ricci-
Bourguignon flow introduced by J. P. Bourguignon in [2]. It should be noted
that the Ricci-Bourguignon flow is a generalization of some other geometric
flows. For instance, when ρ = 0 the tensor Ric−ρRg− (1−nρ) rng corresponds
to the tensor Ric− r

ng and the normalized Ricci-Bourguignon flow (1) becomes

the normalized Ricci flow. When ρ = 1
n , the tensor Ric − ρRg − (1 − nρ) rng

corresponds to the traceless Ricci tensor. The short time existence and unique-
ness of the solution of the Ricci-Bourguignon flow (1) as a system of partial
differential equations on [0, T ) have been established by Catino et al. [3] for the
case ρ < 1

2(n−1) . Other recent studies on the flow include [1, 4, 13].

A smooth surface with a complete metric of Gaussian curvature −1 is called
a hyperbolic surface. Hamilton [9] and Chow [5] proved the normalized Ricci
flow with any initial metric on a compact surface converges to a constant Gauss-
ian curvature metric. Then Shi [15] showed that on complete manifolds with
bounded curvature, a complete Ricci flow g(t) exists for t ∈ [0, T ], for some
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T > 0. In 2009, Ji et al. [10] and Yin [17] studied normalized Ricci flow on
hyperbolic cusp and non parabolic surfaces with additional conditions, respec-
tively. In fact, Ji et al. [10] considered the normalized Ricci flow ∂g

∂t = (r−R)g
with the complete metric g0 on an open surface (that is, a non-compact Rie-
mann surface) M , where M is conformal to a punctured compact Riemannian
surface and g0 has ends which are asymptotic to hyperbolic cusps. Then, they
showed that if the Euler number of M , X (M), is less than zero and r < 0,
the flow g(t) converges exponentially to a unique complete metric of constant
curvature r

2 in the conformal class. Yin [17], considered the normalized Ricci
flow on a Riemann surface M , where M is obtained from a compact Riemann
surface by removing finitely many disjoint point and/or closed disks. Also, if
no disk is removed, then he further assumed that X (M) < 0 and he proved that
there exists on M , a complete hyperbolic metric compatible with the conformal
structure. Note that a conformal structure on a manifold is the structure of
a Riemannian metric modulo rescaling of the metric tensor by the some real
valued function on the manifold. Giesen and Topping [8] considered the Ricci
flow of negatively curved incomplete surfaces and showed such a flow exists for
all time and the normalized Ricci flow converges. In 2013, X. Zhu [18], stud-
ied the normalized Ricci flow with incomplete initial metric on open surfaces.
In 2019, Cortissoz and Murcia [6] investigated the Ricci flow on surfaces with
boundary and in 2022, Dubedat and Shen [7] studied stochastic Ricci flow on
compact surfaces. Also, Katsinis et al. [12] considered geometric flow on mini-
mal surfaces.

Motivated by the above results, we investigate the normalized Ricci-Bourguignon
flow with incomplete initial metric on open surfaces using the same techniques
as in [8, 18]. We prove that under certain condition on initial metric, the nor-
malized Ricci-Bourguignon flow always converges exponentially to a metric of
constant Gaussian curvature. In addition, if the initial metric is complete then
the normalized Ricci-Bourguignon flow converges to the hyperbolic metric. We
generalize the results of [18], because assuming ρ = 0, the results of [18] are
obtained.
The main results of the paper are as follows.

Theorem 1.1. Let M be a Riemann surface equipped with a smooth conformal
metric g0 of Gaussian curvature K0 ≤ −1. Then flow (2) converges exponen-
tially to a conformal metric with Gaussian curvature −1 for ρ < 1

2 . Moreover,
if g0 is complete, then the solution of this flow converges to the standard hy-
perbolic metric for ρ < 1

2 .

From [17] we have the following theorem.

Theorem 1.2 ( [17]). Suppose that M is a Riemann surface obtained from
a compact Riemann surface by removing finitely many disjoint closed disks
and/or points. If no disk is removed, we assume that the Euler number of M
is less than zero. Then M is a hyperbolic surface.
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Using Theorems 1.1 and 1.2, we obtain the following corollary.

Corollary 1.3. Let N ⊂M be a sub-domain (an open connected subset) of a
punctured and bordered Riemann surface with X (M) < 0. Then N is hyper-
bolic.

A domain in a plane is called a planar domain. By Theorem 1.2, the surface
C \ {p, q} = S2 \ {∞, p, q} is hyperbolic, so we get the following corollary.

Corollary 1.4. Any hyperbolic planar domain N is covered by the unit disc D.
In particular, any simply connected planar hyperbolic domain is biholomorphic
to the unit disc D.

2. Proof of the main results

On open surfaces the normalized Ricci-Bourguignon flow becomes

(2)
∂g

∂t
= −(1− 2ρ)(r −R)g, g(0) = g0.

Without loss of generality we choose r = −2 through the whole paper. On
open surfaces the normalized Ricci-Bourguignon flow preserves the conformal
class of the initial metric. Then we can write g(t) = e2u(t)g0, u(0) = 0 for
some function u and we have

∂u(t)

∂t
= (1− 2ρ)

(
e−2u(t)∆g0u(t)− 1− e−2u(t)K

)
, u(0) = 0.

If g(t) is a solution to (2), then its Gaussian curvature K = Kg(t) evolves by
the equation

∂u(t)

∂t
= (1− 2ρ)

(
∆K + 2K2 + 2K

)
.

For proving our results we apply the following lemma from Schwarz-Yau [16]:

Lemma 2.1. Let (X,h1) and (Y, h2) be two Riemann surfaces with two com-
plete conformal metrics h1 and h2 and Gaussian curvature Kh1 and Kh2 , re-
spectively, such that Kh1

has lower bound −a1 ≤ 0 and Kh2
≤ −a2 < 0. Then

for any conformal mapping f : X → Y , we have f∗h2 ≤ a1
a2
h1.

From [11] we have the following definition.

Definition 2.2. A bordered Riemann surface is a connected Hasudorff space
X together with a covering with regions U and homeomorphisms f from U
onto the unit circle D = {z ∈ C||z| < 1} or onto the unit half-circle D̃ = {z ∈
C||z| < 1, Im(z) ≥ 0} such that if U1 and U2 are any two overlapping regions
of the covering and f1 and f2 are the corresponding homeomorphisms, then
homeomorphism f2 ◦ f−11 : f1(U)→ f2(U) is directly conformal.

Proof of Theorem 1.1. Let M be a non-compact Riemann surface. From [14,
Page 199], there exists a sequence M1,M2, · · · of compact bordered surfaces
contained in M such that Mk ⊂ Mk+1 and M = ∪∞k=1Mk. Thus each Mk
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has a complete conformal metric gk of Gaussian curvature −k2. Assume that
uk ∈ C∞(Mk) is a unique function such that gk = e2ukg0. Setting X = Mk,
Y = Mk+1 in Lemma 2.1 and suppose that f : X → Y is the inclusion map,
then we conclude (k + 1)2gk+1 ≤ k2gk or equivalently uk − uk+1 ≥ ln k+1

k > 0.
Hence, the sequence uk is pointwisiy decreasing when k → ∞. In particular,
this yields for any fixed k and x ∈ Mk, uk+l(x) ≤ uk − ln((k + 1)(k + l)) and
lim
l→∞

uk+l(x) = −∞.

For ε > 0, we consider a smooth function φε : R → R such that φε(s) = 0
for s ≤ −ε, φε(s) = s for s ≥ ε, and φ′′ε (s) ≥ 0 for all s ∈ R. Therefore
0 ≤ φ′ε(s) ≤ 1 and φ(s) ≥ s for all s ∈ R. Now, we define new metrics on Mk

as g̃k = e2φε(uk)g0. Since φ(s) ≥ s for all s ∈ R we conclude that φk(uk) ≥ uk.
This results g̃k ≥ gk. Also, since lim

l→∞
uk+l(x) = −∞ for x ∈ Mk, we get

lim
k→∞

g̃k = g0. On the other hand, lim
x→∂Mk

uk(x) = +∞, thus g̃k is a complete

metric on Mk. Now, by definition of Gaussian curvature we have

Kg̃ = −e−2φε(uk)−2u0∆{φε(uk) + u0}
= −e−2φε(uk)−2u0{φ′′ε (uk)|∂zuk|2 + φ′ε(uk)∆uk + ∆u0}.(3)

If x ∈ Mk such that uk(x) ≥ ε, then φε(uk(x)) = uk(x), φ′ε(uk(x)) = 1, and
φ′′ε (uk(x)) = 0. Hence, Kg̃k = Kgk = −k2. When x ∈Mk such that uk(x) ≤ ε,
because of the compactness reason we have uniform lower bounds for Kg̃k .
Therefore, in any cases, Kg̃k has a k-dependent lower bound −C(k) on Mk for
suitable C(k) > 0. Since φ′′ε > 0 and 0 ≤ φ′ε ≤ 1, from (3) we obtain

Kg̃k ≤ −e−2φε(uk)−2u0 {φ′ε(uk)∆(uk + u0) + (1− φ′ε(uk))∆u0}
= e−2φε(uk)−2u0

{
φ′ε(uk)e2uk+2u0Kgk∆(uk + u0)(4)

+(1− φ′ε(uk))e2u0Kg0

}
= e−2(φε(uk)−uk)φ′ε(uk)Kgk + (1− φ′ε(uk))e−2φε(uk)Kg0 .

Since Kgk = −k2 ≤ −1 and Kg0 ≤ −1, we conclude

Kg̃k ≤ −e−2(φε(uk)−uk) − (1− φ′ε(uk))e−2φε(uk).

Since φε(s) ≤ ε + s when φ′ε(s) 6= 0 and φε(s) ≤ ε when φ′ε(s) 6= 1, we infer
Kg̃k ≤ −e−2ε. Therefore, we show that −C(k) ≤ Kg̃k ≤ −e−2ε and obtain a
sequence of complete conformal metric g̃k with bounded Gaussian curvature
on Mk. Let gk(t) be the solution to the Ricci-Bourguignon flow with initial
metric gk(0) = g̃k. From [3,15] there is a maximal existence interval [0, Tk) for
each flow, where Tk > 0 depends only on k and ε. Moreover, gk(t) are complete
with bounded curvatures.
The corresponding ODE for

(5) ∂tK = (1− 2ρ)(∆tK + 2K2 + 2K),



Ricci-Bourguignon flow on open surface – JMMR Vol. 13, No. 1 (2024) 163

is dy
dt = 2(1− 2ρ)(y2 + y). This equation has solution as

y(t) =
1

−1 + ce−2(1−2ρ)t
.

Applying the maximum principle to the equation (5) we arrive at

(6)
1

−1 + e−2(1−2ρ)t
≤ Kg(t) ≤

1

−1 + (e2ε − 1)e−2(1−2ρ)t
,

for 0 < t < Tk. This inequality shows that the maximal existence interval is
(0,∞). Also, lim

t→∞
Kgk(t) = −1 for ρ ≤ 1

2 . Hence the metric gk(t) converges to

a metric gk(∞) of Gaussian curvature −1.
Set uk(x, t) ∈ C∞(Mk × R+) such that gk(x, t) = e2uk(x,t)g0(x). Curvature
equation implies that

(7)
∂uk(t)

∂t
= (1− 2ρ)(Kgk(t) + 1) ≥ 0,

for ρ ≤ 1
2 . This implies that uk(x, t) ≥ uk(x, 0) = φε(uk) ≥ 0. Hence, taking

the limit k → ∞, gk(∞) ≥ g0. Next, we show that gk(∞) is decreasing in k.
For this purpose, we prove uk+1(t) ≤ uk(t) for all t. Setting

uk,ε(x, t) = uk(x,
1

ε
ln(εt+ 1)) +

1

2
ln(εt+ 1).

We have uk,ε(x, 0) = uk(x) and

(8) {
∂tuk,ε − (1− 2ρ)

(
e−2uk,ε∆uk,ε − 1− e−2uk,εK0

)}
(x, t)

=
1

εt+ 1

{
∂tuk − (1− 2ρ)

(
e−2uk∆uk − 1− e−2ukK0

)}
(x,

1

ε
ln(εt+ 1))

+
ε

2(εt+ 1)
+ (1− 2ρ)(1− 1

εt+ 1
)

≥ ε

2(εt+ 1)

> 0,

for ρ ≤ 1
2 . Let uk,ε(x, t) < uk+1(x, t) at somewhere in Mk × [0,∞). The

completeness of the metric gk(t) on Mk, for every time t ∈ [0,∞) implies that
uk,ε(x, t)− uk+1(x, t)→ +∞ as x→ ∂Mk. Thus uk,ε(., t)− uk+1(., t) achieves
its infimum in Mk. We assume (x0, t0) ∈ Mk × [0,∞) is one of the points
at which uk,ε − uk+1 first become negative. At the point (x0, t0), maximal
principal yields

uk,ε(x0, t0) = uk+1(x0, t0), ∆(uk,ε − uk+1)(x0, t0) ≥ 0,

∂t(uk,ε − uk+1) ≤ 0.
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At this point, subtracting the normalized Ricci-Bourguignon flow equation (2)
from (8), we obtain

0 < ∂tuk,ε − (1− 2ρ)
(
e−2uk,ε∆uk,ε − 1− e−2uk,εK0

)
−
{
∂tuk+1 − (1− 2ρ)

(
e−2uk+1∆uk+1 − 1− e−2uk+1K0

)}
= ∂t(uk,ε − uk+1)− (1− 2ρ)

(
e−2uk+1∆(uk,ε − uk+1)

)
≤ 0,

which is a contradiction, then uk+1(t) ≤ uk(t) for all t and gk(∞) is decreasing
in k. Therefore, g∞(t) = lim

k→∞
g̃k(t) exists and satisfies the normalized Ricci-

Bourguignon flow equation by regularity theory. Also, g∞(∞) is defined on the
whole Riemann surface M , larger than g0, and has constant Gaussian curvature
−1. This completes the proof of theorem. �

Proof of Corollary 1.3. We can construct a sequence of bordered Riemann sur-
faces Nk as above. Then, by Theorem 1.2, we can find a hyperbolic metric gk
on each Nk. If g0 is the restricted hyperbolic metric on M , then we can write
gk = e2ukg0. Using Schwarz-Yau lemma we conclude that uk ≥ uk+1 on Nk
and uk ≥ 0. Let

u(x) = lim
k→∞

uk(x).

The function u is a well-defined function on N . Since

∂uk(t)

∂t
= −(1− 2ρ)(Kgk(t) + 1),

a standard regularity for elliptic operator shows that u satisfies the equation

∂u(t)

∂t
= −(1− 2ρ)(Kg(t) + 1)

and consequently g(x) = e2ug0 has Gaussian curvature −1 on N . Next, we
prove that the metric g is complete. For this purpose, we assume that γ :
[0, T )→ N be a maximal geodesic with unit tangent vector g and T <∞. the
length of γ is finite for g0 when g ≥ g0. Therefore, we can find a point p ∈ ∂N
such that

lim
t→T

γ(t) = p.

Since X (M) < 0, by the Theorem 1.2 the open surface M \{p} has a hyperbolic
metric h. We consider the inclusion map

ik : (Nk, gk)→ (M \ {p}, h).

It is easy to see that gk ≥ h on Nk for all k and hence g ≥ h. This yields γ has
infinite length for g. �

Proof of Corollary 1.4. Theorem 1.2 yields C \ {p, q} = S2 \ {∞, p, q} is hyper-
bolic. The remainder of proof is exactly the same as above. �
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