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Abstract. The aim of this paper is to construct fraction of a Γ-module
over a commutative Γ-ring. There should be an appropriate set S of ele-
ments in a Γ-ring R to be used as a Γ-module of fractions. Then we study
the homomorphisms of a Γ-module which can lead to related basic results.
We show that for every Γ-module M , S−1(0 :R M) = (0 :S−1R S−1M).

Also, if M is a finitely generated RΓ-module, then S−1M is finitely gen-
erated.

Keywords: Γ-ring of fraction, Γ-module of fraction, Finitely generated
Γ-module.
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1. Introduction and Basic Definitions
The formation of rings of fractions and the associated process of localiza-

tion are perhaps the most important technical tools in commutative algebra.
They correspond in the algebra to concentrating attention on the importance
of these notions should be self evident. Atiyeh [2] gave the definition and sim-
ple properties of the formation of fractions in commutative rings and modules.
Fraction rings and fraction modules have various applications in mathematics,
computer science, and engineering. Some of these applications are:

1. Algebraic geometry: Fraction rings are used to study algebraic varieties
and their properties. They provide a way to localize a ring at a prime
ideal and study the behavior of the ring near that ideal.

2. Number theory: Fraction rings are used to study number fields and
their properties. They provide a way to extend the field of rational
numbers by adjoining roots of polynomials.

3. Coding theory: Fraction modules are used to construct error-correcting
codes. They provide a way to encode messages using a finite-dimensional
vector space over a field, and then decode them using linear algebraic
techniques.

4. Cryptography: Fraction rings and modules are used to construct public-
key cryptosystems. They provide a way to encrypt messages using
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modular arithmetic, and then decrypt them using the inverse opera-
tion.

5. Control theory: Fraction modules are used to model and analyze linear
control systems. They provide a way to represent the system as a set of
equations involving matrices and vectors, and then analyze its stability
and performance.

The notation of Γ-ring was first introduced by Nobusawa [6] as a general-
ization of a classical ring and afterward Barnes [3] improved the concepts of
Nobusawa’s Γ-ring and developed the more general Γ-ring in which all classical
rings were contained [8, 9]. The concept of Γ-structures in related structures
to Γ-ring such as fuzzy Γ-rings, Γ-hyperrings and Γ-hemirings is used by the
researchers of the century [4, 5, 12].

Recently, Tabatabaee and Roodbarylor [10] constructed commutative Γ-
rings of fractions and discussed the quotient field of commutative integral do-
main by used local Γ-rings. Also, Ostadhadi-Dehkordi using strongly regular
relation and constructed quotient (Γ, R)-hypermodules [7].

The definition of Γ-module was given for the first time by Ameri et al [1],
studying some preliminary properties of them such as: Γ-submodules, homo-
morphism of Γ-module and finitely generated Γ-module.

Considering the applications of rings and modules of fractions that were
mentioned and considering that Γ-modules and Γ-rings are generalizations of
modules and rings, therefore, construction and studying the properties of Γ-
rings and Γ-modules of fractions can help to expand the previous concepts. In
this paper, we extend the concept of fraction from the category of modules
to that Γ-modules over Γ-rings and the researchers discussed its characteris-
tics and relations by using Γ-rings. Further, we investigate some theorems of
homomorphism of Γ-modules.

In Section 2, we construct fraction of a Γ-module by choosing appropriate
equivalence relation on M×S, where S is a multiplication closed subset on a Γ-
ring R. Finally, finitely generated Γ-modules and homomorphism of Γ-modules
are investigated.

Definition 1.1. [6] Let R and Γ be abelian groups. Then R is called a Γ-ring
if there exists a mapping (a, γ, b) −→ aγb of R × Γ × R −→ R satisfying the
following conditions: for all a, b, c ∈ R and γ, γ1, γ2 ∈ Γ,

(1) (a+b)γc = aγc+bγc, aγ(b+c) = aγb+aγc, , a(γ1+γ2)b = aγ1b+aγ2b.
(2) aγ1(bγ2c) = (aγ1b)γ2c.

Definition 1.2. [11] Let R be a Γ-ring.
(1) If there exists γ0 ∈ Γ and 1Rγ0

∈ R such that for all r ∈ R, 1Rγ0
γ0r =

rγ01Rγ0
= r, then 1 = 1Rγ0

is called identity element of R and R is
called a Γ-ring with identity.

(2) If for all a, b ∈ R and γ ∈ Γ, aγb = bγa, then R is called a commutative
Γ-ring.
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If 0 is the zero element of group (R,+), by using (1) of Definition 1.1 it is
obtained that 0γa = aγ0 = 0 and (−a)γb = −(aγb) for a, b ∈ R, γ ∈ Γ.

In this paper we set aΓb = {aγb|γ ∈ Γ}.

Definition 1.3. [10] Let R be a Γ-ring.
(1) A multiplicatively closed subset (m.c.s) of a Γ-ring R is a subset S of

R such that 1 ∈ S and s1Γs2 ⊆ S for all s1, s2 ∈ S,
(2) An element a ∈ R is said to be zero-devisor on Γ-ring R if there exists

b( 6= 0) ∈ R and γ0 ∈ Γ such that aγ0b = bγ0a = 0,
(3) A subset I of Γ-ring R is said left(right) Γ-ideal if I is an additive

subgroup of R and RΓI ⊆ I (IΓR ⊆ I).

Remark 1.4. [11] We consider the following assumptions over Γ-ring R for all
a, b, c ∈ R,α, β ∈ Γ and s1, s2 ∈ S,

(∗) aαbβc = aβbαc,
(∗∗) (s1αs2)γ0(s1αs2)γ0(aβb) + (s1βs2)γ0(s1βs2)γ0(aαb) = 0.

After this, the word Γ-ring R means a commutative Γ-ring with 1 and with-
out zero-divisor. It is modified the Proposition 2.2 of [10] as follows:

Proposition 1.5. [10] Let R be a Γ-ring and S = R−{0}. Define the relation
∼ on R × S as follows: (a, s) ∼ (b, t) ⇐⇒ aγt − bγs = 0 for all a, b ∈ R and
s, t ∈ S and some γ ∈ Γ. Then ∼ is an equivalence relation.

Theorem 1.6. [10] Let [r, s] denote the equivalence class containing (r, s) and
S−1R denote the set of all equivalence classes. If R satisfies the conditions (∗)
and (∗∗), we define addition and multiplication of these fractions as follows:

S−1R× Γ× S−1R −→ S−1R,

[r, s]γ[r′, s′] = [rγr′, sγs′],

[r, s]⊕ [r′, s′] = [rγs′ + sγr′, sγs′].

Then
(1) These operations are well-defined.
(2) S−1R is a Γ-ring with identity element [1, 1].

The next two Examples show that the condition (∗∗) is not necessary in the
Theorem 1.6, but since we cannot do a proof in the general case, we have to
use this condition.

Example 1.7. Let (R,+, ·) be a commutative ring and S be a m.c.s. Put
Γ = {·}. Then R is a Γ-ring. Moreover, the fraction ring S−1R is a Γ-ring.

Example 1.8. [10] Let (Z,+) be the group of integer numbers and Mm×n(Z) be
the set of all m× n matrices with entries in Z. We consider R = {

[
x x

]
|x ∈

Z} ⊆ M1×2(Z) and Γ1 = {
[
n
0

]
|n ∈ Z},Γ2 = {

[
0
n

]
|n ∈ Z} the subsets of

M2×1(Z) and M = {
[
y y

]
|y ∈ Z} ⊆M1×2(Z). The mapping R×Γ1×R −→ R
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by
[
x x

] [n
0

] [
y y

]
=

[
nxy nxy

]
for all

[
x x

]
,
[
y y

]
∈ R and

[
n
0

]
∈ Γ1,

R become a Γ1-ring and similarly a Γ2-ring. Also we can see R is an RΓ1
-

module with unitary elements [1, 1], [1, 0] and γ0 =

[
1
0

]
and R is an RΓ2-module

with unitary elements [1, 1], [0, 1] and γ0 =

[
1
0

]
. It is easy to consider that if

S = R− {[0, 0]}, then S−1R is a Γ1(Γ2)-ring.

Example 1.9. Let R = Zp4 , Γ = {p2, p3} and S = R − {0}. Define the
R×Γ×R −→ R by (x, γ, y) 7→ xγy for all x, y ∈ R, γ ∈ Γ. Conditions (∗) and
(∗∗) hold. We see that [p3, p3] = {[r, s]|r ∈ R, s ∈ S}. So S−1R = {[0, 0]}.

Definition 1.10. [1] Let R be a Γ-ring. A (left)RΓ-module is an additive
abelian group M together with a mapping: R × Γ ×M −→ M (the image of
(r, γ,m) denoted by rγm), such that for all m,m1,m2 ∈ M and γ, γ1, γ2 ∈ Γ
and r, r1, r2 ∈ R the following hold:

(M1) rγ(m1 +m2) = rγm1 + rγm2,
(M2) (r1 + r2)γm = r1γm+ r2γm,
(M3) r(γ1 + γ2)m = rγ1m+ rγ2m,
(M4) r1γ1(r2γ2m) = (r1γ1r2)γ2m.

It is easy to see that:
(1) 0Rγm = rγ0m = 0m (Also we ignore the indexes in 0R and 0m),
(2) Every abelian group M is an RΓ-module with trivial module structure

by defining rγm = 0 for every r ∈ R, γ ∈ Γ,m ∈M ,
(3) Every Γ-ring is an RΓ-module with rγs(r, s ∈ R, γ ∈ ) being the Γ-ring

structure in R, i.e., the mapping
· : R× γ ×R→ R.(r, γ, s) → r · γ · s

Definition 1.11. [1] Let R be a Γ-ring with identity 1, a (left) RΓ-module
M is called unitary RΓ-module, if there exists γ0 ∈ Γ such that 1γ0m = m for
every m ∈M .

In this article, γ0 is the γ0 stated in Definition 1.11.

Example 1.12. If R is a Γ-ring, then every abelian group M can be made into
an RΓ-module with trivial module structure by defining

rγm = 0, ∀r ∈ R, ∀γ ∈ , ∀m ∈M.

Example 1.13. [1] Let M be an arbitrary abelian group and L be an arbitrary
subring of Z. Then M is a ZL-module under the mapping

· : Z× L×M →M(n, n0, x) → nn0x.

Example 1.14. [1] If R is a Γ-ring and I is a left ideal of R. Then I is an
RΓ-module under the mapping · : R× Γ× I → I such that (r, γ, a) → rγa.
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2. Γ-module of fractions
The construction of S−1R can be carried through with an Γ-module M in

place of the Γ-ring R. Throughout this paper, the word Γ-ring R means a
commutative Γ-ring with 1 without zero-divisor. Also, γ0 ∈ Γ means the same
γ0 in the Definition 1.11.

Proposition 2.1. Let M be a Γ-module and S be an m.c.s of Γ-ring R. Define
the relation ∼ on M × S as follows: for all m,m′ ∈M and s, s′ ∈ S, γ ∈ Γ,

(m, s) ∼ (m′, s′) ⇐⇒ ∃t ∈ S, tγ(sγm′) = tγ(s′γm).

Then ∼ is an equivalence relation.

Proof. It is easy to see that ∼ is reflexive and symmetric. For transitively, if
(m, s) ∼ (m′, s′) and (m′, s′) ∼ (m′′, s′′), then for some t, u ∈ S and for some
α, β ∈ Γ we have,

tα(sαm′) = tα(s′αm),(1)
uβ(s′βm′′) = uβ(s′′βm′).(2)

A multiplication by uβs′′β of (1) and tαsα of (2) gives:

tαuβs′′β(sαm′) = tαuβs′′β(s′αm),(3)
uβtαsα(s′βm′′) = uβtαsα(s′′βm′).(4)

By using of commutativity we have,

tαuβs′′β(sαm′) = uβtαsα(s′′βm′)
= tαuβs′′β(sαm′).

Hence,

tαuβs′′β(s′αm) = uβtαsα(s′βm′′)
tαuβs′β(s′′αm) = tαuβs′α(sβm′′) = tαuβs′β(sαm′′),

where tαuβs′ ∈ S. Thus (m, s) ∼ (m′′, s′′). □

Theorem 2.2. Let M be a Γ-module and S be an m.c.s of Γ-ring R. Let
[m, s] denote the equivalence class containing (m, s) and S−1M denote the set
of equivalence classes. If R satisfies the conditions (∗) and (∗∗), we define
addition and multiplication of these fractions as follows:

S−1R× Γ× S−1M −→ S−1M

[r, t]γ[m, s] = [rγm, tγs],

[m, s]⊕ [m′, s′] = [sγm′ + s′γm, sγs′].

These operations are well-defined.
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Proof. If [m, s] ∼ [a, u] and [m′, s′] ∼ [a′, u′] for all m, a,m′, a′ ∈ M and
s, u, s′, u′ ∈ S, then we have for some t, t′ ∈ S,

tα(sαa) = tα(uαm),(5)
t′β(s′βa′) = t′β(u′βm′).(6)

A multiplication by t′βs′βu′β of (5) and tαsαuα of (6) gives:
tαt′βs′βu′β(sαa) = tαt′βs′βu′β(uαm),(7)
t′βtαsαuα(s′βa′) = t′αtαsαuα(u′αm′).(8)

Sum of (7) and (8) and by commutativity of R we obtain:
t′βtαsαuα(s′βa′)+tαt′βs′βu′β(sαa) = t′αtαsαuα(u′αm′)+tαt′βs′βu′β(uαm).

Therefore,
[sγm′ + s′γm, sγs′] = [uγa′ + u′γa, uγu′],(9)

Now, by Definition of operation ⊕ we have:
[m, s]⊕ [m′, s′] = [a, u]⊕ [a′, u′].(10)

Thus the addition is well-defined.
Now, let [r1, t1] = [r2, t2], γ1 = γ2 and [m1, s1] = [m2, s2], by Proposition

1.5 we have:
r1γ1t2 − r2γ1t1 = 0,(11)
uγ2(s1γ2m2 − s2γ2m1) = 0.(12)

We prove that [r1γ1m1, t1γ1s1] = [r2γ2m2, t2γ2s2], or
vγ((t1γ1s1)γ(r2γ2m2)− (t2γ2s2)γ(r1γ1m1)) = 0, for some v ∈ S.
vγ((t1γ1s1)γ(r2γ2m2)) −vγ((t2γ2s2)γ(r1γ1m1)) =

vγ((t1γ1s1)γ(r2γ2m2))− vγ((t2γ2s2)γ(r1γ1m1))
+vγ(r2γ1t1)(m1γ2s2)− vγ(r2γ1t1)(m1γ2s2))
= (r2γ1t1 − r1γ1t2)γ1(m1γ1s)
+(s1γ1m2 − s2γ2m1)γ2(r2γ1t1)
= 0 + 0 = 0

Therefore the multiplication is well-defined. □

Lemma 2.3. Let M be an RΓ-module and S be an m.c.s of R. Then (S−1M,⊕)
is an abelian group.

Proof. For all [m1, s1], [m2, s2] ∈ S−1M , [m1, s1]⊕[m2, s2] = [s1γm2+s2γm1, s1γs2].
Since S is an m.c.s of R, we have s1γs2 ∈ S and also M is an RΓ-module
s1γm2 ∈ M, s2γm1 ∈ M . Because (M,+) is a group so s1γm2 + s2γm1 ∈ M
for [m3, s3] ∈ S−1M ,
([m1, s1]⊕ [m2, s2])⊕ [m3, s3] = [(s1γs2)γm3 + s3γ(s1γm2 + s2γm1), (s1γs2)γs3],

= [(s1γs2)γm3 + s3γ(s1γm2) + s3γ(s2γm1), (s1γs2)γs3].
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On the other hand:
[m1, s1]⊕ ([m2, s2]⊕ [m3, s3]) = [m1, s1]⊕ [s2γm3 + s3γm2, s2γs3],

= [s1γ(s2γm3 + s3γm2) + (s2γs3)γm1, s1γ(s2γs3)],
= [s1γ(s2γm3) + s1γ(s3γm2) + (s2γs3)γm1, s1γ(s2γs3)].

By commutativity of R, (S−1M,⊕) is associative. We use γ0 ∈ Γ where 1γ0m =
m to show that [0, 1] is the zero element of (S−1M,+) as the following:

[m1, s1]⊕ [0, 1] = [m1, s1],
[s1γ00 + 1γ0m1, s1γ01] = [m1, s1],
[0, 1]⊕ [m1, s1] = [1γ0m1 + s1γ00, 1γ0s1] = [m1, s1].

Also [−m1, s1] is the inverse element of [m1, s1] :

[m1, s1]⊕ [−m1, s1] = [0, 1],
[s1γ(−m1) + s1γm1, s1γs1] = [0, s1] ∼ [0, 1].

□

Proposition 2.4. Let M be an RΓ-module and S be an m.c.s of R. Then:
(1) For every [m, s] ∈ S−1M , t ∈ S and γ ∈ Γ, [m, s] = [mγt, sγt],
(2) If rα[m, s] = [rαm, s], then S−1M becomes a construction RΓ-module.

Proof. (1) It is straightforward.
(2) By defining the multiplicationR×Γ×S−1M −→ S−1M where (r, α, [m, s]) 7→

[rαm, s], let r = r′, γ = γ′ and [m, s] = [m′, s′] so tα(sαm′) = tα(s′αm)
for some t ∈ S, α ∈ Γ. By multiplication this equality in r′γ we have
tαsα(r′γm′) = tαs′α(r′γm) since r = r′, γ = γ′, tαsα(r′γ′m′) =
tαs′α(rγm), then [rγm, s] = [r′γ′m′, s′]. We show that it is well-
defined.
(M1)

(r1 + r2, γ, [m, s]) = [(r1 + r2)γm, s],
= [r1γm+ r2γm, s].

On the other hand,

[r1γm, s]⊕ [r2γm, s] = [sα(r2γm) + sα(r1γm), sαs].
= [r2γm+ r1γm, s].

□

We consider the following assumptions on RΓ-module M , ∀a, b, r ∈ R,m ∈
M and α, β ∈ Γ,

(1) aα(bβm) = aβ(bαm),
(2) aαbγ(rβm) + aβbγ(rαm) = 0.

Theorem 2.5. Let M be an RΓ-module and S be an m.c.s of R, then S−1M
is an S−1RΓ-module.
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Proof. Define the S−1R × Γ × S−1M −→ S−1M where ([r, s], γ, [m, t]) 7→
[rγm, sγt]. For [r1, s1], [r2, s2] ∈ S−1R, [m1, t1], [m2, t2] ∈ S−1M and α, β, γ ∈
Γ we have,

(M1)

[r1, s1]α([m1, t1]⊕ [m2, t2]) = [r1α(t1γm2) + r1α(t2γm1), s1α(t1γt2)].

On the other hand,
[r1, s1]α[m1, t1]⊕ [r1, s1]α[m2, t2] = [r1αm1, s1αt1]⊕ [r1αm2, s1αt2],

= [s1αt1γ(r1αm2) + s1αt2γ(r1αm1), s1αt1γ(s1αt2)].

By using commutativity R and conditions (∗) and (1), the equality is valid.
(M2)

([r1, s1]⊕ [r2, s2])α[m1, t1] = [r1γs2 + s1γr2, s1γs2]α[m1, t1],
= [(r1γs2)αm1 + (s1γr2)αm1, (s1γs2)αt1].

On the other hand,
[r1, s1]α[m1, t1]⊕ [r2, s2]α[m1, t1] = [r1αm1, s1αt1]⊕ [r2αm1, s2αt1],

= [s1αt1γ(r2αm1) + s2αt1γ(r1αm1), s1αt1γ(s2αt1)],
= [(r1γs2)αm1 + (s1γr2)αm1, (s1γs2)αt1].

(M3)

[r1, s1](α+ β)[m1, t1] = [r1(α+ β)m1, s1(α+ β)t1],
= [r1αm1 + r1βm1, s1αt1 + s1βt1].

On the other hand,
[r1, s1]α[m1, t1]⊕ [r1, s1]β[m1, t1] = [r1αm1, s1αt1]⊕ [r1βm1, s1βt1],

= [s1αt1γ(r1βm1) + s1βt1γ(r1αm1), s1αt1γ(s1βt1)].

Now, we need to have the following equality for some u ∈ S.

uγ(s1αt1+s1βt1)(s1αt1γ(r1βm1)+s1βt1γ(r1αm1)) = uγs1αt1γ(s1βt1)γ(r1αm1+r1βm1).

But
uγs1αt1γs1αt1γ(r1βm1) + uγs1βt1γs1αt1γ(r1βm1)
+uγs1αt1γs1βt1γ(r1αm1) + uγs1αt1γs1βt1γ(r1αm1)
= uγs1αt1γ(s1βt1)γr1αm1 + uγs1αt1γ(s1βt1)γr1βm1.

By using the conditions (∗) and (ii),
uγs1αt1γs1αt1γ(r1βm1) + uγs1αt1γ(s1βt1)γr1αm1 = 0

Hence the above relation satisfies.
(M4)

[r1, s1]α([r2, s2]β[m1, t1]) = [r1, s1]α([r2βm1, s2βt1]),
= [r1α(r2βm1), s1α(s2βt1)].

On the other hand,
([r1, s1]α[r2, s2])β[m1, t1] = [r1αr2, s1αs2]β[m1, t1],

= [(r1αr2)βm1, (s1αs2)βt1].
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Since M is an RΓ-module and R is commutative, the proof is completed. □
Example 2.6. Let R = Z4,Γ = {1, 3} and S = {1, 3} ⊆ Z4. Then S−1R =
{[0, 1], [1, 1]} is a Γ-ring. Let M = Z2 and we define R × Γ ×M −→ M by
(r, γ,m) 7→ rγm for all r ∈ R, γ ∈ Γ,m ∈M. With simple calculations, we get
the equivalence class of S−1M = {[0, 1], [1, 1]} and (S−1M,+,Γ) is a Γ-module.

Example 2.7. Let R = Z6 and Γ = {γ0, γ1}, when γi : R×R→ R defined by
xγiy = (5i)xy, when i = 0, 1. Put S = {1, 3}. Then S−1A = {[0, 1], [1, 1]}.

Example 2.8. Let R = Zpn and Γ = {γk|k ∈ U(pn)}, when U(pn) =
{k ∈ R|(k, p) = 1}. Then R is a Γ-ring, when γk : R × R → R define
by xγky = kxy, when k ∈ U(pn). Put S = {pm|0 ≤ m ≤ n − 1}. Then
S−1A = {[0, 1], [1, 1], . . . , [p− 1, 1]}.

3. Some properties of the RΓ-module of fractions
In this section, we propose some theorems about homomorphism and finitely

generated RΓ- modules.

Definition 3.1. [1] Let M and N be RΓ-modules. A mapping f :M −→ N is
a homomorphism of RΓ-modules if for all x, y ∈M and r ∈ R, γ ∈ Γ we have,

(1) f(x+ y) = f(x) + f(y),
(2) f(rγx) = rγf(x).

A homomorphism f is isomorphism if f is one-to-one and onto.

Definition 3.2. [1] Let M be an RΓ-module. A nonempty subset N of M is
said to be RΓ-submodule of M if N is a subgroup of M and RΓN ⊆ N , where
RΓN = {rγn|γ ∈ Γ, r ∈ R,n ∈ N}, that is, for all n, n′ ∈ N and γ ∈ Γ, r ∈ R;
n− n′ ∈ N and rγn ∈ N .

Remark 3.3. It is easy to see that ker f = {x ∈ M |f(x) = 0} is an RΓ-
submodule of M .

Definition 3.4. [1] Let M be an RΓ-module and 0 6= X ⊆M . The generated
RΓ-submodule of M , denoted by 〈X〉, is the smallest RΓ-submodule of M
containing X, i.e., 〈X〉 = ∩{N |X ⊆ N ≤ M}, X is called the generator of
〈X〉 and 〈X〉 is finitely generated if |X| < ∞. If X = {x1, . . . , xn} we write
〈x1, . . . , xn〉 instead 〈{x1, . . . , xn}〉.

Lemma 3.5. Let f :M −→ N be an RΓ-homomorphism. Then we have,
(1) For every RΓ-submodule M ′ of M , f(M ′) is an RΓ-submodule on N .
(2) For every RΓ-submodule N ′ of N , f−1(N ′) is an RΓ-submodule on M .

Proof. It is straightforward. □
Lemma 3.6. Let M be an RΓ-module. Then the mapping ψ : M −→ S−1M
by ψ(m) = [m, 1] is a natural RΓ-homomorphism. Also,

kerψ = {m ∈M |sγ0m = 0, for some s ∈ S}.
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Proof. It is not difficult to see that ψ is an RΓ-homomorphism. Moreover,
kerψ = {m ∈M |[m, 1] = [0, 1]}

= {m ∈M |∃s ∈ S, sγ0(1γ00) = sγ0(1γ0m)}
= {m ∈M |sγ0m = 0, for some s ∈ S}.

□

Theorem 3.7. Let M and N be RΓ-modules, f : M −→ N be an RΓ-
homomorphism and S be an m.c.s of Γ-ring R. Then the map S−1f : S−1M −→
S−1N where S−1f([m, s]) = [f(m), s] is an S−1RΓ-homomorphism.

Proof. Suppose that [m1, s1], [m2, s2] ∈ S−1M . First, we show that S−1f is
well-defined. If [m1, s1] = [m2, s2], then there exists u ∈ S such that

uγ(s1γm2) = uγ(s2γm1)

which implies f(uγ(s1γm2)) = f(uγ(s2γm1)), and so uγf(s1γm2) = uγf(s2γm1)
or uγ(s1γf(m2)) = uγ(s2γf(m1)). Therefore, [f(m1), s] = [f(m2), s].
Now, we prove that S−1f([m1, s1]⊕ [m2, s2]) = S−1f [m1, s1]⊕ S−1f [m2, s2].

S−1f([m1, s1]⊕ [m2, s2]) = S−1f([s1γm2 + s2γm1, s1γs2]),
= [f(s1γm2 + s2γm1), s1γs2],
= [f(s1γm2) + f(s2γm1), s1γs2],
= [s1γf(m2) + s2γf(m1), s1γs2],
= S−1f [m1, s1]⊕ S−1f [m2, s2].

For all [r, t] ∈ S−1R and γ ∈ Γ,

[r, t]γS−1f [m1, s1] = [r, t]γ[f(m1), s1],
= [rγf(m1), tγs1],
= [f(rγm1), tγs1],
= S−1f([r, t]γ[m1, s1]).

□

Theorem 3.8. Let M,N and L be unitary RΓ-modules and S be an m.c.s of Γ-
ring R. Suppose that f, f ′ :M −→ N and g : N −→ L are RΓ-homomorphisms.
Then for all α ∈ Γ we have:

(1) S−1(f + f ′) = S−1f + S−1f ′,
(2) S−1(gαf) = (S−1g)α(S−1f),
(3) S−1(idM ) = idS−1M .

Proof. (1) For all [m, s] ∈ S−1M , we have S−1(f + f ′)[m, s] = [(f +
f ′)m, s] = [f(m) + f ′(m), s].

On the other hand,
(S−1f + S−1f ′)[m, s] = S−1f [m, s]⊕ S−1f ′[m, s],

= [f(m), s]⊕ [f ′(m), s],
= [sαf ′(m) + sαf(m), sαs],
= [f ′(m) + f(m), s].
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(2) S−1(gαf)[m, s] = [(gαf)(m), s] = [gα(f(m)), s] = S−1g[f(m), s]
= S−1gα(S−1f [m, s]).

(3) S−1(idM )[m, s] = [idM (m), s] = [m, s] = idS−1M [m, s].

□

Theorem 3.9. Let M and N be RΓ-modules and f : M −→ N be an RΓ-
homomorphism. If S is an m.c.s of Γ-ring R, then

S−1 ker f = kerS−1f.

Proof. For all [m, s] ∈ S−1 ker f , m ∈ ker f and also f(m) = 0.
S−1f [m, s] = [f(m), s] = [0, s] = [0, 1].

It implies that [m, s] ∈ kerS−1f , that is, S−1 ker f ⊆ kerS−1f .
On the other hand, suppose that [a, t] ∈ kerS−1f we have:

S−1f [a, t] = [0, 1] ⇒ [f(a), t] = [0, 1]
⇒ uγ0(tγ00) = uγ0(1γ0f(a)), for some u ∈ S,
⇒ 0 = uγ0f(a)
⇒ [f(a), t] = 0.

So [a, t] ∈ S−1 ker f . □

Theorem 3.10. Let f : A −→ B be a Γ-ring homomorphism. Suppose that
S is an m.c.s of A and T = f(S). Then S−1B and T−1B are isomorphic as
S−1A-modules.

Proof. First, it is clear that T is an m.c.s of B, since 1A ∈ S, so f(1A) ∈
f(S) = T and s1γs2 ∈ S. Moreover, B is an A-module by aγb = f(a)γb
for every a ∈ a, b ∈ B and γ ∈ Γ. Hence, S−1B is an S−1A-module. In
other hand S−1f : S−1A −→ T−1B by S−1f([a, s]) = [f(a), f(s)] is an S−1A-
ring homomorphism and so T−1B is an S−1A-module. Now, f(s)γf(s′) =
f(sγs′) ∈ f(S). We make T−1B into S−1A-module by defining [a, s]γ[b, f(s)] =
[f(a)γb, f(s)γf(s′)]. Now define ϕ : S−1B −→ T−1B by ϕ[b, s] = [b, f(s)]. We
claim that ϕ is an isomorphic. First, suppose that [b, s] = [b′, s′] in S−1B.
Then for some s′′ ∈ S we have:

s′′γ(sγb′) = s′′γ(s′γb),

f(s′′)γf(sγb′) = f(s′′)γf(s′γb),

f(s′′)γ(f(s)γb′) = f(s′′)γ(f(s′)γb).

So that [b, f(s)] = [b′, f(s′)] in T−1B. Hence, ϕ is well-defined. Notice that:
ϕ([b, s]⊕ [b′, s′]) = ϕ[sγb′ + s′γb, sγs′],

= [f(s)γb′ + f(s′)γb, f(sγs′)],
= [f(s)γb′ + f(s′)γb, f(s)γf(s′)],
= [b, f(s)]⊕ [b′, f(s′)],
= ϕ[b, s]⊕ ϕ[b′, s′].
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We also have the relation,

ϕ([a, s]γ[b, s′]) = ϕ([aγb, sγs′]),
= [f(a)γb, f(sγs′)],
= [f(a)γb, f(s)γf(s′)],
= [a, s]γ[b, f(s′)],
= [a, s]γϕ[b, s′].

So ϕ is an S−1AΓ-homomorphism. Clearly, ϕ is surjective. Now if ϕ[b, s] =
ϕ[b′, s′], then for some t ∈ T we have:

tγ(f(s)γb′) = tγ(f(s′)γb).

Choose s′′ ∈ S satisfying t = f(s′′). Then

s′′γ(sγb) = s′′γ(s′γb).

This means that [b, s] = [b′, s′] in S−1A. So ϕ is injective as well. □

Proposition 3.11. Let M be an RΓ-module over R and S be an m.c.s of R.
Suppose that I is an ideal on R for r ∈ R. Then we have:

(1) S−1(Iγ0M) = Iγ0S
−1M,

(2) S−1(rγ0M) = [r, 1]γ0S
−1M, for each r ∈ R.

Proof. (1) Let [a, s] ∈ S−1(Iγ0M), where a ∈ Iγ0M and s ∈ S. There
exist r1, . . . , rn ∈ I and m1, . . . ,mn ∈M such that a = r1γ0m1 + · · ·+
rnγ0mn. It implies that [ri, 1] ∈ I and [mi, s] ∈ S−1M for 1 ≤ i ≤ n.
We have [a, s] = [r1γ0m1, s]⊕· · ·⊕ [rnγ0mn, s] = [r1, 1]γ0[m1, s]⊕· · ·⊕
[rn, 1]γ0[mn, s]. So [a, s] ∈ Iγ0S

−1M.
Conversely, let [a, s] ∈ Iγ0S

−1M , then there exist r1, . . . , rn ∈ I and
[a1, s1], . . . , [an, sn] ∈ S−1M such that, [a, s] = [r1, 1]γ0[a1, s1] ⊕ · · · ⊕
[rn, 1]γ0[an, sn] = [r1γ0a1, s1]⊕· · ·⊕[rnγ0an, sn]. For all 1 ≤ i ≤ n, ri ∈
I and ai ∈ M , we have, riγ0ai ∈ Iγ0M so [riγ0ai, si] ∈ S−1(Iγ0M).
Hence [a, s] ∈ S−1(Iγ0M).

(2) If [a, s] ∈ S−1(rγ0M), where a ∈ rγ0M and s ∈ S, then there exists
b ∈M such that a = rγ0b. Hence,

[a, s] = [rγ0b, s] = [rγ0b, 1γ0s] = [r, 1]γ0[b, s] ∈ [r, 1]γ0S
−1M.

Conversely, let [a, u] ∈ [r, 1]γ0S
−1M . There exists [m, s] ∈ S−1M such

that [a, u] = [r, 1]γ0[m, s] = [rγ0m, 1γ0s] = [rγ0m, s]. Hence, [a, u] =
[rγ0m, s] ∈ S−1(rγ0M).

□

Theorem 3.12. Let M be a finitely generated RΓ-module and (0 :R M) =
{x ∈ R | xγm = 0, ∀m ∈M,γ ∈ Γ}. Then

S−1(0 :R M) = (0 :S−1R S−1M).
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Proof. For every [x, s] ∈ S−1(0 :R M), we have x ∈ (0 :R M) and s ∈ S. So for
every m ∈ M , xγm = 0. If [m, t] ∈ S−1M , then [x, s]γ[m, t] = [xγm, sγt] =
[0, sγt] = [0, 1]. Hence, [x, s] ∈ (0 :S−1R S−1M).

Conversely, [x, s] ∈ (0 :S−1R S−1M) andM = 〈x1, . . . , xn〉. Hence [x, s]γ0[m1, 1]
= [0, 1], . . . , [x, s]γ0[mn, 1] = [0, 1] and [xγ0m1, sγ01] = [0, 1], . . . , [xγ0mn, sγ01] =
[0, 1].Hence there exist t1 ∈ S, γi ∈ Γ, i ∈ {1, 2, . . . , n}, such that t1γ1(xγ0m1) =
0, . . . , tnγn(xγ0mn) = 0. Apply t = t1γ1 . . . γntn ∈ S and tγ0xγ0mi = 0,
∀i = 1, 2, . . . , n. Hence tγ0x ∈ (0 :R M). Therefore, [x, s] = [tγ0x, tγ0s] ∈
S−1(0 :R M). □

Proposition 3.13. Let S be an m.c.s over R, and M be a finitely generated
RΓ-module. Then S−1M = 0 if and only if there is a s ∈ S such that sγM = 0.

Proof. If there exists s ∈ S such that sγM = 0, then obviously S−1M =
0, because [m, t] = [sγm, sγt] = [0, 1], for any [m, t] ∈ S−1M . Conversely,
if S−1M = 0 and M = 〈x1, . . . , xn〉, then for every [xi, s] ∈ S−1M , i =
1, . . . , n, we have [xi, s] = [0, 1], so there exist s1, . . . , sn ∈ S such that s1γ0x1 =
0, . . . , snγ0xn = 0. Put S = s1γ0s2γ0 · · · γ0sn ∈ S, hence sγx1γ · · · γxn = 0.
Choice will clearly do. □

Definition 3.14. Let M be an RΓ-module and R be a Γ-ring without zero
divisor. Define the

T (M) := {x ∈M |(0 :R x) 6= 0}.

Remark 3.15. Let M be an RΓ-module and R be a Γ-ring without zero divisor.
We have:

T (M) = {x ∈M | ∃a( 6= 0) ∈ R; aγm = 0, ∀γ ∈ Γ}.

Example 3.16. Let M = M2(R) be the matrices 2 × 2 on R. Put Γ =

{
(

0 0
0 t

)
| t ∈ N}. Then M is an RΓ-module with R × Γ × M −→ M

by (r, γ,m) 7→ rγm. for all r ∈ R, γ ∈ Γ,m ∈ M. Let
(
a b
c d

)
∈ M and(

0 0
0 t

)
∈ Γ. For every 0 6= r ∈ R we have

r

(
0 0
0 t

)(
a b
c d

)
=

(
0 rtc
0 rtd

)
.

Therefor T (M) = {
(
a b
0 0

)
| a, b ∈ R}.

Theorem 3.17. Let M be an RΓ-module, R be a Γ-ring without zero divisor
and S be an m.c.s of R. Then we prove:

(1) T (M) is an RΓ-submodule of M .
(2) T (S−1M) = S−1(T (M)).
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Proof. (1) Suppose that x, y ∈ T (M). Then there exist a, a′( 6= 0) ∈ R
satisfy aγx = 0, a′γy = 0 for every γ ∈ Γ. Then aγa′γ(x + y) = 0
and aγa′ 6= 0 since R is without zero divisor, so x + y ∈ T (M). For
(0 6= a′′) ∈ R and x ∈ T (M), we have a′γx = 0, for some a′ ∈ R
and every γ ∈ Γ, (a′γ′a′′)γx = a′′γ′(a′γx) = 0, since (a′, a′′ 6= 0) ∈ R,
we obtain a′γ′(a′′γx) = 0 and a′′γx ∈ T (M). Therefore, T (M) is an
RΓ-submodule of M .

(2) If 0 ∈ S, then S−1M = S−1(T (M)) = 0. Now suppose that 0 6= S,
[m, s] ∈ T (S−1M), so there is [a, s′] 6= [0, 1] in S−1R,

[0, 1] = [a, s′]γ[m, s] = [aγm, s′γs].

There exist s′′ ∈ S and γ0 ∈ Γ, for which s′′γ0aγm = 0. Now s′′γ0a 6= 0
since s′′, a 6= 0 and R is without zero divisor, So m ∈ T (M), and hence
[m, s] ∈ S−1(T (M)) and T (S−1M) ⊆ S−1(T (M)).

On the other hand, if m ∈ T (M), then there is a( 6= 0) ∈ R for which
aγm = 0. It is claimed that [a, 1] 6= [0, 1], because if [a, 1] = [0, 1], then
sγ01 = 0γ01 and a = 0, that is, construction by R is non-zero devisor.
Now [a, 1]γ[m, s] = [0, 1] for any s ∈ S, we see that [m, s] ∈ T (S−1M).
Then S−1(T (M)) ⊆ T (S−1M).

□

Theorem 3.18. Let M be an RΓ-module and S be an m.c.s. Then there
exists one to one corresponding between the set of RΓ-submodules of M and
S−1RΓ-submodules of S−1M .

Proof. Let N be an RΓ-submodule of M and S−1N = {[a, s] | a ∈ N, s ∈ S}
be a subset of S−1M . We prove that S−1N is a Γ-submodule of S−1M . Let
[a, s], [b, t] ∈ S−1N , where a, b ∈ N and s, t ∈ S. So [a, s] + [b, t] = [sγb +
tγa, sγt] ∈ S−1N , since N is a Γ-submodule and S is an m.c.s of R. Similarly,
for all [r, u] ∈ S−1R, we have, [r, u]γ[a, s] = [rγa, tγu] ∈ S−1N . Hence, S−1N
is a Γ-submodule of S−1M .

Conversely, suppose that W is a Γ-submodule of S−1M . Consider the nat-
ural homomorphism f : M −→ S−1M and f−1(W ) = {a ∈ M | [a, 1] ∈
W}. By Lemma 3.5, f−1(W ) is a Γ-submodule of M . Therefore, we ob-
tain two mappings ϕ and ψ, where ϕ : {Γ − submodule of M} −→ {Γ −
submodule of S−1M}, with ϕ(N) 7→ S−1N . Also, define the map ψ : {Γ −
submodule of S−1M} −→ {Γ − submodule of M}, which W 7→ f−1(W ).
Clearly, for every Γ-submodule of S−1M , we have ϕ(ψ(W )) = W . Set N =
ψ(W ), that is, N = {a ∈ M | [a, 1] ∈ W}. Since ϕ(N) = S−1N it is enough
to prove that S−1N = W . First, we suppose that [a, t] ∈ S−1N where a ∈ N
and s ∈ S. Since [1, s] ∈ S−1R, it follows that [a, s] = [1, s]γ0[a, 1] ∈ W ,
hence S−1N ⊆ W . On the other hand, let [a, s] ∈ W , where a ∈ M and
s ∈ S. Since, [s, 1] ∈ S−1R and W is a Γ-submodule of S−1M , we get
[a, 1] = [1, 1]γ0[a, s] ∈ W , which implies that a ∈ N and [a, s] ∈ S−1N and so
W ⊆ S−1N . □
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Corollary 3.19. Let M be an RΓ-module and S be an m.c.s on R. Then every
S−1RΓ-submodule of S−1M is formed of S−1N such that N is an RΓ-submodule
of M .

Corollary 3.20. Let M be an RΓ-module with identity, S be an m.c.s of R
and X be the set of generators for RΓ-submodule N . If f : M −→ S−1M
is a natural homomorphism, then f(X) is the set of generators for S−1RΓ-
submodule S−1N .

Proof. Clearly, f(X) ⊆ S−1N . Conversely, for λ ∈ S−1N , we have λ ∈
[r1γ0a1 + · · ·+ rnγ0an, s], where r1, . . . , rn ∈ R and a1, . . . , an ∈ X, s ∈ S.

On the other hand we can write

λ = [r1, s]γ0[a1, 1] + [r2, s]γ0[a2, 1] + · · ·+ [rn, s]γ0[an, 1].

Since [ai, 1] ∈ f(X) for every 1 ≤ i ≤ n, we obtain S−1N ⊆ (f(X)). □

Theorem 3.21. Let M be an RΓ-module S be an m.c.s of R. Suppose that N
and P are RΓ-submodules. Then we have:

(1) S−1(N + P ) = S−1N + S−1P,
(2) S−1(N ∩ P ) = S−1N ∩ S−1P.

Proof. (1) Clearly, S−1N,S−1P ⊆ S−1(N +P ), so S−1N + S−1P ⊆ S−1(N +
P ), since S−1(N + P ) is a sub-Γ-module of S−1M . Also,

S−1(N + P ) = {[x+ y, s]|x ∈ N, y ∈ P, s ∈ S}
= {[x, s]⊕ [y, s]|x ∈ N, y ∈ P, s ∈ S}
⊆ S−1N + S−1P.

(2) Clearly, N ∩ P ⊆ N and N ∩ P ⊆ P , so S−1(N ∩ P ) ⊆ S−1N and
S−1(N ∩ P ) ⊆ S−1P . Hence, S−1(N ∩ P ) ⊆ S−1N ∩ S−1P.
Suppose α ∈ (S−1N)∩(S−1P ), so α = [x, s] = [y, t] for some x ∈ N, y ∈
P, s, t ∈ S. Then uγ(sγy) = uγ(tγx) for some u ∈ S. So uγ(sγy) =
uγ(tγx) ∈ N ∩ P . Hence, [x, s] = [uγ(tγx), uγ(tγs)] ∈ S−1(N ∩ P ).
Thus S−1N ∩ S−1P ⊆ S−1(N ∩ P ), whence equality holds.

□

Theorem 3.22. Let M be a finitely generated RΓ-module with identity and S
be an m.c.s of R. Then S−1M is a finitely generated with identity.

Proof. For all a ∈M and s ∈ S we have [a, s] = [1, 1]γ0[a, s], where [1, 1] is an
identity element in S−1R. So S−1M has an identity element. By hypothesis
there exist a1, . . . , an ∈ M such that M = 〈a1, . . . , an〉 = Rαa1 + · · · + Rαan,
by Theorem 3.21, S−1M = S−1(Rαa1) + · · · + S−1(Rαan), Hence S−1M is
finitely generated. □
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4. Conclusion
The current paper has defined and considered the notion of fraction of Γ-

module over commutative Γ-ring. We investigated some theorems of homo-
morphism of fraction Γ-module and proved that if M is a RΓ-module then
S−1M is a Γ-module over Γ-ring S−1R. Moreover, if M is a finitely generated
RΓ-module, then S−1M is finitely generated.

In our future studies, we hope to obtain more results regarding the fraction
Γ-module over ring and their applications in other research. Fraction rings
and fraction modules have various applications in algebraic geometry, number
theory, cryptography, coding theory and control theory. Therefore, examining
the fraction Γ-modules and fraction Γ-rings , which are a kind of extension
of the fraction modules and fraction rings, seems like a good idea in these
areas. Moreover, it would be interesting to continue this article in the areas
of commutative and non-commutative Γ-algebra, such as the exact sequences,
tensor products and etc.
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