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Abstract. In this manuscript, we consider an extended version of bi-
conservativity condition (namely, C-biconservativity) on the Riemannian
hypersurfaces of Lorentzian standard 4-space forms. This new condi-
tion is obtained by substituting the Cheng-Yau operator C instead of the
Laplace operator ∆. We show that every C-biconservative Riemannian
hypersurface of a Lorentzian 4-space form with constant mean curvature
has constant scalar curvature.
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1. Introduction
In the 1920s, David Hilbert showed that the stress-energy tensor associated

to a given functional θ is a conservative symmetric bi-covariant tensor Θ (at
the critical points of θ) such that θ is biconservative if and only if divΘ = 0.
This fact can be considered as the starting point of the study of biconservative
submanifolds. Precisely, this subject has been started by Eells and Sampson
and followed by Jiang ( [8,14]). The condition divΘ2 = 0 on the stress bienergy
tensor Θ2 has been introduced by Jiang.

Regardless of the historical motivation to study and develop the theory of
biconservative submanifolds, one can point out the important role of minimal
surfaces in physics and differential geometry. There is a very close connection
between minimal and biharmonic surfaces. In 1991, Bang-Yen Chen has con-
jectured that there are no proper biharmonic submanifolds in Euclidian spaces
( [5]). It means that every biharmonic submanifolds in an Euclidian space
has to be minimal. In this context, many examples and classification results
have been provided in Euclidian spaces. In general the study of biharmonic
maps between Riemannian manifolds is one of the interesting research top-
ics in differential geometry. From the theory of biharmonic submanifolds, a
new interesting subject in mathematical physics is the theory of biconservative
submanifolds, which arose and keeps gaining ground in today�s mathematical
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research as there are many interesting examples of biconservative submanifolds,
even when the biharmonic ones fail to exist.

A hypersurface of an Euclidean space defined by an isometric immersion
x : Mn → En+1 is said to be biharmonic if it satisfies the equation ∆2x = 0,
where ∆ is the Laplace operator on Mns. Also, Mn is called biconservative if x
satisfies the equation (∆2x)⊤ = 0, where ⊤ stands for the tangent component
of vectors.

From the physical points of view, we deal with the bienergy functional and
its critical points arisen form the tension field. In geometric context, the sub-
ject of biconservative submanifolds has received much attentions. In 1995,
Hasanis and Vlachos have classified the biconservative hypersurfaces (namely,
H-hypersurfaces) of 3 and 4 dimensional Euclidean spaces ( [13]). The termi-
nology ”biconservative” has been introduced (firstly) in [4]. In 2015, Turgay
has studied H-hypersurfaces with 3 distinct principal curvatures in the Eu-
clidean spaces ( [25]). Biconservative surfaces of constant mean curvature in
Sn×R and Hn×R has been studied in [10]. In 2019, Gupta studied the bicon-
servative hypersurfaces in Euclidean 5-space ( [12]). Also, the biconservative
hypersurfaces in Riemannian 4-space forms have been classified by Turgay and
Upadhyay in 2019 ( [26]).

As known, the Laplace operator ∆ of a hypersurface Mn in the space form
M4

1(c) arises as the linearized operator of the first variation of mean curvature
vector field associated to the normal variations of Mn. From extension point of
view, ∆ is the first one of a sequence of n operators, L0 = ∆, L1 = C, . . . , Ln−1,
where Lk is the kth linearized operator of the first variation of the (k+1)th mean
curvature arisen from the normal variations of Mn. The operator C (sometimes
denoted by symbol □) was introduced in [6]. Based on this background, many
researchers ( [1–3, 19, 20]) have considered hypersurfaces in space forms whose
position vector field satisfies the general condition Lkx = Ax + b, for a fixed
integer 0 ≤ k < n, where A is a constant matrix and b is a constant vector.

In this manuscript, we study the C-biconservativity condition on some hy-
persurfaces of Lorentzian space forms. A Riemannian hypersurface of a Lorentzian
space form defined by an isometric immersion x : Mn → Mn+1

1 (c) is said to
be biconservative if the tangent component of ∆2x is identically zero. Inspired
by this concept, we have introduced and used the C-biconservativity condition
as (C2x)⊤ = 0 ( [21–23]). The C-biconservativity condition is obtained by
substituting the Cheng-Yau operator C instead of ∆. In mentioned papers,
we have studied C-biconservative (Riemannian or Lorentzian) hypersurfaces of
some Minkowski spaces. In this paper, we study some C-biconservative Rie-
mannian hypersurfaces of non-flat 4-dimensional Lorentzian space forms. It is
proven that a Riemannian hypersurface M3 of M4

1(c) is C-biconservative if its
first and second mean curvatures (i.e. H1 and H2) satisfy the condition

(1) N2(∇H2)− cN1(∇H1) =
9

2
H2∇H2,
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where N1 and N2 are the first and second Newton transformations. We show
that the C-biconservative hypersurfaces of M4

1(c) with constant ordinary mean
curvature have constant scalar curvature.

2. Preliminaries
We recall some notations and formulae from [2, 3, 15, 17, 28]. The semi-

Euclidean 5-space E5
ξ of index ξ = 1, 2 is equipped with the product defined

by ⟨v,w⟩ = −
∑ξ

i=1 viwi +
∑5

i=ξ+1 viwi, for each vectors v = (v1, . . . , v5) and
w = (w1, . . . , w5) in R5. The 4-dimensional Lorentzian space forms are defined
as:

M4
1(c) =

 S41(r) (if c = 1/r2)
L4 = E4

1 (if c = 0)
H4

1(−r) (if c = −1/r2),

where, for r > 0, S41(r) = {v ∈ E5
1|⟨v,v⟩ = r2} denotes the 4-pseudosphere

of radius r and curvature 1/r2 and H4
1(−r) = {v ∈ E5

2|⟨v,v⟩ = −r2, v1 > 0}
denotes the pseudo-hyperbolic 4-space of radius −r and curvature −1/r2. The
canonical cases c = ±1 give the de Sitter 4-space dS4 := S41(1) and anti de Sitter
4-space AdS4 = H4

1(−1). Also, the case c = 0 gives the Lorentz-Minkowski 4-
space L4 := E4

1.
In this paper, we study some Riemannian hypersurfaces of M4

1(c) for c =
0,±1 (i.e. L4, dS4 , AdS4). Let x : M3 → M4

1(c) be a Riemannian hypersurface
isometrically immersed into M4

1(c). As usual, χ(M3) denotes the set of smooth
tangent vector fields on M3. The Levi-Civita connections on M3 and M4

1(c) are
denoted by ∇ and ∇̄, respectively. Also, ∇0 denotes the Levi-Civita connection
on L5 = E5

1 and E5
2. The Weingarten formula on M3 is ∇̄V W = ∇V W −

⟨SV,W ⟩n, for each V,W ∈ χ(M3), where S is the shape operator of M3

associated to a unit normal timelike vector field n on M3. Furthermore, in the
case |c| = 1, M4(c) is a 4-hyperquadric with the unit normal vector field x and
the Gauss formula ∇0

V W = ∇̄V W − c⟨V,W ⟩x.
The shape operator of M3 can be assumed diagonal because it is spacelike

(see [17, 18]). Denoting the eigenvalues of S (i.e. the principal curvatures of
M) by κ1, κ2, κ3 on M , the jth elementary symmetric function is defined as

sj :=
∑

1≤i1<...<ij≤n

κi1 ...κij ,

and the jth mean curvature of M as (3j )Hj = (−1)jsj (for instance, see [2] and
[3]). In special case, the second mean curvature H2 = 1

3s2 and the normalized
scalar curvature R satisfy the equality H2 := n(n−1)(1−R). The hypersurface
M3 is said to be j-maximal if Hj+1 ≡ 0.

The Newton maps on M3 are defined (inductively) as follow:

(2) N0 = I, N1 = −s1I + S, N2 = s2I − s1S + S2,
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where I is the identity map. Using the spacelike unit vectors e1, e2 and e3 as the
eigenvectors of S with eigenvalues κ1, κ2 and κ3 (respectively), the eigenvalues
of Nj are given by Njei = µi,jei, where µ1,1 = −κ2 − κ3, µ2,1 = −κ1 − κ3,
µ3,1 = −κ1 − κ2, µ1,2 = κ2κ3, µ2,2 = κ1κ3, µ3,2 = κ1κ2.

Here are some useful formulae about the Newton maps:
tr(Nj) = cjHj , tr(S ◦ Nj) = −cjHj+1,

tr(S2 ◦ N1) = 9H1H2 − 3H3, tr(S2 ◦ N2) = 3H1H3,
(3)

where j = 0, 1, 2, c0 = c2 = 3 and c1 = 6.
The Chang-Yau operator C : C∞(M3) → C∞(M3) is introduced by rule

C(f) = tr(N1◦∇2f), where, ∇2f : χ(M) → χ(M) is (equivalently) the Hessian
of f by rule ⟨∇2f(X), Y ⟩ = ⟨∇X(∇f), Y ⟩ for each X,Y ∈ χ(M3).

In other words, C(f) is given by C(f) =
∑3

i=1 µi,1(eieif −∇eieif). The key
formulae in this paper are

Cx = 6(H2n + cH1x),

Cn = 3∇H2(9H1H2 − 3H3)n − 6cH2x
and

C2x = −54H2∇H2 + 12N2∇H2 − 12cN1∇H1

+ 6
(
C(H2)− 9H1H

2
2 + 3H2H3 − 6cH1H2

)
n

− 6c
(
C(H1)− 6H2

2 − 6cH2
1

)
x.

(4)

By definition, M3 is called C-biconservative if x satisfies (C2x)⊤ = 0 (i.e the
condition (1)).

According to (local) orthonormal tangent frame {em}1≤m≤4 and associated
co-frame {ωm}1≤m≤4 on M4

1(c), where e1, e2, e3 are tangent to M3 and e4 is
positively normal to M3, the structure equations of M4

1(c) are

dωA =

4∑
B=1

ωAB ∧ ωB , ωAB + ωBA = 0, dωAB =

4∑
C=1

ωAC ∧ ωCB .

Of course, clearly ω4 = 0 and 0 = dω4 =
3∑

i=1

ω4i ∧ ωi on M3.

Using the well-known Cartan’s Lemma, there are smooth functions hij such
that hij = hji and

(5) ω4i =

3∑
j=1

hijωj .

Since the second fundamental form of M3 is B =
4∑

i,j=1

hijωiωje4, the mean

curvature H has the simple form H = 1
3

3∑
i=1

hii. Hence, equation (5) gives the
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structure equations as follow (see [28]).

dωi =

3∑
j=1

ωij ∧ ωj , ωij + ωji = 0,

dωij =

3∑
k=1

ωik ∧ ωkj −
1

2

3∑
k,l=1

Rijklωk ∧ ωl.

Also, the Gauss equation on M3 is Rijkl = (hikhjl−hilhjk), where Rijkl stand
for the components of the tensor of Riemannian curvature on M3. Finally, we
have

(6)
∑
k

hijkωk = dhij +
∑
k

hkjωki +
∑
k

hikωkj ,

where hijk is the covariant derivative of hij . Thus, by exterior differentiation of
(5), the Codazzi equation is obtained as hijk = hikj . One can choose e1, e2, e3
such that hij = κiδij . On the other hand, the Levi-Civita connection of M3

satisfies
∇eiej =

∑
k

ωjk(ei)ek,

and therefore
ei(kj) = ωij(ej)(κi − κj),

ωij(el)(κi − κj) = ωil(ej)(κi − κl),
(7)

whenever i, j, l are distinct.

3. Examples
In this section we see several examples of C-biconservative spacelike hyper-

surfaces in dS4, L4 and AdS4 with constant ordinary mean curvature. First,
we have some Riemannian product hypersurfaces (see [3,19,29]). In Examples
3.1 and 3.9 we follow Example 5.3 in [19]. The idea of examples 3.2-3.4 is taken
from Example 5.6 in [19]. Examples 3.6 and 3.7 are provided by the author.
The idea of examples 3.5, 3.8 and 3.11 are taken from Examples 5.7, 5.2 and
5.5 in [19], respectively.

Example 3.1. Let r ≥ 1 and Γ0 = S3(r) ⊂ dS4 defined as

Γ0 = {(y1, y2, y3, y4, y5) ∈ L5|y22 + y23 + y24 + y25 = r2, y1 = ±
√

r2 − 1},

with the Gauss map n(y) = −
√
r2−1
r (0, y2, y3, y4, y5) +

−r√
r2−1

(y1, 0, 0, 0, 0) and
only one principal curvature of multiplicity 3 as κ1 = κ2 = κ3 =

√
r2−1
r . One

can see that Γ0 is C-biconservative and its 1st and 2nd mean curvatures are
constants.
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Example 3.2. Let r > 1 and Γ1 = H1(−
√
r2 − 1)× S2(r) ⊂ dS4 defined by

Γ1 = {(y1, y2, y3, y4, y5) ∈ L5| − y21 + y22 = 1− r2, y23 + y24 + y25 = r2},

whose Gauss map is n(y) = −r√
r2−1

(y1, y2, 0, 0, 0)+
−
√
r2−1
r (0, 0, y3, y4, y5). It is

C-biconservative because it has constant principal curvatures κ1 = r√
r2−1

and
κ2 = κ3 =

√
r2−1
r . Clearly, Γ1 is C-biconservative and its 1st and 2nd mean

curvatures are constants.

Example 3.3. Let r > 1 and Γ2 = H2(−
√
r2 − 1)× S1(r) ⊂ dS4 defined by

Γ2 = {(y1, y2, y3, y4, y5) ∈ L5| − y21 + y22 + y23 = 1− r2, y24 + y25 = r2},

which has the Gauss vector n(y) = −r√
r2−1

(y1, y2, y3, 0, 0)+
−
√
r2−1
r (0, 0, 0, y4, y5),

constant principal curvatures κ1 = κ2 = r√
r2−1

and κ3 =
√
r2−1
r , and constant

higher order mean curvatures. So, Γ2 is C-biconservative.

Example 3.4. Let r > 1 and Γ3 = H3(−
√
r2 − 1) ⊂ dS4 defined as

Γ3 = {(y1, y2, y3, y4, y5) ∈ L5| − y21 + y22 + y23 + y24 = 1− r2, y5 = ±r},

which has the Gauss vector n(y) = −r√
r2−1

(y1, y2, y3, y4, 0)+
−
√
r2−1
r (0, 0, 0, 0, y5),

constant principal curvatures κ1 = κ2 = κ3 = r√
r2−1

, and constant higher order
mean curvatures. So, Γ3 is C-biconservative.

Example 3.5. Let 0 < r < 1 and Γ4 = H1(−
√
1− r2) × H2(−r) ⊂ AdS4

defined by
Γ4 = {(y1, y2, y3, y4, y5) ∈ E5

2| − y21 + y23 = r2 − 1,−y22 + y24 + y25 = −r2},

with the Gauss map n(y) = −r√
1−r2

(y1, 0, y3, 0, 0, )+
√
1−r2

r (0, y2, 0, y4, y5). It has
two distinct constant principal curvatures κ1 = r√

1−r2
and κ2 = κ3 = −

√
1−r2

r ,
and constant higher order mean curvatures. So, Γ4 is C-biconservative.

Example 3.6. Let 0 < r < 1 and Γ5 = H3(−r) ⊂ AdS4 defined by

Γ5 = {(y1, y2, y3, y4, y5) ∈ E5
2| − y22 + y23 + y24 + y25 = −r2, y1 = ±

√
1− r2},

with the Gauss map n(y) = −r√
1−r2

(y1, 0, 0, 0, 0) +
√
1−r2

r (0, y2, y3, y4, y5), only
one constant principal curvature of multiplicity three as κ1 = κ2 = κ3 =
−
√
1−r2

r , and the constant higher order mean curvatures. So, Γ5 is C-biconservative.

Example 3.7. Let r > 0 and Γ6 = S1(
√
1 + r2)× S2(r) ⊂ AdS4 defined by

Γ6 = {(y1, y2, y3, y4, y5) ∈ E5
2|y21 + y22 = 1 + r2, y23 + y24 + y25 = r2},

which has the Gauss vector n(y) = −r√
1+r2

(y1, y2, 0, 0, 0)+
√
1+r2

r (0, 0, y3, y4, y5),
constant principal curvatures κ1 = r√

1+r2
and κ2 = κ3 = −

√
1+r2

r , and constant
higher order mean curvatures. So, Γ6 is C-biconservative.
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Example 3.8. Let r > 0 and Λ1 := H1(−r)× E2 ⊂ L4 defined by
Λ1 := {(y1, y2, y3, y4) ∈ L4| − y21 + y22 = −r2},

which has the Gauss vector N(y) = −1
r (−y1, y2, 0, 0) on M . It has constant

principal curvatures κ1 = 1
r and κ2 = κ3 = 0. Λ1 is C-biconservative.

In similar manner, we may define Λ2 := H2(−r) × E1 ⊂ L4 and Λ3 :=
H3(−r) ⊂ L4 as C-biconservative spacelike hypersurfaces with constant curva-
tures.

Example 3.9. For a chosen unit vector a ∈ L5 and a real number r >
√

|τ |
where τ = ⟨a,a⟩, the subset Υa := {y ∈ dS4 ⊂ L5|⟨y,a⟩ =

√
r2 + τ} is a

totally umbilic hypersurface in dS4. Similar to Example 3.2 in [3], the Gauss
map is n(y) = 1

r (a −
√
r2 + τy), so for all i, κi =

1
r

√
r2 + τ , and for each k,

Hk = (−1)k[ 1r
√
r2 + τ ]k. When τ = −1, we get Υa = Sn(r) and when τ = 1,

we have Υa = Hn(−r).

Example 3.10. In this example, we follow [29], page 132. Take the function
g : dS4 ⊂ L5 → R by g(x) = −x1 + x2, and take Ωt := g−1(e−t), for each
t ∈ R. In fact, Ωt = {(f(y) + sinh t, f(y) + cosh t,y) ∈ dS4|y ∈ E3}, where
f(y) = −et

2

∑3
i=1 y

2
i . With respect to the Gauss map n(x) = etω − x on Ωt,

where ω = (−1, 1, 0, ..., 0) ∈ L5. So, we get κ1 = κ2 = κ3 = 1, so Hk = (−1)k.
Hence, Ωt is C-biconservative.

Example 3.11. Let b ∈ E5
2 be a timelike unit vector g : AdS4 ⊂ E5

2 → R
be the function given by rule g(y) = ⟨y,b⟩. For each 0 < r ≤ 1, Πr :=

g−1(−
√
1− r2) = H3(−r) is a totally umbilic hypersurface in AdS4 with the

Gauss map n(y) = 1
r (b −

√
1− r2y) and principal curvatures κ1 = κ2 = κ3 =

√
1−r2

r . Hence, Πr is C-biconservative.

4. C-biconservative hypersurfaces with 2 and 3 principal cur-
vatures
In this section, we study C-biconservative Riemannian hypersurfaces in

M4
1(c) for c = ±1. The similar study has been made for ordinary biconservative

hypersurfaces in some papers [11, 25, 27]. Let x : M3 → M4(c) be a biconser-
vative hypersurface in the Riemannian space form with 2 distinct principal
curvatures. By Theorem 4.2 in [7], M3 is an open part of a rotational hyper-
surface in M4(c) for an appropriately chosen profile curve. In C-biconservative
case, we show that a Riemannian hypersurface in M4

1(c) with constant ordinary
mean curvature has to be of constant scalar curvature. First, we see the next
lemma which can be proved by the same manner of similar one in [24].

Lemma 4.1. Let M3 be a Riemannian hypersurface in M4
1(c) with princi-

pal curvatures of constant multiplicities. Then the distribution generated by
principal directions is completely integrable. Also, each principal curvature of
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multiplicity greater than one is constant on each integral submanifold of its
distribution.

The following theorems may be compared with Theorem 4.27 in [9] which is
an alternative to the result of K. Nomizu and B. Smyth about compact CMC
hypersurfaces in space forms in [16].

Theorem 4.2. Let x : M3 → M4
1(c) be a C-biconservative Riemannian hy-

persurface with constant ordinary mean curvature and at most two distinct
principal curvatures. Then, its scalar curvature is constant and M3 is isopara-
metric.

Proof. We start the proof with the assumption that the scalar curvature of
M3 is not constant and then H2 is non-constant. We consider the open subset
U := {p ∈ M3 : ∇H2

2 (p) ̸= 0} which is non-empty. By assumption, M3 has
two distinct principal curvatures λ and η of multiplicities 2 and 1, respectively.
The local orthonormal tangent frame {e1, e2, e3} of principal directions on U
gives Sei = λiei for i = 1, 2, 3, where (by assumption)

λ1 = λ2 = λ, λ3 = η.

Also,
(8) µ1,2 = µ2,2 = λη, µ3,2 = λ2, 3H = 2λ+ η, 3H2 = λ2 + 2λη.

The condition (1) gives

N2(∇H2) =
9

2
H2∇H2,

which, using the polar decomposition ∇H2 =
∑3

i=1⟨∇H2, ei⟩ei, gives

⟨∇H2, ei⟩(µi,2 −
9

2
H2) = 0

on U, for i = 1, 2, 3. Since ∇H2 ̸= 0 on U, there exists at least one i such that
⟨∇H2, ei⟩ ̸= 0 on U, so we have

(9) µi,2 =
9

2
H2.

We consider two possible cases.
Case 1. ⟨∇H2, ei⟩ ̸= 0, for i = 1 or i = 2. By equalities (8) and (9), we

obtain
λη =

9

2
(
2

3
λη +

1

3
λ2),

which gives

(10) λ(6H − 5

2
λ) = 0.

Since H2 is non-constant on U, formulae (8) gives that λ is not identically zero
on U. Hence, by (10), we get λ = 12

5 H and then η = − 9
5H and H2 = − 72

25H
2.

The last equality gives that H is non-constant on U which is in contradiction
with the assumption of theorem.
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Case 2. ⟨∇H2, e3⟩ ̸= 0. In a similar way, by equalities (8) and (9), we
obtain

λ2 =
9

2
(
2

3
λη +

1

3
λ2),

which gives

(11) λ(9H − 11

2
λ) = 0.

H2 is non-constant on U, so by (8) λ is not identically zero on U. Hence, by
(11), we obtain λ = 18

11H, η = − 3
11H1 and H2 = 216

121H
2. By the last equality, H

is non-constant on U which is in contradiction with the assumption of theorem.
Therefore, H2 and then the scalar curvature of M3 have to be constant.

Finally, we get that M3 is isoparametric. □
Theorem 4.7 in [13] says that every biconservative hypersurface in E4 is

made up of the following hypersurfaces:
(i) hypersurfaces with constant mean curvature,
(ii) some rotational hypersurfaces with non-constant mean curvature,
(iii) some generalized cylinders over surfaces of revolution lying in E3 with non-
constant mean curvature,
(iv) some O(2)×O(2)-invariant hypersurfaces with non-constant mean curva-
ture.

Also, one can find a similar result for biconservative hypersurface in Em

(where m ≥ 5) by Theorem 1 in [25]. Now, we pay attention to C-biconservative
Riemannian hypersurfaces with 3 distinct principal curvatures. We show that
such a hypersurface with constant mean curvature has constant scalar curva-
ture.

Theorem 4.3. Let x : M3 → M4
1(c) be C-biconservative Riemannian hy-

persurface with constant ordinary mean curvature and three distinct principal
curvatures. Then, the scalar curvature of M3 is constant.

Proof. Assuming H2 to be non-constant, we take U = {p ∈ M3 : ∇H2
2 (p) ̸= 0}.

According to a suitable (local) orthonormal tangent frame {e1, e2, e3} on M3,
the shape operator S has a diagonal matrix form, such that Sei = λiei and
then, N2ei = µi,2ei for i = 1, 2, 3. By equality (1) and decomposition ∇H2 =
3∑

i=1

ei(H2)ei, for i = 1, 2, 3 we obtain

(12) ei(H2)(µi,2 −
9

2
H2) = 0.

Around every point p ∈ U there exists a neighborhood such that ei(H2) ̸= 0
on which for at least one i. So, we can assume that e1(H2) ̸= 0 and then we
have µ1,2 = 9

2H2, (locally) on U, which gives λ2λ3 = 9
2H2. We affirm three

claims.
Claim 1: e2(H2) = e3(H2) = 0.

If e2(H2) ̸= 0 or e3(H2) ̸= 0, then by (12) we get µ1,2 = µ2,2 = 9
2H2 or
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µ1,2 = µ3,2 = 9
2H2, which give λ2(λ1 − λ3) = 0 or λ3(λ2 − λ1) = 0. By

assumption, λi’s are mutually distinct, so we get λ3 = 0 or λ2 = 0, then
H2 = 0 on U. This contradicts with the definition of U.

Claim 2: e2(λ1) = e3(λ1) = 0.
By assumption H is constant on M . So, e2(λ1) = e2(3H−λ1−λ2) = −e2(λ1)−
e2(λ2). Also, by recent results, e2(H2) = 0 and λ2λ3 = 9

2H2, we get

e2(λ1λ3) + e2(λ1λ2) = e2(3H2 −
9

2
H2) = 0,

which gives λ1e2(λ2 + λ3) + (λ2 + λ3)e2λ1 = 0, and then we have

λ1e2(3H−λ1)+(λ2+λ3)e2λ1 = λ1e2(−λ1)+(λ2+λ3)e2λ1 = (−λ1+λ2+λ3)e2λ1 = 0.

Therefore, assuming e2(λ1) ̸= 0, we get λ1 = λ2+λ3 which gives contradiction

e2(λ1) = e2(λ2 + λ3) = e2(3H − λ1) = −e2(λ1).

Consequently, e2(λ1) = 0.
Similarly, one can show e3(λ1) = 0. So, Claim 2 is affirmed.
Claim 3: e2(λ3) = e3(λ2) = 0.

Using the notations

(13) ∇eiej =

3∑
k=1

ωk
ijek, (i, j = 1, 2, 3),

and the compatibility condition ∇ek < ei, ej >= 0, we have

(14) ωi
ki = 0, ωj

ki + ωi
kj = 0, (i, j, k = 1, 2, 3)

and applying the Codazzi equation (see [17], page 115, Corollary 34(2))

(15) (∇V S)W = (∇WS)V, (∀V,W ∈ χ(M))

on the basis {e1, e2, e3}, we get for distinct i, j, k = 1, 2, 3

(16) (a) ei(λj) = (λi − λj)ω
j
ji, (b) (λi − λj)ω

j
ki = (λk − λj)ω

j
ik.

Also, by a straightforward computation of components of the identity (∇eiS)ej−
(∇ejS)ei ≡ 0 for distinct i, j = 1, 2, 3, we get [e2, e3](H2) = 0, ω1

12 = ω1
13 =

ω2
13 = ω3

21 = ω1
32 = 0 and

ω2
21 =

e1(λ2)

λ1 − λ2
, ω3

31 =
e1(λ3)

λ1 − λ3
,

ω2
23 =

e3(λ2)

λ3 − λ2
, ω3

32 =
e2(λ3)

λ2 − λ3
.

(17)
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Therefore, the covariant derivatives ∇eiej simplify to ∇e1ek = 0 for k =
1, 2, 3, and

∇e2e1 =
e1(λ2)

λ1 − λ2
e2, ∇e3e1 =

e1(λ3)

λ1 − λ3
e3,∇e2e2 =

e1(λ2)

λ2 − λ1
e1,

∇e3e2 =
e2(λ3)

λ2 − λ3
e3,∇e2e3 =

e3(λ2)

λ3 − λ2
e2, ∇e3e3 =

e1(λ3)

λ3 − λ1
e1 +

e2(λ3)

λ3 − λ2
e2.

(18)

Now, the Gauss equation for < R(e2, e3)e1, e2 > and < R(e2, e3)e1, e3 >
show that

(19) e3

(
e1(λ2)

λ1 − λ2

)
=

e3(λ2)

λ3 − λ2

(
e1(λ3)

λ1 − λ3
− e1(λ2)

λ1 − λ2

)
,

(20) e2

(
e1(λ3)

λ1 − λ3

)
=

e2(λ3)

λ2 − λ3

(
e1(λ3)

λ1 − λ3
− e1(λ2)

λ1 − λ2

)
.

We also have the Gauss equation for < R(e1, e2)e1, e2 > and < R(e3, e1)e1, e3 >,
which give the following relations
(21)

e1

(
e1(λ2)

λ1 − λ2

)
+

(
e1(λ2)

λ1 − λ2

)2

= λ1λ2, e1

(
e1(λ3)

λ1 − λ3

)
+

(
e1(λ3)

λ3 − λ1

)2

= λ1λ3.

Finally, we obtain from the Gauss equation for < R(e3, e1)e2, e3 > that

(22) e1

(
e2(λ3)

λ2 − λ3

)
=

e1(λ3)e2(λ3)

(λ3 − λ1)(λ2 − λ3)
.

On the other hand, by considering the condition (1), from Claim 1 we get
(23)

−µ1,1e1e1(H2)+

(
µ2,1

e1(λ2)

λ2 − λ1
+ µ3,1

e1(λ3)

λ3 − λ1

)
e1(H2)− 9H2

2 (H1 −
3

2
λ1) = 0.

By differentiating (23) along e2 and e3, and using (19) and (20), respectively,
we obtain

(24) e2

(
e1(λ2)

λ2 − λ1

)
=

e2(λ3)

λ2 − λ3

(
e1(λ3)

λ1 − λ3
− e1(λ2)

λ1 − λ2

)
,

(25) e3

(
e1(λ3)

λ3 − λ1

)
=

e3(λ2)

λ3 − λ2

(
e1(λ2)

λ1 − λ2
− e1(λ3)

λ1 − λ3

)
.

Using (18), we find that

(26) [e1, e2] =
e1(λ2)

λ2 − λ1
e2.
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Applying both sides of the equality (26) on e1(λ2)
λ2−λ1

, using (24), (21), and (22),
we deduce that

(27) e2(λ3)

λ2 − λ3

(
e1(λ3)

λ3 − λ1
+

e1(λ2)

λ1 − λ2

)
= 0.

(27) shows that e2(λ3) = 0 or

(28) e1(λ3)

λ3 − λ1
=

e1(λ2)

λ2 − λ1
.

From equation (28), by differentiating on its both sides along e1 and applying
(21), we get λ2 = λ3, which is a contradiction, so we have to confirm the result
e2(λ3) = 0.

Analogously, using (18), we find that [e1, e3] = e1(λ3)
λ3−λ1

e3. By a similar
manner, we deduce that

(29) e3(λ2)

λ3 − λ2

(
e1(λ2)

λ2 − λ1
+

e1(λ3)

λ1 − λ3

)
= 0,

and one can show that e3(λ2) necessarily has to be vanished.
Hence, we have obtained e2(λ3) = e3(λ2) = 0 which, by applying the Gauss

equation for < R(e2, e3)e1, e3 >, gives the following equality

(30) e1(λ3)e1(λ2)

(λ3 − λ1)(λ2 − λ1)
= λ2λ3.

Finally, using (21), differentiating (30) along e1 gives

(31) λ2λ3

(
e1(λ3)

λ3 − λ1
+

e1(λ2)

λ1 − λ2

)
= 0,

which implies λ2λ3 = 0 (since we have seen above that
(

e1(λ3)
λ3−λ1

+ e1(λ2)
λ1−λ2

)
̸= 0).

Therefore, we obtain H2 = 0 on U, which is a contradiction. Hence H2 is
constant on M3. □

Remark 4.4. From condition 1, it is clear that each Riemannian hypersurface
x : M3 → M4

1(c), whose H1 and H2 are constant, is C-biconservative. But, if
H1 is not assumed constant, it is difficult to prove that M3 is C-biconservative.
So, we have the following open problem.

Open problem 4.5. Dose every Riemannian hypersurface with constant scalar
curvature in M4

1(c) have to be C-biconservative?

5. Conclusion
Biconservative hypersurfaces having conservative stress-energy tensor with

respect to the bi-energy contain all minimal and constant mean curvature hy-
persurfaces. It is proven that any biconservative hypersurface with constant
scalar curvature is ether an open part of a certain rotational hypersurface or
a constant mean curvature hypersurface. The purpose of this paper was to
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study an extension of biconservativity condition (namely, C-biconservativity)
of Riemannian hypersurfaces with constant mean curvature in the Lorentz 4-
space form M4

1(c). We tried to show that such a hypersurface has constant
scalar curvature. This aim leads us to an open problem claiming that every C-
biconservative hypersurface with constant scalar curvature has constant mean
curvature.
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