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ABSTRACT. Data dimensions and networks have grown exponentially with
the Internet and communications. The challenge of high-dimensional data
is increasing for machine learning and data science. This paper presents
a hybrid filter-wrapper feature selection method based on Equilibrium
Optimization (EO) and Simulated Annealing (SA). The proposed algo-
rithm is named Filter-Wrapper Binary Equilibrium Optimizer Simulated
Annealing (FWBEOSA). We used SA to solve the local optimal prob-
lem so that EO could be more accurate and better able to select the
best subset of features. FWBEOSA utilizes a filtering phase that in-
creases accuracy as well as reduces the number of selected features. The
proposed method is evaluated on 17 standard UCI datasets using Sup-
port Vector Machine (SVM) and K-Nearest Neighbors (KNN) classifiers
and compared with ten state-of-the-art algorithms (i.e., Binary Equilib-
rium Optimizer (BEO), Binary Gray Wolf Optimization (BGWO), Bi-
nary Swarm Slap Algorithm (BSSA), Binary Genetic Algorithm (BGA),
Binary Particle Swarm Optimization (BPSO), Binary Social Mimic Opti-
mization (BSMO), Binary Atom Search Optimization (BASO), Modified
Flower Pollination Algorithm (MFPA), Bar Bones Particle Swarm Op-
timization (BBPSO) and Two-phase Mutation Gray Wolf Optimization
(TMGWO)). Based on the results of the SVM classification, the highest
level of accuracy was achieved in 13 out of 17 data sets (76%), and the
lowest number of selected features was achieved in 15 out of 17 data sets
(88%). Furthermore, the proposed algorithm using class KNN achieved
the highest accuracy rate in 14 datasets (82%) and the lowest selective
feature rate in 13 datasets (76%).

Keywords: Feature selection, Equilibrium Optimizer, Simulated Anneal-
ing, Filter, Wrapper.
2020 MSC: 68T20

1. Introduction

Scientists and technologists have created more and more datasets due to
technological advancements, such as the internet. The high-dimensional dataset
creates a number of challenges, including slow model building, redundant data,
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and reduced learning model performance [17]. The high predictive capabil-
ity of supervised learning algorithms makes them popular in machine learning.
Complex real-world classification problems often require relevant features. The
learning model is improved by using a variety of candidate features to describe
the resulting domain. It has been observed that many of these are irrelevant and
redundant. There is a poor performance in coping with irrelevant and redun-
dant features in learning models [11]. The application of classification methods
is challenged by irrelevant and redundant features, which will dimensionality
reduce the accuracy of the classifier and increase the spatial and temporal com-
plexity. Consequently, data reduction has become a crucial part of the data
preprocessing process. By removing redundant and irrelevant features from the
original dataset and not changing its physical properties, feature selection re-
duces data dimensionality effectively. In order to increase the performance and
interpretability of a classifier, it can extract the most valuable and representa-
tive features from the original dataset [8,31]. Figure 1 shows the main process
of feature selection, feature selection by meta-heuristics and feature selection
methods based on evaluation criteria.

In FS, four main processes are carried out: searching for feature subsets,
evaluating them, validating them, and setting stopping criteria. According to
their evaluation criteria, FS methods can be classified as filter, wrapper, and
hybrid. Statistical functions are used to select and rank feature subsets using
filter-based methods. Wrapper-based methods communicate directly with the
classifier. Several feature selection algorithms use wrapper-based algorithms.
Compared to the filter-based method, it is computationally more expensive [14].
By contrast, hybrid models combine the advantages of filters and wrappers [39)].
The most common combinatorial method involves ranking features and reduc-
ing the number of candidates via filters and wrappers. In a sequential ap-
proach, the first step involves filtering features to reduce the number to be
considered in the next step. Following this, the wrapper method is used in the
second step to select the desired number of features. Meta-heuristic feature
selection starts with generating an initial population and calculating its fitness
value. Exploration and exploitation must be conducted until the maximum
repetition level is reached in order to detect the global and local optimum.
Furthermore, the fitness value is calculated again, and the population is up-
dated, and finally, the best solution has been found after reaching the stopping
condition. It can be challenging to identify the optimal subset of features in
general. Researchers in data mining and machine learning have increasingly
focused on FS [1,12]. One of the main challenges in feature selection is remov-
ing preprocessed and prepared data without compromising its quality. There
are many different approaches and solutions to this problem [26]. To find the
best subset for feature selection problems, several methods have been used,
including exhaustive search, greedy search, and random search. It is common
for most of these methods to converge prematurely, have a high computational
complexity, and require a significant amount of computing power [5]. The
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FIGURE 1. Feature selection process.

use of meta-heuristics has proven useful for the solution of a variety of opti-
mization problems [30], including machine learning, generation problems, and
feature selection. Meta-heuristic algorithms have become increasingly popular
in recent years for solving complex optimization problems. Compared to tradi-
tional methods, they are more efficient and effective. Traditional optimization
methods, such as gradient search, cannot easily solve structural optimization,
economic optimization, or engineering design problems. The strength, flexi-
bility, and simplicity of meta-heuristic algorithms has led to their application
in a variety of fields in science and engineering. Throughout the optimization
process, exploration and exploitation are both essential conditions. In explo-
ration, the search space is explored further to find the global optimum, and
in exploitation, the obtained solutions are refined to find the local optimum.
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Therefore, both stages must be approached with a balanced approach. In or-
der to avoid getting stuck in local optima or converge too early, meta-heuristic
algorithms need to have a balance between exploration and exploitation. The
controlling of this condition has been done by a variety of methods in different
studies [6,29]. We developed a filter-wrapper-based feature selection method
using EO and SA to address the problems presented in this paper. The EO
method is capable of balancing exploration and exploitation, as is SA, which
can quickly find local optima. Consequently, it combines the efficiency of filters
and the precision of wrappers.

Following are the main contributions of the paper:

e The filter phase considers two filter metrics: relevance (relevance of
features and class label features) and redundancy (correlation between
each feature and other features).

e BEO is used to solve the F'S problem due to its fast convergence to the
optimal solution, as well as its strong exploration capabilities.

e For exploitation enhancement, BEOs have been enhanced with SA
mechanisms, called FWBEOSA. With these mechanisms, the optimal
feature subsets are found and local optima are avoided.

e The proposed algorithms are evaluated over 17 well-regarded datasets
obtained from the UCI repository to evaluate their performance. FW-
BEOSA outperforms BEO and other competitive algorithms in most
cases.

This paper is organized as follows. Section 2 explains the background of meta-
heuristic algorithms. Section 3 provides an overview of works related to fea-
ture selection using evolutionary algorithms. A brief overview of the proposed
method is provided in Section 4. Section 5 describes the experimental setup
and results. Section 6 discusses conclusions and future work.

Table 1 shows abbreviations and their definitions.

2. Background

2.1. Simulated Annealing (SA). Metals and materials science anneal solids
by heating them to high temperatures then gradually lowering them. SA is an
improved version of hill climbing based on the use of a single solution. The SA
accepts a certain probability of making a bad move in order to avoid getting
stuck in locally optimal solutions. Using the fitness function, neighboring so-
lutions are generated for a given solution (agent). A neighbor’s fitness value
is compared with the current solution, and if the neighbor’s value is better,
the current solution is replaced. By using the Boltzman equation (p = eITA)7

the neighbor’s fitness value is calculated in case it is worse than the current
solution’s fitness value [16,24]. Thus, acceptance probability can be expressed
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TABLE 1. Symbols and descriptions.

Symbol Description
SVM Support Vector Machine
KNN K-Nearest Neighbor
DT Decision Tree
RF Random Forest
NB Naive Bayes
ANN Artificial Neural Network
FRB Fuzzy Rule Based
EO Equilibrium Optimizer
SA Simulated Annealing
BEO Binary Equilibrium Optimizer
BGWO Binary Gray Wolf Optimization
BSSA Binary Swarm Slap Algorithm
BGA Binary Genetic Algorithm
BPSO Binary Particle Swarm Optimization
BSMO Binary Social Mimic Optimization
BASO Binary Atom Search Optimization
MFPA Modified Flower Pollination Algorithm
BBPSO Bar Bones Particle Swarm Optimization
TMGWO Two-phase Mutation Gray Wolf Optimization
GR Generation Rate
GA Genetic Algorithms
CSO Competitive Swarm Optimization
SCA Sine-Cosine Algorithm
HHO Harris-Hawks Optimization
SCHHO Sine-Cosine Harris-Hawks Optimization
HHOBSA Harris-Hawks Optimization Binary Simulated Annealing
SCAGA Sine-Cosine Algorithm Genetic Algorithm
DA Dragonfly Algorithm
FS Feature Selection
EPD Evolutionary Population Dynamics
DBOA Dynamic Butterfly Optimization Algorithm
FIM Feature Interaction Maximization
FA Firefly Algorithm
SCC Spearman’s Correlation Coefficients
GP Generation Probability
GOQRFA Genetic Operators Quasi-Reflected Firefly Algorithm
QRBL Quasi-Reflection-Based Learning mechanism
GO Genetic Operators

as follows:

L
(1) p=1d€ oo ifA>0
1 if A<0

A fitness value A = fit (neighbor)— fit ( current.sulotion ™) can be calculated
by comparing the generated neighbor with the one of the current solutions. As
new solutions are accepted, [ indicates the temperature at the k;h instance.
A problem of dimension |D] is considered at first, where I, = 2% |D| represents
the original dimension. As a result of more iterations, I + 1 = Iy is used with
a cooling coefficient of [16,24].

2.2. Equilibrium Optimization (EO). This section describes briefly the
original EO algorithm. Inspiration : Mass control balances were used to esti-
mate equilibrium and dynamics in the original EO. Sources and sinks of non-
reactive constituents are accounted for by their concentrations in the control
volume. An energy-generating control volume produces energy based on the
mass balance equation, which conserves mass entering, supports physics, and
provides support for underlying physics. In order to calculate mass in time, you
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subtract mass coming in from mass leaving the system, using the generic mass
balance equation [15,35]. Mathematicalmodel : As solutions, particles are
treated by the EO as solutions, and their concentrations provide information
about their location. Optimizing concentration involves identifying equilibrium
candidates. An equilibrium state (optimal solution) is reached when particles
(search agents) repeat the process. The update process involves three terms
that each represent a rule. Alternatively, equilibrium concentration is a solu-
tion chosen by chance from a pool of equilibrium solutions. Secondly, we have
the concentration difference between the particle and the equilibrium state. By
using this term, particles are able to explore more (global search) efficiently.
Small steps are exploited or refined using the last term. This term refers to the
rate at which a product is generated. Each term is represented mathematically
according to how it influences the search mechanism [15,35].

G
(2) X1 = Xeg + (Xi — Xeg) 'E+W(1_E)
Xcq is the equilibrium concentration at an equilibrium point, A is the residence
time, V' is the control volume, and k is the current iteration. Eq. 3 presents a
mathematical definition of L [15,35].

3 A= 2
3) .
2.2.1. Ezponential Term (E). Flow rates can be calculated by subtracting Q
out and into a control volume. In addition, an exponential term FE is used to
update the main concentration rule. Exploration and exploitation phases are
balanced using this term. According to [15,35], the definition is as follows:

(4) E = Mi—t)
Where:
1
(5) to = X In (—ay sign(r — 0.5) [e™ ™ —1]) +¢

Exploration and exploitation capabilities are controlled by constants a; and
as. Higher a; values indicate a stronger exploration capability compared to a
worse exploitation capability. Higher values of as indicate stronger exploitation
capabilities and lower values indicate poorer exploration capabilities. Accord-
ing to the literature, a; and ay are both equal to 2. In this case, r is a random
variable. Exploration and exploitation are indicated by sign(r — 0.5) [15,35].

k
k @2 Mazy,

6 t=(1-

(6) < Maxk>

A current iteration is k, while a maximum iteration is Maxy. Higher as
indicates better exploitation abilities and lower exploration [15,35].
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2.2.2. Generation Rate (G). A key part of the EO algorithm is the mass gen-

eration rate. The definition is as follows [15,35]:

(7) G =GyFE
Where:
(8) Go = GCP (Xeqg — AX)

0.571 x 0 enes (1,dim) ry > GP

9) GCP =
0 ro < GP

The control parameter GC P determines the generation rate, and GP deter-
mines the generation probability. Ones(1, dim) consists of a vector of length
1dim, initialized with one. Dimensions of a vector are determined by dim. A

random parameter 1, r2, and r3 are generated between 0 and 1.

2.2.3. Ezxploration ability of FO. EO leads to exploration through several pa-

rameters and mechanisms, as follows:

e a; : This parameter controls how much exploration (magnitude) the al-

gorithm performs. This measure determines how far away the new po-
sition is from equilibrium. Exploration ability increases with al value.
The performance of exploration would be considerably degraded by
numbers over three. Exploration ability can be expanded through the
use of large al values, which magnify concentration variations. The
agents are forced to search on boundaries when the value exceeds three,
according to empirical testing.

sign(r0.5) : Basically, it determines which direction exploration will
take. A uniform distribution of r with a [0, 1] mean indicates equal
probabilities of negative and positive results.

GP : By controlling the generation rate, it controls the participation
probability of concentration updating. In the optimization process,
GP = 1 means there is no generation rate term. High exploration
capability leads to inaccuracy in solutions. When GP = 0, a local
optimum has a greater chance of stagnating because generation rate is
always present. An empirical test indicates that GP = 0.5 provides a
good balance between exploration and exploitation [15,35].

2.2.4. Ezploitation ability of FO. EO exploitation and local search are based

on the following parameters and mechanisms:

e a5 : This parameter controls exploitation. This algorithm digs around
until it finds the best solution in order to determine the quantity of

exploitation (magnitude).

e sign(r0.5) : It also controls the quality of exploitation (direction). It

specifies the direction in which a local search should be conducted.



300 M. Anari Shiri, M.R. Omidi, and N. Mansouri

e Memory saving: This method saves a number of good particles and
substitutes them for worse particles. The EQ’s exploitability is directly
improved by this feature.

e Equilibrium pool: By the end of an iteration, exploration fades away
and exploitation takes over. Therefore, in the last iterations, when
equilibrium candidates are close to each other, the concentration up-
dating process facilitates local search around them, leading to exploita-
tion [15,35].

3. Related Works

According to Ding et al., it is possible to select features with both Genetic
Algorithms (GA) and Competitive Swarm Optimization (CSO) [13]. By us-
ing crossover and mutation operators, this paper aims to speed up generation
time and prevent premature population growth. Using Sine-Cosine Algorithm
(SCA) and Harris-Hawks Optimization (HHO), Hussain et al. [18] proposed
a hybrid optimization method that integrates SCA with HHO. Through SCA
integration, inefficiencies in exploration were solved, as well as a dynamic ad-
justment of candidate solutions was achieved to prevent solutions from stag-
nating. A numerical optimization test suite for CEC’17 was used to evaluate
the proposed method, SCHHO, with 16 datasets with dimensions exceeding
15000 attributes. According to Abdelbasset et al. [3], simulated annealing is
based on Harris Hawks optimization. As part of its approach to solving the FS
problem, the HHOBSA algorithm simulated annealing to solve Harris Hawks
Optimization by means of bitwise operations. A technique known as SA is
used to improve the performance of HHOBSA. An SCAGA algorithm is pro-
posed by Abualigah and Dulaimi [2], which integrates Sine Cosine Algorithms
and Genetic Algorithms. In optimization methods, exploration of the search
space and exploitation of the search space are the two main search strategies.
The proposed SCAGA achieved better results when balancing exploration and
exploitation of the search space. A standard deviation test has also been con-
ducted on the proposed SCAGA, along with testing classification accuracy,
worst fitness, mean fitness, and best fitness. A hybrid GWO/HHO approach
was created by the authors based on Al-Wajih et al. [7], achieving a good
balance between these two approaches. To meet the feature selection nature
requirement, the continuous search space is transformed into a binary one using
the sigmoid transfer function. To determine the quality of selected features,
a KNN wrapper is used. The proposed method was tested on 18 standard
benchmark datasets from UCI. An improved version of Dragonfly Algorithm
(DA) is proposed by Chantar et al. [12] by combining it with SA. DA’s lo-
cal optima problem can be solved and its ability to select the best subset of
features can be improved. For the purpose of evaluating the proposed FS ap-
proach, a set of frequently used data sets from the UCI repository was used.
A comparison between the proposed hybrid approach and wrapper-based FS
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methods using a basic version of Binary Dragonfly Algorithm shows superior
performance. Thaher et al. [38] proposed an efficient feature selection approach
based on a Boolean variant of Particle Swarm Optimization (BPSO) boosted
with Evolutionary Population Dynamics (EPD). It enhances the BPSO’s ex-
ploration capability so that local optima obstacles can be avoided. The worst
half of the solutions are discarded in the BPSO-EPD by repositioning them
around the best solutions. Based on experimental results, BPSO-TEPD out-
performed conventional BPSO and other EPD variants, especially when using
EPD-based feature selection approaches. Using a Dynamic Butterfly Opti-
mization Algorithm based on Interaction Maximization (IFS-DBOIM), Tiwari
and Chaturvedi [33] developed a new hybrid feature selection method. This
algorithm combines Dynamic Butterfly Optimization Algorithm (DBOA) and
Mutual Information-Based Feature Interaction Maximization (FIM) to select
the most optimal set of features. Furthermore, it avoids redundancies and
irrelevant features, and tries to improve tradeoffs between exploration and ex-
ploitation phases. While DBOA provides better exploration, exploitation, and
avoidance of local optima entrapment than FIM, the latter scores maximum
relevance with the least redundant new features. Using an algorithm from the
swarm intelligence branch of machine learning, Zivkovic et al. [42] improved
feature selection by employing a novel algorithm. Combining machine learning
and metaheuristics has created a new branch of artificial intelligence known as
learn heuristics. The approach utilizes both the capability of feature selection
to select the best solutions for accuracy and performance and the character-
istic of swarm intelligence algorithms to efficiently comb through large search
spaces. Feature selection is performed using this method as a wrapper, and the
improvements are significant. The authors proposed a modified version of the
Salp Swarm Algorithm for selecting features. A classification model based on
K-Nearest Neighbors is used to verify this solution with 21 datasets. Bacanin
et al. [9] proposed the Genetic Operators Quasi-Reflected FA (GOQRFA) for
feature selection problem. By combining solutions from novel regions of the
search space in early iterations, GO reduces the likelihood of being trapped
in suboptimal domains and increases efficiency. Conversely, GOs enable the
problem to be fine-tuned around optimum domains, resulting in higher-quality
solutions. There are two implications of QRBL for algorithm robustness. If
QRBL mechanism is applied, solutions diversity and convergence speed can
be dramatically boosted in early iterations as well as the later stages of the
execution process. A dynamically adjustable step size parameter is also in-
cluded in GOQRFA. An evaluation of the proposed algorithm demonstrated
its robustness and efficiency in practical simulations. Most of these methods
have a high complexity because they are one-dimensional and do not use fil-
ters, in addition to the possibility of getting caught in the local optimum. This
research combined filter methods with equilibrium optimization and simulated
annealing to solve these problems. Table 2 summarizes the related works on
feature selection.



302 M. Anari Shiri, M.R. Omidi, and N. Mansouri

TABLE 2. Related works on feature selection.

0
3 ke g
2 k - -
i ; 2
O E E E 3 %
g T S s 8 g
< 9 S 4 ° g
5 3 £ 5 £
= < o o = [a} [}
(Y. Ding et | HBCSO CSO, GA Accuracy, Number of | KNN Number of datasets is
al., 2020) [13] selected features low, High running time,
in contrast to more accu-
rate classification meth-
ods, it can only be used
with simple classifiers
(K. Hussain et | CSHHO CSA, HHO Accuracy, Number of | KNN 16 Not adaptively updat-
al. 2021) [18] selected features, Con- ing the parameter in
vergence speed, solu- SCHHO, not suitable for
tion fitness large-scale optimization.
(M. Abdel- | HHOBSA HHO, SA Accuracy, Number of | KNN 24 High complexity
Basset et al., selected features
2021)(3]
(L. Abualigah | SCAGA CSA, GA Classification accu- | KNN 16 High computational
and A. J. Du- racy, Worst fitness, complexity, ambiguous
laimi 2021) [2] Mean fitness, Best results
fitness, the Average
number of features,
Standard deviation
(R. Al-Wajih | HBGWOHHO GWO, HHO Accuracy, Number of | KNN 18 Irrational numbers in
et al. 2021) [7] selected features, and the best fitness metric
computational time
(H. Chan- | BDA-SA DA, SA Accuracy, Best fitness | KNN 18 The selection of a rel-
tar et al value, Number of se- atively large number of
2021) [12] lected features features
(Thaher et al. | BPSO-EPD PSO, EPD Accuracy, Number of | KNN, DT 22 High computational
2022) [38] selected features complexity, local optima
are poorly exploited and
may be trapped
(Tiwari and | IFS-DBOIM DBOA Accuracy, Number of | SVM, NB, DT 20 is a nondeterministic al-
Chaturvedi selected features gorithm, it suffers from
2022) [33] a lack of generaliza-
tion and relies on the
characteristics of applied
datasets
(M. Zivkovic | SSARM-SCA SSA, CSA Accuracy, Number | KNN 21 There is no guarantee
et al. 2022) of selected features, that it would work well
[42] benchmark function for other optimization
tasks
(Bacanin et al. | GOQRFA FA convergent, quality of | KNN 22 High complexity, GO-
2023) [9] solutions, and classifi- QRFA’s potential has
cation accuracy not been fully explored
on  other  real-world
datasets

4. Methodology

The proposed method is presented in two phases: filter and wrapper.

4.1. Filter phase. Using variable ranking techniques as the primary criterion
for variable selection, filter methods select variables based on their order of
importance. Due to their simplicity, ranking methods have been successful in
practical applications. Scored variables are ranked according to an appropriate
ranking criterion, and variables below the threshold are removed. As a fil-
ter method, ranking removes variables that are less relevant before classifying
them. The proposed method uses two filter methods [11].

4.1.1. Redundancy computation. Redundancy describes the degree to which
two or more features are interdependent. In simple terms, the MI provides a
way of measuring the dependency of a feature on a subset of features. The
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feature sets are symmetric, nonlinear, nonnegative, and do not diminish as
features are added. Nevertheless, it is difficult to determine precisely which
features of S are redundant based on this measure. It would be wise to de-
velop more elaborate redundancy criteria, such as Markov blankets and total
correlations, in order to reduce redundancy. An analysis of data-driven corre-
lations can be used to investigate the relationship between numerical features
and materials knowledge. By calculating correlation coefficients between two
features using data-driven methodology, it is possible to calculate them quickly.
A highly correlated feature must have a correlation coefficient that exceeds a
certain threshold in order to qualify for Spearman correlation coefficient cal-
culation. Between two features, we used Spearman’s Correlation Coefficients
(SCC) to estimate the correlation coefficients. Based on Eq. 10, correlation
analysis uses a different trigger condition. With the SCC method, nonlinear
correlations can also be measured along with linear correlations. SCC mea-
sures how closely two features are related. Stronger the correlation, the higher
the SCC value. In the presence of high correlation, SCC between f; and f;
should exceed k; [25,40,41].

(10) corr (fi, f5) = |SCC (fi, ;) ,n >k

4.1.2. Relevance computation. As a general rule of thumb, a feature is relevant
if it provides information about the Class (C) label feature alone or when it
is used in conjunction with other variables. Various methods have been used
to define relevance, including weakly relevant, strongly relevant, and irrelevant
features. When a feature is considered to be strongly relevant to C, it can-
not be replaced by any other feature without removing the information they
provide. Alternatively, weakly relevant features provide information about C,
but it is possible to substitute them with other relevant features without losing
any significance. Taking irrelevant features out of C' can result in a loss of
information about the C' [25,40,41]. Table 3 shows the levels of relevance for
feature f;.

TABLE 3. Levels of relevance for feature f;.

[Condition [ Probubilistic approach Mutual information

El P(C | fo=f) #9(C | =1 [aC 1 f) =0

3scn PO fumfi) £ 9(C | ~10) 1110
A A

P(C | £0.5)#p(C 5) I(faC18) =0

e P(C1£i.5) #p(C | ) I(f:C18) =0

4.2. Wrapper phase.

4.2.1. Binary Equilibrium Optimizer and its Hybridization with Simulated An-
nealing. Now that the FS problem has been solved, finding the right features
will be the main challenge. It can be quite time-consuming to figure out what
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feature subset is the best in wrapper-based problems, since each feature subset
has to be evaluated by means of a classifier algorithm. Thus, it is necessary to
minimize the number of subset evaluations by using an optimization technique.
In order to suggest this algorithm as a search method for a wrapper-based FS
method, the EO results were compared to those of other methods in the liter-
ature. EO was originally designed for continuous search spaces, but since FS
uses binary search spaces, a Binary version of EO (BEO) has been created. EO
was exploited better through simulated annealing and computation complex-
ity was reduced. There are only binary 0, 1 solutions in binary search space.
Binary versions consist of a vector of 0’s and 1’s, where 1 indicates that the
corresponding feature is selected, and 0 indicates that it is not selected. Con-
tinuously updating the concentration of the solution is Eq. 2, which is used in
EO. EO’s binary version requires a transfer function. As depicted in Fig. 2,
sigmoid transfer functions are given by Eq. 11.

1

(11) T() =10

Transfer function(sigmoid)

10

sagmoid(x)
=] =]
ah [=<3

o
-

o
N

00

-6 -4 -2 0 2 4 ]

FI1GURE 2. Transfer function for converting continuous search
space to binary.

EO primarily exploits the Equilibrium pool [15]. The exploration and ex-
ploitation of this pool are controlled by this pool. Initial iterations are charac-
terized by high distances among equilibrium candidates, which helps perform
global search by updating concentrations. Iteratively increasing the number of
iterations leads to the equilibrium candidates approaching each other, allowing
the concentrations to be updated through the use of the equilibrium candi-
dates, thus facilitating local searches surrounding the equilibrium candidates.
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Generation Probability (GP, Eq. (9)) is used exclusively for exploration. Nev-
ertheless, there is nothing specific about exploitation to consider. The concept
of SA is used for performing local searches, i.e., exploitation. In this work, we
aim to improve the performance of BEO for feature solution problems. In order
to accomplish that, the best solution obtained through BEO is passed on to
the SA algorithm instead of being generated at random. Thus, SA will search
locally for a better solution based on the optimal solution found by BEO so
far. At the beginning of the search process, diversification tends to be more
important than intensification for exploring potential useful areas of the feature
space. Toward the end of the exploration phase, exploitation becomes more
important, since it requires the search for better solutions around those found
by exploration [38]. The search space can be explored and exploited through
hybrid approaches, such as BEO-SA in our case. However, hybrid approaches
incur a higher computational cost than classic wrapper approaches, which use
a heuristic and an evaluator. BEO and SA are combined by integrating the
SA process into the BEO algorithm. The process is as follows:

a. Temperature (T): A temperature parameter (T) is introduced in BEO-SA to
control the probability of rejecting a worse solution. Temperatures are initially
set high, increasing the likelihood of accepting poorer solutions. By exploring
solution space in this manner early on, the algorithm avoids local optima in
the latter stages.

b. Cooling Schedule: Depending on the cooling schedule, the temperature will
decrease over time. Gradually lowering the temperature with the BEO-SA
algorithm greatly reduces the probability of accepting worse solutions. Tem-
perature decreases quickly according to the cooling rate. Slower cooling rates
enable the algorithm to explore more of the solution space.

¢. SA in BEO: BEO generates new candidate solutions (particles) by ran-
domly perturbing the temperature T. The perturbation determines the type of
features that are selected for the new particle. The higher temperature in the
early iterations facilitates exploration by enhancing perturbation. The pertur-
bation decreases with each iteration, which leads to a better solution as the
iterations progress.

d. Combining Diverse Solutions: By accepting the worst solutions early on,
the SA process helps the BEO-SA algorithm combine diverse solutions. As
a result, better feature subsets are discovered through a more comprehensive
exploration of the feature space.

BEO-SA combines Equilibrium Optimization with Simulated Annealing to
enhance its search capability, enabling it to explore the solution space more
effectively, escape local optimum, and perhaps discover better solutions. Ex-
ploration and exploitation are balanced by temperature control and cooling
schedules in the optimization process. Multi-objective optimization occurs
when two criteria are considered when evaluating FS (classification accuracy
and number of selected features) [27]. In more specific terms, the goal of FS is
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to achieve maximum classification accuracy with the fewest features possible.
Classification error rate has been used instead of accuracy as a criterion to
avoid conflicts. The FS problem is transformed into a single objective problem
using Eq. 12.

(12) Finess = wy(S) + (1 — w)%

Considering the subset of features selected as S, |\S| represents the number
of features selected, v(S) is classification error rate of S, the dataset’s orig-
inal dimension is D, weights (w) are represented by the values 0 and 1. In
order to compute the classification error (7(5)), we used SVM (Support Vector
Machine) [37] and KNN (K-Nearest Neighbors) classifiers.

4.3. Proposed Filter-Wrapper Binary Equilibrium Optimizer Simu-
lated annealing (FWBEOSA). Exploration and exploitation phases must
be balanced to ensure success. It is possible for exploration and exploitation to
become prematurely convergent or to become trapped in local optima if they are
not balanced. By combining BEO and SA, we have developed a filter-wrapper-
based feature selection method to address premature convergence, local optima
trapping, and computational complexity. The goal of feature selection is to se-
lect a subset of features that have a maximum relationship between them and
the class label feature so that they are minimally redundant. In the proposed
method, the first step uses a hybrid filter method to reduce the number of
features to be considered in the next step. A Spearman correlation coefficient
between the features is calculated as the first step of the hybrid filter in accor-
dance with section 4.1.1. If two features have a higher correlation score than
a predetermined threshold, one is eliminated from consideration. A relevance
value is calculated between the remaining features and the class label feature
in the next step of the filter method, according to section 4.1.2. When the
relevance between a feature and the class label feature is less than a certain
threshold, we can discard the attribute without losing valuable information,
because it adds no information to our assets. In the second stage, a hybrid
wrapper method (BEO with SA) is used to identify the desired number of fea-
tures. Wrapper steps are as follows:

Initialize the population: A binary feature mask is created for each individual
(particle) in the population. Feature inclusions or exclusions are selected ran-
domly (1) or (0).

Evaluate fitness: The fitness function evaluates classification performance on
a subset of features by using SVM and KNN as classifiers. Using the weight
parameter omega, fitness functions control classification accuracy and number
of selected features.

Binary Equilibrium Optimization with Simulated Annealing (BEO-SA): It runs
the Binary Equilibrium Optimization (BEO) and Simulated Annealing (SA)
processes simultaneously. The BEO process updates feature masks based on
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probabilistic rules. The SA process improves the search capability of the al-
gorithm by escaping local optima. To balance exploration and exploitation,
parameters such as cooling rate (t), temperature (T), and others are used.
Feature selection and classification: In BEO-SA, fitness values are used to se-
lect the most appropriate feature mask. Based on these features, SVM and
KNN are used to classify the data, and classification accuracy is measured.
Performance evaluation: During the iteration process, BEO-SA tracks which
features are selected, as well as the accuracy of the classification. Performance
is summarized across all runs.

This method combines the efficiency and speed of the filter method with the
precision of the wrappers. The proposed method is shown in Fig. 3.

5. Experimental Setup and Results

The inherent characteristics of SVMs and KNN classifiers make them suit-
able for feature selection. Features are selected using these classifiers for the
following reasons:

Intrinsic Feature Importance: Both SVM and KNN can rank features implic-
itly based on their contribution to classification accuracy. Model coeflicients
(weights) can be used to determine the importance of features in SVM. Feature
contributions that significantly influence the neighbors’ selection are considered
important in KNN.

Robustness to Irrelevant Features: There is generally less effect on SVM and
KNN from irrelevant or noisy features. KNN uses the distance between data
points to determine which hyperplane best separates the classes. SVM searches
for the hyperplane that best separates the classes. Classification algorithms
may be less sensitive to irrelevant features, resulting in more robust feature
selection.

Non-Parametric Nature: In KNN, no strong assumptions are made regarding
the underlying distribution of the data. Unlike traditional linear models, it
is more suitable for datasets with complex relationships between features and
target variables.

Flexibility in Distance Metrics: KNN allows for the use of different distance
metrics, such as Euclidean distance, Manhattan distance, or cosine similarity.
Availability of flexible distance functions enables KNN to handle different types
of data effectively. Feature Interactions: There is no difference between SVM
and KNN when it comes to capturing interactions between features implicitly.
SVM’s kernel trick can be used to find nonlinear decision boundaries, while
KNN’s distance-based approach can adapt to feature interactions.

No Feature Assumption: KNN and SVM assume no particular relationship be-
tween features and the target variable, unlike linear regression, which does. The
lack of assumptions allows them to find patterns in data that specific functional
models may have missed. Suitability for High-Dimensional Data: It is widely
known that SVMs and KNNs perform relatively well on high-dimensional data,
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FIGURE 3. Flowchart of FWBEOSA.

even if the number of features exceeds the number of samples. The high di-
mensionality of feature spaces makes them suitable for feature selection tasks.
Interpretability: It is possible to interpret features selected using SVM and
KNN. KNN analyzes the distance-weighted contributions of features to in-
crease understanding of their importance based on the non-zero coefficients in
the model.

However, SVM and KNN'’s suitability for feature selection can vary according
to the dataset and problem. To find the most appropriate approach for a given
problem, it is always recommended to experiment with different classifiers and
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feature selection techniques. Due to the data set used and the most popular
classifiers (SVM and KNN), we used them for feature selection and classifi-
cation [5,28,34]. According to Fig. 4, metaheuristic algorithms for feature
selection use a variety of classifiers.
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45000
40000

35000
30000
25000
20000
15000
10000
5000 IIII
i I
1

EENN ®E5VM mDT mNB mRF mANWN mID3 mC45 EMFRB

FIGURE 4. Classifier rate in metaheuristic algorithms for fea-
ture selection [28].

In the training dataset, 80% of the instances are used, while 20% are used
in the testing dataset. Based on train data, F'S methods are used to select a
subset of features. Graphs are plotted and implemented using Matplotlib and
Python 3. The performance assessment of FWBEOSA took into account 17
UCI datasets.

5.1. Dataset description and control parameters setup. Table 4 shows
17 evaluation datasets. The number of features in each dataset can be deter-
mined by comparing it before and after filtering. Duplicate features are re-
moved by filtering based on whether they are redundant. In addition, features
that are generally unrelated can also be ignored if correlations between fea-
tures and category features are considered. Furthermore, the proposed method
is computationally simpler than other methods, making it more accurate for
selecting a subset of features. There are a variety of attributes (features) and
instances in these datasets. This variance makes the proposed method robust.
Multiagent evolutionary algorithms require a population size and an iteration
number that are both very important parameters. As agents learn from each
other’s experiences, population size determines how they learn, while iterations
determine how agents evolve step by step. In BEO and FWBEOSA, the pop-
ulation size is varied as [5, 10, 20, 30, 50]. Experiments have determined that
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a maximum of 50 iterations should be used. Table 5 shows some parameters of
the compared methods.

TABLE 4. Description of datasets before and after filter phase.

Dataset No of samples No of features be- | No of features | No of | Domain
fore applying fil- | after applying | classes
ter filter

Algerian forest fires 244 14 8 2 Life
BreastCancer 698 11 9 2 Life
BreastEW 568 31 15 2 Life
CongressEW 434 17 15 2 Social
DataR2 116 10 4 2 Life
HeartEW 270 14 10 2 Life
Ionosphere 351 35 13 2 Physical
Lung-cancer 32 57 31 2 Life
Lymphography 148 19 12 2 Life
M-of-n 1000 14 7 2 Life
sobar-72 72 20 16 7 Physical
Sonar 208 61 18 2 Life
SpectEW 267 23 14 2 Physical
Vote 300 17 15 2 Social
Wholesale customers data 440 8 4 2 Business
Wine 178 14 12 3 Physical
Zoo 101 17 10 6 Life

TABLE 5. Control parameters.

Algorithm Parameters

BGA Pop-Size = 10, Max-Iter = 20,
Crossover-prob = 0.6, Muprob-
min = 0.01, Muprob-max = 0.3

BBPSO Number of particles = 5, Max-
Iter = 30

BPSO Pop-Size = 20, Max-Iter = 30,
C1, C2 = 2, WMAX = 0.9,
WMIN = 0.4

BSMO Pop-Size = 10, Max-Iter = 20

BASO Pop-size = 10, Max-Iter = 30,
=50, 8=0.2

BGWO Number of particles = 5, Max-
Iter = 30

TMGWO Mutation Probability = 0.5,
Number of particles = 5, Max-
Iter = 30

MFPA Switch Probability = 0.8, Num-
ber of particles = 5, Max-Iter =
30

BSSA Number of particles = 5, Max-
Iter = 30

5.2. Implementation of filter methods. An information gain is a measure
of the reduction in entropy resulting from the transformation of a dataset. In-
formation gain is calculated by comparing each variable with the target variable
in context. Correlation measures the linear relationship between two or more
variables. Predicting one variable based on the other allows us to predict the
other variable. When selecting features, correlation is used because good vari-
ables are highly correlated. Additionally, variables should be correlated with
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the target but not with each other. The relationship between two variables
can be predicted if they are correlated. A model can therefore use only one
feature if two features are correlated, as the second does not add any additional
information to the model. The Spearman Correlation will be used here. As
shown in Table 6, feature selection can be done using 3 filter methods, namely
redundancy-relevance (filter phase of the proposed method), information gain,
and correlation coefficient alone. With information gain, all features except the
target feature are left out in datasets such as DataR2 and HeartEW, which is
unacceptable, and a poor feature selection is evident. With the correlation co-
efficient, more features are selected in all data sets than with the filter method
used in the proposed method. As a result, the proposed method has a bet-
ter filter phase than the other two methods and selects the most informative
features.

TABLE 6. Feature selection with filter methods.

Dataset Filter methods
Redundancy-Relevance | Information Gain Correlation Coefficient

Algerian forest fires 8 9 11
BreastCancer 9 9 10
BreastEW 15 15 20
CongressEW 15 6 17
DataR2 4 1 9
HeartEW 10 1 14
Tonosphere 13 21 35
Lung-cancer 31 48 54
Lymphography 12 5 19
M-of-n 7 1 14
sobar-72 16 4 19
Sonar 18 1 39
SpectEW 14 1 23
Vote 15 9 17
Wholesale customers data 4 4 7
Wine 12 12 13
Zoo 10 16 16

5.3. Performance analysis of BEO and FWBEOSA. BEO and FW-
BEOSA have both been compared against the datasets discussed in Section
5.1. As FWBEOSA uses two powerful search algorithms, BEO, which is ef-
ficient in exploration, and SA, which is robust in exploitation, it is expected
that it will perform better in terms of classification accuracy. Utilizing BEO
allows the exploration of highly relevant regions in the feature space without
falling into the trap of local optimizations. The SA algorithm intensifies the
nearby regions based on the best subset of features found by BEO. Because FW-
BEOSA used filter methods and discarded redundant and irrelevant features,
they have chosen a much smaller number of features. This means FWBEOSA
was able to identify informative and relevant features ignored by BEO. Based
on Table 7, it is clear that BEO and FWBEOSA perform FS efficiently. The
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accuracy of 14 datasets in BEO exceeds or equals 90%, while 16 datasets in FW-
BEOSA do. Furthermore, BEO has achieved 100% accuracy on five datasets,
while FWBEOSA has achieved 100% accuracy on nine datasets. In addition
to their classification accuracy, FWBEOSA and BEO performed exceptionally
well when it came to the number of features they used. On most datasets, BEO
uses less than 50% or even fewer features for classification, while FWBEOSA
uses less than 30% or even fewer features for classification, except on a few
datasets. Table 8 displays the accuracy of classification and the number of
features selected by FWBEOSA and BEO with KNN classifiers. FWBEOSA
has 14 datasets with accuracy greater than 90%, as opposed to 12 for BEO.
Additionally, BEO has produced 100% accuracy on two datasets as compared
to FWBEOSA, which has produced 100% accuracy on seven datasets. A FW-
BEOSA selection of 16 datasets included fewer or the same number of features
as a BEO selection. The discussion has concluded that both BEO and FW-
BEOSA are able to select the best set of features from datasets. In terms of
financial simulation, both of these models are very competitive because they
are accurate and use a limited number of features. Even though both BEO and
FWBEOSA performed well in FS, FWBEOSA'’s results were superior. In FW-
BEOSA in order to improve the performance of BEO, SA and filter phase are
crucial. Therefore, BEO utilizes the equilibrium pool’s four particles to guide
exploration. A pool consists of five particles averaged from four others. By
contrast with exponential terms, it maintains a balance between exploration
and exploitation. A particle may belong to the same search space in some cases
when it has similar characteristics as those in the equilibrium pool. This causes
that specific area to be massively exploited. To find the global optimum, the
algorithm explores the entire search space. SA assists the BEO in exploring
the search space and therefore aids the BEO in performing well in this context.
BEQ'’s exploration capabilities are improved through the use of exponential
terms while exploration-exploitation trade-offs are maintained. A feature se-
lection problem is modeled as an optimization problem aimed at reducing the
number of features, the classification error and increase the rate of conver-
gence. Therefore, the convergence graphs that have a downward slope (and
reach convergence faster) indicate that the method is more likely to achieve
convergence. Figure 5, 6 and 7 shows a comparison between FWBEOSA and
BEO with SVM classifiers. According to the results in 14 datasets (82%) the
proposed method FWBEOSA is better at finding an initial solution than BEO,
and it is also better at finding a final solution in 13 datasets (76%). Compared
to BEQO, the proposed method has performed better or similar in 15 datasets
(88%), based on the convergence rate. FWBEOSA and BEO with KNN clas-
sifiers are compared in Fig. 8, 9 and 10. Compared to BEO, the proposed
method gets better initial solutions in 15 datasets (82%), and also has better
final solutions in 15 datasets (88%).
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FIGURE 5. Convergence graphs for 17 UCI datasets (SVM
Classifier).

5.4. Definition of comparison methods. This section presents the results
of FWBEOSA’s proposed algorithm. FWBEOSA has been compared with
BEO and nine binary F'S works as a result of our comparison. The list includes:

e GWO: Gray wolves live in packs, a predatory lifestyle that is derived
from their ways of life. The predators are arranged in an alphabetical
hierarchy from alpha to gamma. An optimizer model of gray wolves
simulates their tracking, encirclement and attack phases [19].

e ASO: The atom search optimization algorithm combines potential func-
tion, interaction force, and geometric constraint with the movement
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Classifier).

17 UCT datasets (SVM

principle of atoms. Metaheuristic algorithms generate atoms of solu-

tions at first [36].

o SMO: In SMO, people mimic the behaviors of others in society. It is
through imitation of famous people that individuals try to assimilate
themselves to them. By imitating the parameters of optimal solutions,
each solution in optimization problems can reach global optimality. It
is possible to model imitation behavior as randomly searching solution
spaces in optimization problems. In each iteration, the optimal value
of each solution is compared to the global optimal value obtained in
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FIGURE 7. Convergence graphs for 17 UCI datasets (SVM
Classifier).

the previous iteration in order to determine its difference from the
global optimal value. Based on this difference value, a random search
is conducted to find the best solution [10].

e PSO: Birds and fish flocking behavior inspired PSO algorithm. The
algorithm is considered a swarm intelligent algorithm since it is based
on population [19].

e SSA: Planktonic tunicates called salps belong to the Salpidae family
and mimic the behavior of these animals. Also, their tissues resemble
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FIGURE 8. Convergence graphs for 17 UCI datasets (KNN

Classifier).

those of jellyfishes, and their movement and weight are heavily water-
based. Water is pumped through their jelly bodies to propel them
forward. It appears that salps use a fast harmonious change to move
and forage in oceans, which may help them do better foraging and

movement [20].

e (GA: Based on Darwin’s notion of natural selection and evolution, op-
timization search strategies are used. Under the ”selective pressure”
of the object function, a set of trial solutions is selected and ”evolved”

toward an optimal solution [22].
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FIGURE 9. Convergence graphs for 17 UCI datasets (KNN
Classifier).

MFPA: Researchers have been increasingly interested in Flower Polli-
nation Algorithm (FPA) in the area of computational intelligence. In
many optimization problems, it is efficient and simple to search for
global optimality. MFPA aims to develop a new variant of FPA aimed
at improving the convergence rate and solution quality. It will be
called the Modified FPA. In order to better utilize existing solutions,
the MFPA extracts their characteristics and directs the exploration
process towards specific areas [32].
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e BBPSO: Particle swarm algorithms are just complicated enough to be
difficult to understand. While the formula is very simple, it is even eas-
ier to describe how the algorithm works verbally, but it is very difficult
to comprehend in one’s mind how particles move around constantly
shifting centers. By removing some conventional features from particle
swarms, BBPSO discovers their operating principles. As a result, some
of the algorithm’s mysteries will be revealed, its similarities to other
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stochastic populations-based methods of solving problems will be ex-
plored, and suggestions or implied new directions will be explored [23].

e TMGWO: Two-phase Mutation Gray Wolf Optimization solves the
classification problem using two-phase mutation. A two-phase muta-
tion improves the algorithm’s ability to be exploited. During the first
mutation phase, features are reduced while high classification accuracy
is maintained. The second mutation phase aims to increase the classi-
fication accuracy by adding more informative features. Two phase mu-
tations are possible with a small probability due to the time-consuming
mutation phase [4].

5.5. Comparison of the proposed method and the other methods.
Table 9 shows that FWBEOSA achieves a good classification accuracy using
SVM classifier. FWBEOSA performs the best in 13 cases (76%), due to its
unique characteristics in finding optimal solutions and balancing exploration
and exploitation. The SA algorithm succeeded in enhancing the best solution
determined by the BEO algorithm. There are bold numbers in all tables which
represent the best performances. To display differences accurately and reduce
errors, four decimal places are used. On the basis of the number of features
selected by the SVM classifier, FWBEOSA performs well due to the advan-
tages of the filter method along with the wrapper method. According to Table
10, FWBEOSA performed the best in 15 datasets (88%). It performed well in
both other datasets, demonstrating its superiority over existing methods. In six
cases, BEO achieved highest and chose fewer features. In addition to increasing
classification accuracy, FWBEOSA reduced the selection of features and the
objectives. According to Table 11, the proposed method provides higher clas-
sification accuracy than other methods within the KNN classifier. Based on 14
data sets out of 17 data sets, the proposed method achieved the highest level
of classification accuracy (82%). According to Table 12, the proposed method
selects fewer features than other methods. The proposed method selects the
least number of features in 13 of 17 data sets (76%), and selects more features
than other methods in just three data sets: Breastcancer, Lymphography, and
SpectEW. In comparison to BEO and other methods, the proposed method
has better classification accuracy and a greater number of features selected,
and is significantly better than BEO in terms of performance. In data analy-
sis, boxplots are common for summarizing quantitative and qualitative data.
An upper and lower quartile boxplot is shown along with the minimum and
maximum range values and the median [21]. Figure 11, 12 and 13 shows a
boxplot of the proposed method (FWBEOSA) along with other methods in a
classification using SVM classifier. Using this diagram, it is evident that the
proposed method has a median equal to or higher than other methods in 13
datasets (76%) and its dispersion is lower in 12 datasets (71%). Furthermore,
most datasets contain fewer outliers. Figure 14, 15 and 16 shows the boxplot
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of the proposed method (FWBEOSA) compared to other methods in classi-
fication with a KNN classifier. The proposed method has a median equal to
or higher than other methods in 12 datasets (71%), and its dispersion in 11
datasets (65%) is less than other methods.

TABLE 9. Classification accuracy obtained by FWBEOSA and
other methods (SVM Classifier).

5

]
3 Q
o 5] o o o 3
E 2 o 2 b < s 2 2 £ 2 v
4 2 2 < 0 9] @ & < & @ =
A R 5 A A A M =) o = 5 3
Algerian forest fires 1 0.9592 0.9864 0.9864 0.9795 1 1 0.9836 0.9864 0.9795 0.9729
BreastCancer 1 0.0857 | 0.0857 | 0.0904 | 0.0785 | 0.0785 | 0.9785 | 0.0771 | 0.9857 | 0.0704 | 0.9761
BreastEW 1 1 0.9941__| 0.9941 | 0.9736__| 1 0.9736__| 0.0850 | 0.9815 | 0.0849 | 0.9909
CongressEW 1 0.9885 0.9847 0.9618 0.9540 0.9770 0.9885 0.9816 0.9847 0.9894 0.9847
DataR2 0.8333 | 0.8333__| 0.8571 | 0.8857 | 0.6666 | 0.8750 | 0.8333 | 0.8275 | 0.8570 | 0.8742 | 0.8557
HeartEW 0.9444 | 0.0250 | 0.9012__| 0.8765 | 0.8888 | 0.8888 | 0.8888 | 0.9117 | 0.8750 | 0.9012__| 0.9135
Tonosphere 0.9577 0.9577 0.9907 0.9622 0.9295 0.9436 0.9154 0.9318 0.9428 0.9639 0.9751
Tung-cancer 1 1 0.8000 | 0.8000 | 0.8571 | 0.8571 | 0.8571 | 0.8750 | 0.0523 | 0.9135__| 0.9295
Lymphography 1 0.9667 | 0.0111 | 0.9111 | 0.9000 | 0.9333 | 0.9666 | 0.0720 | 0.9888 | 0.9455 | 0.9333
M-of-n 0.9050 0.8750 1 1 1 1 1 1 0.9907 1 1
sSobar-72 1 1 0.9545 | 0.0545 | 0.9333 | 00333 | 1 1 1 1 0.9545
Sonar 0.9523 | 0.0285 | 0.9047 | 0.9206__| 0.0285 | 0.8809 | 0.0047 | 0.9038 | 0.9465 | 0.9333 | 0.9365
SpectEW 0.9444 0.9074 0.8888 0.8888 0.8703 0.8888 0.9074 0.8955 0.9012 0.9035 0.9159
Vote 1 0.9833 | 0.0666__| 0.9666 | 0.9666 | 0.0833 | 0.9666 | 0.0733 | 0.0777 | 0.0888 | 0.9777
Wholcsalc customers data_| 0.7614__| 0.9431 | 0.9242__| 0.9318__| 0.8863 | 0.9431 | 0.8977 | 0.9090 | 0.9393 | 0.9431 | 0.9242
Wine 1 1 0.9259 0.8888 1 1 1 1 0.9888 0.977 0.9529
Zoo 1 1 0.9677 [ 0.9354 | 1 1 T 1 1 1 1

TABLE 10. The number of selected features by FWBEOSA
and other methods (SVM Classifier).
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) 2 =) 4} 0 0] 17 o < <] M =
A 4 [ a A A A m A = [ E
Algerian forest fires 1 2 7 3 3 5 2 4 4 2 5
BreastCancer 3 2 6 4 2 3 3 4 4 3 6
BreastEW 3 6 18 12 11 7 12 16 5 8 5
CongressEW 2 2 9 4 3 1 4 4 3 3 8
DataR2 1 2 3 4 4 3 7 3 4 5 2
HeartEW 4 4 7 9 8 10 10 7 6 8 5
Tonosphere 2 11 15 24 14 21 14 19 10 11 13
Lung-cancer 2 4 18 23 13 42 11 22 8 9 15
Lymphography 6 6 9 10 11 13 12 11 6 10 7
M-of-n 4 4 8 7 10 9 10 8 5 9 6
sobar-72 2 2 6 5 5 6 4 3 7 2 5
Sonar 5 16 27 32 35 25 25 21 22 19 23
SpectEW 8 15 12 11 9 6 13 15 11 9 15
Vote 1 1 4 8 2 10 3 3 3 2 4
Wholesale customers data 1 2 4 4 2 4 2 2 5 3 2
Wine 2 3 7 6 5 8 4 6 3 4 5
Zoo 4 6 8 10 6 6 7 7 5 6 4

A FWBEOSA method uses the filter and wrapper techniques as a means of
using the speed of the filter methods at the beginning of the feature selection
process and discarding the extra and irrelevant features. A binary balance opti-
mizer is also employed in the wrapping step to select the optimal set of features,
since the method has weaknesses and may get locked into a local optimum. In
addition to improving the speed of filter methods and the accuracy of wrapping
methods, the thermal simulator combined with BEO is one of the most efficient
ways to find the local optimum. FWBEOSA has achieved a higher accuracy
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TABLE 11. Classification accuracy obtained by FWBEOSA
and other methods (KNN Classifier).

5
o
38 Q
] 5] o o ] 3
£ B ° z 3 < s 2 8 g 2 &
3 3 @ 0 ® o} @ a, < 2] o =
A R M A A A M m m = m 3
Algerian forest fires 1 0.9895 0.9864 1 0.9795 0.9883 0.9795 0.9836 1 0.9864 0.9864
BreastCancer 1 0.9785 0.9904 0.9857 0.9785 0.9857 0.9642 0.9828 0.9904 0.9904 0.9904

Breast EW 0.9824 0.9824 0.9766 0.9766 0.9649 0.9649 0.9824 0.9577 0.9707 0.9707 0.9766
CongressEW 1 0.9885 0.9923 0.9923 0.9770 0.9770 0.9885 0.9908 0.9923 0.9770 0.9847
DataR2 0.8333 0.8333 0.8857 0.9142 0.8333 0.8333 0.8333 0.8965 0.9142 0.9142 0.8857
HeartEW 0.9444 0.8888 0.9135 0.9012 0.8888 0.8703 0.9074 0.8676 0.8888 0.9135 0.9012
Tonosphere 0.9859 0.9577 0.9433 0.9339 0.9259 0.9436 0.9295 0.9090 0.9528 0.9433 0.9433
Lung-cancer 1 1 1 1 0.8577 0.8577 1 1 1 1 1

Lymphography 0.9666 0.9333 0.9333 0.9333 0.9333 0.9000 0.9000 0.9189 0.9333 0.9555 0.9555
M-of-n 0.8900 0.8450 1 1 0.9400 0.9050 0.9700 0.9920 1 1 1

sobar-72 1 1 1 1 0.9333 1 1 1 1 1

Sonar 0.9523 0.9285 0.9365 0.9365 0.9285 0.9285 0.9230 0.9365 0.9365 0.9365
SpectEW 0.9630 0.8704 0.9259 0.9135 0.7962 0.9074 0.9104 0.9259 0.8888 0.9259
Vote 1 0.9666 0.9888 0.9888 0.9833 1 0.9866 0.9888 0.9888 0.9777
Wholesale customers data 0.8977 0.9431 0.9469 0.9469 0.9659 . 0.9318 0.9545 0.9545 0.9621 0.9621
Wine 1 0.9722 0.9814 1 0.9722 0.9722 0.9444 0.9777 0.9814 0.9814 0.9814
Zoo 0.9375 0.8125 0.8695 0.8695 0.7500 0.8125 0.8125 0.8421 0.9130 0.9130 0.9130

TABLE 12. The number of selected features by FWBEOSA
and other methods (KNN Classifier).
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and a lower number of features due to the advantages mentioned in section
5.3 and when compared to BEO. A major advantage of the proposed method
over BEO is that it has a better convergence rate and, thus, a better final
solution and performs better on most data sets. When compared with BEO
and 9 other methods of feature selection in the SVM classifier, the proposed
method performs significantly better in accuracy criteria as well as the number
of features selected. It is also evident that the proposed method is superior to
KNN classification since it has strong filter phases and an appropriate balance
between exploration and exploitation. As can be seen from the box plot, the
proposed method has also produced better data quality.

There are various domains and applications in which the FWBEOSA algo-
rithm might be useful. In data science and machine learning may have the
following applications and implications:
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F1GURE 11. The Boxplot of FWBEOSA and other method for
the 17 UCI datasets (SVM classifier).

e High-Dimensional Data Analysis: High-dimensional data is widely used
in fields such as bioinformatics, image processing, text mining, and
sensor data analysis. With FWBEOSA and machine learning models,
data dimensionality can be reduced and performance improved.

e Bioinformatics:
high-dimensional datasets representing gene expression profiles, ge-
nomic sequences, and proteomic data. Identifying the most informative
genes or markers is essential to predicting gene functions, discover-
ing biomarkers, and categorizing diseases. Selecting the most relevant
genes or genetic markers can be made easier via hybrid feature selec-

tion.

Genomic and bioinformatics researchers work with
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F1cURE 12. The Boxplot of FWBEOSA and other method for
the 17 UCI datasets (SVM classifier).

e Image and Signal Processing: Various features are represented by pixels
or data points in images and signals. Image classification and signal
processing can be improved with feature selection by reducing noise
and irrelevant information.

e Natural Language Processing: When text mining is performed on doc-
uments or text data, multidimensional feature vectors are often em-
ployed. It is important to select features correctly when performing
sentiment analysis, topic modeling, and document categorization.
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F1GURE 13. The Boxplot of FWBEOSA and other method for
the 17 UCI datasets (SVM classifier).

e Network Analysis: The hybrid filter-wrapper feature selection method
can be used to identify the most influential nodes or features in complex
networks. The approach can be helpful in identifying central nodes in
social networks, analyzing disease spread in epidemiological networks,
and detecting anomalies in network traffic.

o [Interpretability and Resource Efficiency: The purpose of feature se-
lection techniques is to select a subset of relevant features to improve
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F1GURE 14. The Boxplot of FWBEOSA and other method for
the 17 UCI datasets (KNN classifier).

model interpretability. Machine learning models can be more resource-
efficient when they have fewer features.

e Ensemble Learning and Model Aggregation: Ensemble learning methods
can be improved by selecting different and informative features for each
base model. As a result, the aggregation process will become more
accurate and robust.

Data analysis that involves high-dimensional data can benefit from FWBEOSA
and hybrid filter-wrapper feature selection. Machine learning and data science
in practice benefit from their ability to select relevant features efficiently, as
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F1GURE 15. The Boxplot of FWBEOSA and other method for
the 17 UCI datasets (KNN classifier).

their ability to improve performance, resource efficiency, and interpretability
can lead to improved model performance, efficiency, and interpretability. To
achieve the best results in real-world applications, it is crucial to tune param-
eters appropriately and validate on specific datasets.

6. Conclusion and Future Work

To address feature selection effectively, this paper uses a binary variant of
Equilibrium Optimizer (EO). A sigmoid function transforms continuous values
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FI1GURE 16. The Boxplot of FWBEOSA and other method for
the 17 UCI datasets (KNN classifier).

of EO into binary search spaces. Most feature selection methods are prema-
turely convergent. In the proposed method FWBEOSA, BEO is combined with
Simulation Annealing (SA) to overcome the problems mentioned above. The
proposed method also provided useful and relevant features for the wrapper
phase through the combination of filter methods. The SVM and KNN classi-
fiers are evaluated on 17 popular UCI datasets, and they are evaluated using
a variety of metrics, such as classification accuracy, the number of features
selected, and convergence charts. Compared to other methods, the proposed
method achieves maximum classification accuracy on 76% of datasets with
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SVM and 82% with KNN. There is a clear superiority of the proposed method
based on selected features in both classifiers. Additionally, filtering methods
have helped the method to become more efficient, save money, and save time.
Nevertheless, some problems remain.

e Hyperparameter Tuning: Finding the optimal values for the hyperpa-
rameters for the EO-SA algorithm can be a time-consuming task. A
good hyperparameter selection is crucial for avoiding overfitting and
achieving good performance.

o Limited Scalability: Datasets with high dimensionality and many fea-
tures may not be well suited to EO-SA. It may become computationally
prohibitive when the population size and search space become large
enough.

o Computational Complezity: The algorithm’s execution time may in-
crease with particles, iterations, and pool size as the dataset grows.

These limitations can be overcome in several ways:

e Parallelization: EO-SA iterations can be parallelized for faster feature
selection on multi-core processors by parallelizing computationally in-
tensive parts of the code.

o Hyperparameter Optimization: Grid and random search techniques can
be used to find optimal hyperparameter values for EO-SA, SVM, and
KNN classifiers.

o Algorithm Selection: The best feature selection algorithm will be de-
termined by comparing it with other metaheuristic approaches and
compare it with EO-SA.

o FEualuation with Different Classifiers: Using various classifiers (includ-
ing SVM and KNN) evaluate the selected features to see if they gener-
alize well.

The application of evolutionary algorithms to deep learning has been success-
fully done in recent years, for example, when genetic programming is involved.
During the future study, deep learning will also be examined as a possibility
for combining the algorithm. The feature selection process can be improved to
become more efficient, robust, and applicable to a broader range of datasets
and tasks. The proposed FWBEOSA algorithm will be tested on NP-hard
problems in the future, such as cloud-based task ordering and neural network
hyperparameter optimization.
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