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Abstract. In this paper, we use new techniques to prove Hyers-Ulam
and Hyers-Ulam-Rasiass stability of Deeba, Drygas and logarithmic func-
tional equations in non-Archimedean normed spaces. We generalize some
earlier results connected with the stability of these functional equations
and inequalities. In addition, we provide some examples to clarify the
definitions and theorems.
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1. Introduction
It was in the autumn of 1940, when S. M.Ulam gave a speech at a mathemat-

ics conference at the University of Wisconsin. He discussed several important
problems which seemed to be unsolvable. Among these problems, there was the
following problem about the stability of group homomorphisms [26]: Suppose
a group (G1, ⋆) and  a metric group (G2, ⋄, d)  and also a positive ε  are given.
Does there exist a positive δ such that if a function f : G1 → G2 satisfies the
inequality d(f(x ⋆ y), f(x) ⋄ f(y)) < δ for every x, y ∈ G1, then a homomor-
phism T : G1 → G2, i.e., T (x ⋆ y) = T (x) ⋄ T (y), exists with d(f(x), T (x)) < ε
for all x ∈ G1?
And if so,  it is said that the functional equation (by definition, an equation
contains an unknown function) for homomorphisms  from G1 to G2 is stable.
After about a year, in 1941, Hyers solved the problem of approximately ad-
ditive mappings [16], assuming G1 and G2 are Banach spaces. Some years
later, in 1950, Aoki generalized Hyers theorem [3] for approximately additive
mappings. 28 Years later, in 1978,  Rassias generalized this theorem by taking
unbounded Cauchy differences into account. Moreover, he introduced a stabil-
ity phenomenon namely the Hyers-Ulam-Rassias stability [22]. Now based on
Rassias theorem, assume E1 is a normed vector space, E2 is a Banach space,
and suppose that a mapping f : E1 → E2 satisfies the inequality
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∥f(x+ y)− f(x)− f(y)∥ ≤ ε(∥x∥p + ∥y∥p),(1)

for all x, y ∈ E1, where p < 1 and ε > 0 are given constants. Then a unique
additive mapping T : E1 → E2 exists such that

∥f(x)− T (x)∥ ≤ ε

1− 2p−1
∥x∥p,(2)

for all x ∈ E1. If p < 1 the inequality (1) holds for all x, y ̸= 0, and (2) for all
x ̸= 0. Moreover, if for each fixed x ∈ E1, the function t → f(tx) from R → E2

is continuous, then the mapping T is R–linear.
Taking this into account, it is said that the additive functional equation

f(x+ y) = f(x) + f(y),

has the Hyers-Ulam-Rassias stability on (E1, E2). Several mathematicians have
investigated a number of stability problems of functional equations during re-
cent decades; see [5, 12–14,20] and references therein for more details.

A mapping f is said to be bi-additive if f is additive in each variable, that
is,

f(x+ y, z) = f(x, z) + f(y, z),

f(x, y + z) = f(x, y) + f(x, z).

For example, f(x, y) = xy is a bi-additive mapping [23].

2. Preliminaries
Definition 2.1. (see [4]) A valuation on a field K is a function | · | from K into
[0, ∞) such that 0 is the unique element that has the 0 valuation, |rs| = |r||s|
and the triangle inequality is satisfied, i.e.,

|r + s| ≤ |r|+ |s|

A field K is called a valued field if K carries a valuation.

The best-known examples of valuations are the usual absolute values of the
fields of real and complex numbers [4, 13]. Now we consider a valuation that
satisfies a condition that is stronger than the triangle inequality. If one replaces
the triangle inequality by

|r + s| ≤ max
{
|r|, |s|

}
,

for all r, s ∈ K, then the function | · | is called a non-Archimedean valuation on
K, and the field K is called a non-Archimedean field [4].

Remark 2.2. Clearly according to the definition of a non-Archimedean field,
|1| = | − 1| = 1, |n| ≤ 1 and |rn| = |r|n for all r, n ∈ N [18].
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Example 2.3. Let K be a field. The function | · | : K → R+
0 = [0, ∞) given by

|x| =
{

0 x = 0
1 x ̸= 0

is called trivial valuation [25].
Example 2.4. If x ∈ Q⋆ = Q − {0} and p is a fixed prime number, then we
can write x = ptx0, where gcd(p, x0) = 1 and t ∈ Z. The function | · | : Q → R+

0

given by
|x| =

{
0 x = 0

e−t x ̸= 0

is a valuation [15].
Remark 2.5. The p-adic numbers have drawn the attention of many physicists
due to their many applications in quantum. These numbers can be considered
as one of the most widely used non-Archimedean fields [25,27].
Definition 2.6. (see [18])  Consider a vector space X over a scalar field K with
a non-Archimedean non-trivial valuation ∥ · ∥. A function ∥ · ∥ : X → R is a
non-Archimedean norm (valuation) if it satisfies the three conditions:

(1) ∥x∥ = 0 if and only if x = 0; 
(2) ∥rx∥ = |r|∥x∥(r ∈ K, x ∈ X);
(3) The strong triangle inequality; namely,

∥x+ y∥ ≤ max{∥x∥, ∥y∥},
for every x, y ∈ X.

(X, ∥ · ∥) is called a non-Archimedean space if ∥ · ∥ is a non-Archimedean
norm.
Remark 2.7.  Due to the fact that if n > m then

∥xn − xm∥ ≤ max {∥xj+1 − xj∥ |m ≤ j ≤ n− 1} ,
 the sequence {xn} is Cauchy if and only if the sequence {xn+1−xn} converges
to zero in a non-Archimedean space [17].

A complete non-Archimedean space is a space in which every Cauchy se-
quence is convergent. A Banach space is a complete normed vector space.
Example 2.8. (see [24]) Let K be a non-Archimedean field with a non-
Archimedean valuation | · |.

(1) The vector space Kn with the norm ∥(a1, a2, . . . , an)∥ = max1≤i≤n |ai|
is a complete non-Archimedean space.

(2) Let X be a non-empty set. The set
L∞ = {f |f : X → K, f is bounded},

with scalar multiplication, pointwise addition, and the norm
∥f∥ = sup

x∈X
|f(x)|,
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is a non-Archimedean Banach space.

C. Perez-Garcia and W. H. Schikhof, presented an interesting example of
non-Archimedean spaces in [21].

Definition 2.9. Deeba functional equation is in the form
f(x · y · z) + f(x) + f(y) + f(z) = f(x · y) + f(x · z) + f(y · z),

and, Drygas functional equation is in the form
f(x · y) + f(x · y−1) = 2f(x) + f(y) + f(y−1).

Also, we define logarithmic functional equation (L.F.E.) as:
f(x.y) = f(x) + f(y),

when the unknown function f is a function with values in a non-Archimedean
space1.

Remark 2.10. It’s obvious that for any L.F.E., we have
f(xn) = f(x) + f(x) + · · ·+ f(x)︸ ︷︷ ︸

n term

= nf(x).(3)

Example 2.11. Suppose a function Hc : R− {0} → R is given by
Hc(x) = c ln |x|,

where c is any real constant. The function Hc is an L.F.E. that satisfies the
Deeba and Drygas equations.

Some algebraic definitions are collected in the following definition.

Definition 2.12. A semigroup can be defined as an algebraic structure con-
sisting of an internal binary operation and a set in which the binary operation
is associative. A group is a semigroup with identity and inverse elements. An
abelian group is a group with a commutative binary operation.

In this paper, we show how the stability problem can be solved for the
functional equations of Deeba, Drygas and logarithmic functional equations in
non-Archimedean spaces.

3. Main results
In this section  we investigate the stability of several functional equations.

Lemma 3.1. Let G and X be a normed semigroup and a complete non-
Archimedean space,  respectively. Assume that ϕ : G×G → [0, ∞) satisfies

lim
n→∞

ϕ(x2n , y2
n

)

|2|n
= 0,(4)

1The reader can see more about functional equations in [23].
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for all x, y ∈ G, and for each x ∈ G the following limit exists and is denoted
by Φ(x).

lim
n→∞

max

{
ϕ(x2i , x2i)

|2|i
∣∣∣ 0 ≤ i < n

}
.(5)

If a mapping f : G → X satisfies the inequality

∥f(x · y)− f(x)− f(y)∥ ≤ ϕ(x, y),(6)

then there exists an L.F.E. H : G → X such that

∥f(x)−H(x)∥ ≤ 1

|2|
Φ(x),(7)

for any x ∈ G.  Also, with the assumption that

lim
k→∞

lim
n→∞

max

{
ϕ(x2i , x2i)

|2|i
∣∣∣ k ≤ i < n+ k

}
= 0,(8)

H is a unique L.F.E. which satisfies (7) .

Proof. Putting y = x in the inequality (6) and dividing by |2| we get∥∥∥∥12f(x2)− f(x)

∥∥∥∥ ≤ 1

|2|
ϕ(x, x),

for all x ∈ G. Replacing x by x2n−1 in the above inequality and dividing by
|2|n−1 yields ∥∥∥ 1

2n
f(x2n)− 1

2n−1
f(x2n−1

)
∥∥∥ ≤ ϕ(x2n−1

, x2n−1

)

|2|n
,

for all x ∈ G. Using (4) for n → ∞ and Remark 2.7, we can easily calculate
that {

f(x2n)

2n

}
is a Cauchy sequence. On the other hand, since X is a complete non-Archimedean
space, it implies that the sequence

{
f(x2n )

2n

}
is convergent for each x ∈ X. Let

us put:

H(x) = lim
n→∞

f(x2n)

2n
.

Applying an induction to n, we can prove that∥∥∥ 1

2n
f(x2n)− f(x)

∥∥∥ ≤ 1

|2|
max

{
ϕ(x2k , x2k)

|2|k
∣∣∣ 0 ≤ k < n

}
,

for all x ∈ G. Taking the limit in the above inequality as n → ∞ and using
equation (5) in non-Archimedean spaces, we obtain (7). By replacing x2n and
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y2
n with x and y in (6), respectively and dividing by |2|n we get∥∥∥f(x2n · y2n)

2n
− f(x2n)

2n
− f(y2

n

)

2n

∥∥∥ ≤ ϕ(x2n , y2
n

)

|2|n
,

where x, y are in G.
Letting n → ∞ and using equation (4), we conclude

H(x · y) = H(x) +H(y).

Therefore, H is an L.F.E.. It remains to show that H is uniquely defined. Let
H

′ be another L.F.E. satisfying (7). Then, we get

∥∥∥H(x)−H
′
(x)
∥∥∥ (3)
= lim

k→∞

∥∥∥H(x2k)−H ′(x2k)
∥∥∥

|2|k

≤ lim
k→∞

max
{∥∥∥H(x2k)− f(x2k)

∥∥∥, ∥∥∥f(x2k)−H
′
(x2k)

∥∥∥}
|2|k

≤ 1

|2|
lim
k→∞

lim
n→∞

max

{
ϕ(x2i , x2i)

|2|i
∣∣∣ k ≤ i < n+ k

}
= 0.

Therefore H = H
′ , and the proof is complete. □

According to Lemma 3.1, we can prove the Hyers-Ulam-Rassias stability and
Hyers-Ulam stability of logarithmic functional equations (L.F.E.) as follows:

Corollary 3.2. Suppose G is a normed group, X is a complete non-Archimedean
space and f : G → X is a mapping satisfying the functional equation

∥f(x · y)− f(x)− f(y)∥ ≤ ε

2

(
µ(∥x∥) + µ(∥y∥)

)
,

for some ε > 0 and for any x, y ∈ G. If µ : R+
0 → R+

0 is a function satisfying

µ(∥x2∥) ≤ µ(|2|)µ(∥x∥), µ(|2|) < |2|,

then there exists a unique L.F.E. H : G → X such that

∥f(x)−H(x)∥ ≤ εµ(∥x∥).

Proof. Defining ϕ : G×G → R+
0 by

ϕ(x, y) =
ε

2

(
µ(∥x∥) + µ(∥y∥)

)
,

we get

ϕ(x2n , y2
n

) =
ε

2

(
µ(|2|)

)n(
∥x∥+ ∥y∥

)
.
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Therefore,

lim
n→∞

ϕ(x2n , y2
n

)

|2|n
≤ ε

2

(
µ(∥x∥) + µ(∥y∥)

)
lim

n→∞

(
µ(|2|)
|2|

)n

= 0.

Also, we have

max

{
ϕ(x2i , x2i)

|2|i
∣∣∣ 0 ≤ i < n

}

=
ε

2

(
max

{
µ(∥x2i∥) + µ(∥x2i∥)

|2|i
∣∣∣ 0 ≤ i < n

})

=
ε

2

(
max

{
(µ(|2|))i (2µ(∥x∥))

|2|i
∣∣∣ 0 ≤ i < n

})

= ε

(
max

{(
µ(|2|)
|2|

)i

(µ(∥x∥))
∣∣∣ 0 ≤ i < n

})
≤ ε µ(∥x∥).

Now, applying Lemma 3.1 we get the result. □

Lemma 3.3. Let G and X be a normed group and a complete non-Archimedean
space,  respectively. Assume that ϕ : G×G → [0, ∞) satisfies

lim
n→∞

ϕ(x2n , y−2n)

|2|n
= 0.

If a mapping f : G → X satisfies the inequality

∥f(x · y−1)− f(x)− f(y−1)∥ ≤ ϕ(x, y−1),

then there exists an L.F.E. H : G → X such that

∥f(x)−H(x)∥ ≤ 1

|2|
ϕ(x, x).

Proof. Using Lemma 3.1 and substituting y by y−1 we get the result. □

Theorem 3.4.  Let G and X be a normed group and a complete non-Archimedean
spaces,  respectively. Assume that ϕ : G×G → R+

0 satisfies 

lim
n→∞

ϕ(x2n , y2
n

)

|2|n
= 0,

lim
n→∞

ϕ(x2n , y−2n)

|2|n
= 0,

(9)
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for all x, y ∈ G, and let for each x ∈ G the limit

lim
n→∞

max

{
max

{
ϕ(x2i , x2i)

|2|i

}
,

max

{
ϕ(x2i , x−2i)

|2|i

} ∣∣∣∣∣ 0 ≤ i < n

}
,

(10)

denoted by Φ(x),  exist. If a mapping f : G → X satisfies the inequality

f(x · y)+f(x · y−1)− 2f(x)− f(y)− f(y−1)

≤max
{
ϕ(x, y), ϕ(x, y−1)

}
.

(11)

Then there exists a Drygas function H : G → X such that 

∥f(x)−H(x)∥ ≤ 1

|2|
Φ(x).

Proof. In view of inequality (11) and using the third property of Definition 2.6,
we obtain

∥f(x · y) + f(x · y−1)− 2f(x)− f(y)− f(y−1)∥
=∥f(x · y)− f(x)− f(y) + f(x · y−1)− f(x)− f(y−1)∥
≤max

{
∥f(x · y)− f(x)− f(y)

∥∥,
∥ f(x · y−1)− f(x)− f(y−1)∥

}
.

By substituting x2n and y2
n for x and y in above equation, respectively and

dividing by |2|n we get∥∥∥∥f(x2n · y2n)
2n

+
f(x2n · y−2n)

2n
− 2

(
f(x2n)

2n

)
− f(y2

n

)

2n
− f(y−2n)

2n

∥∥∥∥
≤ max

{∥∥∥∥f(x2n · y2n)
2n

− f(x2n)

2n
− f(y2

n

)

2n

∥∥∥∥ ,∥∥∥∥f(x2n · y−2n)

2n
− f(x2n)

2n
− f(y−2n)

2n

∥∥∥∥
}

≤ max

{
ϕ(x2n , y2

n

)

|2|n
,
ϕ(x2n , y−2n)

|2|n

}
.

Let n → +∞ and

H(x) = lim
n→∞

{
f(x2n)

2n

}
and using (9), Lemmas 3.1 and 3.3 we conclude

H(x · y) +H(x · y−1) = 2H(x) +H(y) +H(y−1).

Therefore, H is a Drygas function. □
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Corollary 3.5. Let G be a normed group, X be a complete non-Archimedean
space and let f : G → X be a mapping satisfying the inequality∥∥f(x · y) + f(x · y−1)− 2f(x)− f(y)− f(y−1)

∥∥ ≤ ε(µ(∥x∥) + µ(∥y∥)),

where, ε > 0, x, y ∈ G and µ is defined in Corollary 3.2. Then there exists a
Drygas function H : G → X such that

∥f(x)−H(x)∥ ≤ ε.

Theorem 3.6. Let G and X be a normed abelian group and a complete non-
Archimedean space,  respectively. Assume that ϕ : G×G×G → [0, ∞) satisfies

lim
n→∞

ϕ(x3n , y3
n

, z3
n

)

|3|n
= 0,(12)

for all x, y, z ∈ G, and let for each x ∈ G the limit

lim
n→∞

max

{
ϕ(x3i , x3i , x3i)

|3|i
∣∣∣ 0 ≤ i < n

}
,(13)

is denoted by Φ(x), exist. Assume that a mapping f : G → X satisfies the
inequalities ∥∥f(x.y.z) + f(x) + f(y) + f(z)

− f(x.y)− f(x.z)− f(y.z)
∥∥

≤ ϕ(x, y, z),

(14)

and,
∥f(x3)− 3f(x)∥ ≤ ϕ(x, x, x),(15)

then there exists a Deeba function H : G → X such that

∥f(x)−H(x)∥ ≤ 1

|3|
Φ(x).(16)

 

Proof. Replacing x by x3n−1 in the (15) and dividing by |3|n, we get∥∥∥∥ 1

3n
f(x3n)− 1

3n−1
f(x3n−1

)

∥∥∥∥ ≤ ϕ(x3n−1

, x3n−1

, x3n−1

)

|3|n
,

for all x ∈ G. Taking the limit as n → ∞ and considering (12), we can see the
sequence {

f(x3n)

3n

}
is Cauchy. Since X is a complete non-Archimedean space, it implies that the
sequence {

f(x3n)

3n

}
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is convergent for each x ∈ X. Now we put:

H(x) = lim
n→∞

{
f(x3n)

3n

}
.

Applying an induction to n, we can prove that∥∥∥∥ 1

3n
f(x3n)− f(x)

∥∥∥∥ ≤ 1

|3|
max

{
ϕ(x3k , x3k , x3k)

|3|k
∣∣∣ 0 ≤ k < n

}
,

for all x ∈ G. Taking the limit in the above inequality as n → ∞ and using
equation (13) we obtain (16). By substituting x3n , y3n and z3

n for x, y and z
in (14), respectively and dividing by |3|n, we get∥∥∥∥∥f(x3n .y3

n

.z3
n

)

3n
+

f(x3n)

3n
+

f(y3
n

)

3n
+

f(z3
n

)

3n

−
f
(
(x.y)3

n)
3n

−
f
(
(x.z)3

n)
3n

−
f
(
(y.z)

3n
)

3n

∥∥∥∥∥
≤ ϕ(x3n , y3

n

, z3
n

)

|3|n
, ∀x, y, z ∈ G.

Letting n → +∞ and using equation (12), we conclude that
H(x · y · z) +H(x) +H(y) +H(z) = H(x · y) +H(x · z) +H(y · z).(17)

Therefore, H is a Deeba function. □

Example 3.7. Let G = R − {0} be a multiplication group and X be a non-
Archimedean space with |3| ≤ |2| ̸= 1 (Examples 2.4 and 2.8). Define

ϕ(x3n , y3
n

, z3
n

) = |3|2n.(18)

By replacing n = 0 in (18), we get ϕ(x, y, z) = 1. Suppose that, f satisfies in
(14) and (15) (i.e., f(x) = 1). It’s easy to see that Φ(x) = 1, and H(x) = 0 is
a Deeba function satisfying (16).

Another view of Theorem 3.6 is provided in the following theorem. The
previous example also works for this theorem.

Theorem 3.8. Let G and X be a normed abelian group and a complete non-
Archimedean space,  respectively. Assume that ϕ : G×G×G → [0, ∞) satisfies

lim
n→∞

ϕ(x3n , y3
n

, z3
n

)

|3|n
= 0,(19)

for all x, y, z ∈ G, and let for each x ∈ G the limit

lim
n→∞

max

{
ϕ(x3i , x3i , x3i)

|3|i
∣∣∣ 0 ≤ i < n

}
,(20)
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denote by Φ(x), exist. If a mapping f : G → X satisfies the inequality∥∥f(x · y) + f(x · z) + f(y · z)− 2f(x)− 2f(y)− 2f(z)
∥∥

≤
∥∥f(x · y · z)− f(x)− f(y)− f(z)

∥∥
≤ ϕ(x, y, z),

(21)

then there exists a Deeba function H : G → X such that∥∥f(x)−H(x)
∥∥ ≤ 1

|3|
Φ(x).

As the last corollary, we state another form of Corollary 3.2 by changing the
assumptions and its functional equation.

Corollary 3.9. Suppose G is a normed abelian group, X is a complete non-
Archimedean space and µ : R+

0 → R+
0 is a function satisfying

µ
(
∥x3∥

)
≤ µ(|3|)µ(∥x∥), µ(|3|) < |3|.

If f : G → X is a function satisfying∥∥f(x · y) + f(x · z) + f(y · z)− 2f(x)− 2f(y)− 2f(z)
∥∥

≤
∥∥f(x · y · z)− f(x)− f(y)− f(z)

∥∥
≤ ε

3

(
µ(∥x∥p) + µ(∥y∥p) + µ(∥z∥p)

)
,

for some ε > 0, positive real number p and for all x, y, z ∈ G, then there exists
a Deeba function H : G → X such that

∥f(x)−H(x)∥ ≤ εµ (∥x∥p) .

Proof. We define ϕ : G×G×G → R+
0 as

ϕ(x, y, z) =
ε

3

(
µ(∥x∥p) + µ(∥y∥p) + µ(∥z∥p)

)
.

Therefore,

ϕ(x3n , y3
n

, z3
n

) =
ε

3

(
µ
(
∥x3n∥p

)
+ µ

(
∥y3

n

∥p
)
+ µ

(
∥z3

n

∥p
))

=
ε

3

(
µ(|3|)

)n(
∥x∥p + ∥y∥p + ∥z∥p

)
.

Therefore,

lim
n→∞

ϕ(x3n , y3
n

, z3
n

)

|3|n
≤ ε

3

(
µ(∥x∥p) + µ(∥y∥p) + µ(∥z∥p)

)
lim
n→∞

(
µ(|3|)
|3|

)n

= 0.



178 D. Khatibi Aghda, S.M.S. Modarres Mosaddegh

Also, it’s easy to see that

max

{
ϕ(x3i , x3i , x3i)

|3|i
∣∣∣ 0 ≤ i < n

}

= ε

(
max

{(
µ(|3|)
|3|

)i

µ(∥x∥p)
∣∣∣ 0 ≤ i < n

})
≤ ε µ(∥x∥p).

Now, applying Theorem 3.6, we get the desired result. □

4. Conclusion
The concept of Hyers-Ulam stability is rather significant in tackling real-

world problems in such fields as economics, numerical analysis, differential
equations, biology, etc. For example, in the field of differential equations,
many mathematicians are studying the Hyers-Ulam stability of solutions of
ordinary or partial differential equations. Some applications of the concept
of Hyers-Ulam stability in differential equations are given in [1, 2, 19]. Also, a
mathematical modeling for the corona virus epidemic (COVID-19) using Hyers-
Ulam stability was given in [8].

In general, fixed-point theorems and the direct method are often used to
evaluate the Hyers-Ulam stability of functional equations [20,25]. In this work,
we studied stability of functional equations in non-Archimedean spaces using
direct method. We inspected the stability of functional equations for three
types of such equations in non-Archimedean space, from a different viewpoint,
by providing various definitions, examples, and theorems. For future works,
we recommend obtaining stability results for functional equations in various
normed spaces such as fuzzy normed spaces, multiplicative normed spaces,
random normed spaces, etc. [6, 7, 10,11].
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