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Abstract. One of the alternative versions of Shannon entropy is a mea-
sure of information which is called exponential entropy. Shannon and
exponential entropies depend only on the event probabilities. These mea-
sures have also been extended to incorporate a set of weights associated
with the events. Such weights may reflect some additional characteristics
of the events such as their relative importance. In this paper, Axiomatic
derivations and properties of weighted exponential entropy parallel to
those achieved for weighted entropy are investigated. The relation be-
tween weighted exponential entropy of X and a strictly monotone and
nonnegative function of X has obtained. The generalized weighted en-
tropy and the generalized weighted exponential entropy for continuous
random variable have been presented.
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1. Introduction
The first time ,  Shannon [22] considered the communication as a mathe-

matical problem and revealed the method of determination the capacity of a
channel, after the second World War. It is the key concept of information
which provides a measure of uncertainty associated with the probability distri-
butions. Its generalization has been widely used in various directions with their
applications in many fields. For example, Rényi [24], Havrda Charvát [14] and
Tsallis [24] are extensions of the Shannon entropy.  Rényi generalized entropy
to one parameter family of entropies and defined Rényi entropy .  Tsallis [24]
proposed the generalization of the entropy by postulating a non-extensive en-
tropy ,  (i.e.,Tsallis entropy) ,  which covers Shannon entropy in particular cases .
 This measure is non-logarithmic and is obtained through the joint generaliza-
tion of the averaging procedures and the concept of information gain . Tsallis
entropy is not extensive but generalizes the concept of the information gain
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and is obtained by the linear averaging procedure [24]. More content about
the properties of Shannon entropy have been collected in Reza [20]. Camp-
bell [4] and Pal and Pal [17, 18] introduced variant measure which is called
exponential entropy. They considered a non-negative and decreasing function
of p as a measure of uncertainty and introduced exponential entropy. Al-
Nasser et al. [1] proposed a new class of weighted exponential distribution
called Entropy-Based Exponential weighted distribution (EBEWD). Bhat and
Baig [2] developed the concept of weighted generalized entropy and its dynamic
residual (version). They have derived the general expressions of these two un-
certainty measures corresponding to some well-known lifetime distributions.
Mahdy [15] provided the new results of weighted entropies with some charac-
terizations. Furthermore, he has presented some results for weighted entropy
residual and weighted past residual of order statistics with some application of
some reliability systems such as a series structure and a parallel structure. The
exponential entropy is claimed to have certain advantages over the classical
Shannon entropy. Shannon’s function is based on the concept that informa-
tion gain from an event is inversely related to its probability of occurrence. The
logarithmic behavior of entropy is considered to incorporate the additive prop-
erty of information  unlike the logarithmic behavior of Shannon’s entropy, the
gain function considered here is of exponential nature so that the gain in infor-
mation from an event i with probability of occurrence pi is defined at all points
with bounds at both ends. All other properties except the additive property
for independent event (which does not carry any extra weight for an image, as
pixel intensities are normally dependent on each other) of Shannon’s entropy
are also proved. Weighted entropy, give as a quantitative weighted of possible
events. The concept of weighted entropy takes into account values of different
outcomes, i.e., makes entropy context-dependent, through the weight function
many papers on weighted entropy are published, such as Belis and Guiasu [3],
Dial and Taneja [9], De Cuhna et al. [8], Guiasu [10] and Kapur [13] which are
discussing the axiomatic properties and characterizations related to weighted
entropy. The definition and initial results on weighted entropy were introduced
in [3,10]. The purpose was to introduce disparity between outcomes of the same
probability. In the case of a standard entropy such outcomes contribute the
same amount of information uncertainty, which is appropriate in context free
situations. However, imagine two equally rare medical conditions, occurring
with probability p < 1, one of which carries a major health risk while the
other is just a peculiarity.  Nawrocki and Harding [16] explained the weighted
entropy which measures the investment risk as a performance of weighted en-
tropy. Also an axiomatic version on generalized weighted entropy published
by Das [6]. Kvalseth [14] obtained aspects on weighted exponential entropy.
He introduced two different families of weighted exponential entropies as im-
mediate extensions of the one-parameter generalized entropies and proposed
a weighted form of the exponential entropies. Some properties and examples
of such weighted exponential entropies are discussed.  Since the additivity
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hypothesis in thermodynamics, Shannon entropy neglects the correlations be-
tween the subsystems, whereas non-extensive processes are common at many
physical levels in statistical mechanics and atomic physics. There are two ways
to overcome these intrinsic drawbacks. The one way is to extend the additivity
to non-additivity, such as Rényi entropy and Tsallis entropy. The other way
is taking some prior statistical information into account (Yu and Huang [25]).
While the entropy depends only on the event probabilities p1, …, pn. This
measure has also been extended to incorporate a set of weights W = (wl, , wn)
associated with the n events (outcomes). Such weights may reflect some ad-
ditional characteristics of the events. The occurrence of an event removes a
double uncertainty: the quantitative one, related to the probability with which
it occurs, and the qualitative one, related to its utility for the attainment of
the goal or to its significance with respect to a given qualitative characteristic.
For instance, an event of small probability can have a great weight, likewise,
an event of great probability can have a very small weight. Naturally, the as-
cription of a weight to every elementary event is not a thing just so easy to be
done. These weights may be either of objective or subjective character. Thus,
the weight of one event may express some qualitative objective characteristic,
but it also may express the subjective utility of the respective event with respect
to the experimenter’s goal. The weight ascribed to an elementary event may
be also related to the subjective probability with which respective events oc-
cur, and this does not always coincide with the objective probability. We shall
suppose that these qualitative weights are non-negative, finite, real numbers.
The aim of this paper is to show axiomatic notes how the weighted exponential
entropy as a generalized version of the Shannon entropy has various properties
parallel and some of them similar to weighted entropy. Like all other informa-
tion measures, weighted exponential entropy is used in image processing. we
shall give a formula for the exponential entropy as a measure of uncertainty
or information supplied by a probabilistic experiment depending both on the
probabilities of events and on qualitative (objective or subjective) weights of the
possible events. This formula will be called the weighted exponential entropy.
In Section 2, some preliminaries about entropy and some generalized entropies
are presented. We describe weighted exponential entropy criteria in Section 3.
The extension of weighted entropy and weighted exponential entropy will be
introduced and by considering different weight functions, we will investigate
its features. Finally, some examples of continuous statistical distribution will
be presented.

2. PRELIMINARIES
Let X  be a discrete random  variable with support S and probability mass

functionP (x) = P (X = x)  ,  x ∈ S  .   The following definitions are noticeable:
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Definition 2.1. For a discrete random variable  X, The Shannon entropy is
 defined
(1) H(X) = −

∑
x∈S

p(x)logp(x).

The log is base 2 and the entropy is expressed in bits. For example, the   entropy
of a fair coin toss is 1 bit. We will use the convention that 0log0 = 0, which is
easily justified by continuity since  xlogx → 0asx → 0  .   Adding terms of zero
probability does not change the entropy.

 Similarly, for   the  continuous case the following definition is of our interest:

Definition 2.2. Let  X be a  continuous  random  variable  with  probability
 density    function  f(x)  and  support S,  then  entropy of X with respect to  density
 f  is  

(2) H(X) = −
∫
x∈S

f(x)logf(x)dx

which  is  called  differential  entropy.  Shannon entropy in continuous case is not
the limit of discrete case. One  of  the  main  drawback s   of this measure is that
it may not always be non-negative and if it is   negative then H(X)  is  no  longer
 an  uncertainty  measure [4] .

     Exponential  entropy  was  defined by Pal  and  Pal [17]  with  regard  to    features
 of Shannon  entropy  as below: 

Definition 2.3. Let  X be a  discrete random variable  with  probability mass
   function  p(x) and support S then the  exponential  entropy of  X   is  defined  by 

(3) He(X) =
∑
x∈S

p(x)e(1−p(x).

The above definition can be extended to the  continuous case also.

For a  continuous random variable  X,  with  probability  density    function  f  
 with  support S , the exponential entropy is

(4) he(X) =

∫
s

f(x)e1−f(x)dx.

As we see in  continuous case, exponential entropy is always non-negative
  against Shannon entropy and this is an advantage. Tsallis [24]  defined  the
 entropy  as   

(5) Tq(X) =
1

q − 1

∫
s

f(x)qdx; q > 0, q ̸= 1

and Rényi [21] expressed extended version of the Shannon entropy via the
following formula 

(6) Rq(X) =
1

q − 1
ln

∫
s

f(x)qdx; q > 0, q ̸= 1,
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which is connected to Tsallis as  

(7) Tq(X) =
e(1−q)Rq(X)−1.

1− q
.

The  exponential  entropy  is  connected  to  Tsallis  entropy  as  seen  below:

(8) he(X) = e[1−
n∑

j=1

jhTj+1(X)− 1)].

Also it can be expressed by Rényi entropy based on the following formula

(9) he(X) = e[1 +

n∑
j=1

e−jhRj+1
(X)].

3. WEIGHTED EXPONENTIAL ENTROPY CRITERIA
The concept of weighted entropy was proposed by Belis and Guiasu [3].

They took the weight into consideration and expressed the weighted entropy
for each of the events as follows:

(10) H(w1, ..., wn; p1, ..., pn) = −
n∑

i=1

wipilogpi,

In which wi(i = 1..n) are the weights related to the events. These weights
are non-negative and real valued and they reflect some of the extra features of
the events such as relative importance or their desirability. Also, these weights
may be independent from the objective probabilities which take place. For
instance, an event with a low probability may have a large weight or vice versa
Belis and Guiasu [10]. It is clear that weighted entropy is an extended form of
Shannon’s entropy, because if , then weighted entropy converts into Shannon’s
entropy. After the introducing of the weighted entropy, it has been attracted
the attention of many researchers including Guiasu, Kannapaan and Sahoo [12],
Parkash and Taneja [19] and Singh and Bhardwaj [23]. In correspondence with
the definition of weighted entropy, weighted exponential entropy can be defined
for discrete random variable through considering the weight of each event as
belowThe following is an example of a theorem, proof, corollary, proposition
and remark.

Definition 3.1. Suppose that the events in which have the probability of and
the positive weight values of respectively; hence, the function of the weighted
exponential entropy would be

(11) He(w1, ..., wn; p1, ..., pn) =

n∑
i=1

wipie
1−pi ,

some properties of weighted entropy described in Guiasu [10] (Properties1−
6 for weighted entropy). Now, we investigate some properties of weighted
exponential entropy. Properties 1− 6, are easily proved. Proof of the Property
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7 is presented here.
• PROPERTY1: He(w1, ..., wn; p1, ..., pn) ≥ 0.
• PROPERTY2: If w1, · · · , wn = w then

He(w1, ..., wn; p1, ..., pn) = w

n∑
i=1

wipie
1−pi = wHe(X)

whereHe(X) is the exponential entropy.
• PROPERTY3: let pi0 = 1, Pi = 0(i = 1, ..., n; i ̸= i0), then

He(w1, ..., wn; p1, ..., pn) = wi0

where the weights are w1, ..., wn.
• PROPERTY4: If pi = 0,Wi ̸= 0 for every i ∈ I , pj ̸= 0,Wj = 0 for every
j ∈ J where

I ∪ J = {1, · · · , n}, I ∩ J = ∅
then He(w1, ..., wn; p1, ..., pn) = 0. This property shows that the direct fact of an
experiment whose possible events are unprofitable or non-significant, and whose
useful or significant events are impossible, supplies a total information equal to
zero even if the corresponding exponential entropy He(X)is different from zero,
provided the set J has at least two elements. In particular, when all events
have zero weights, we get the total information He(w1, ..., wn; p1, ..., pn) = 0.
even if the exponential entropyHe(X) is not null, i.e. if there exist 0 < pi < 1.
• PROPERTY5:

He(w1, ..., wn, wn+1; p1, ..., pn, 0) = He(w1, ..., wn; p1, ..., pn)

where the weights are w1, ..., wn, wn+1 and the complete system of probabilities
is. p1, ..., pn .
• PROPERTY6: For every non-negative, real number λ we have

He(λw1, ..., λwn; p1, ..., pn) = λHe(w1, ..., wn; p1, ..., pn)

.Yet, we did not impose any limitation on the weights ascribed to the primary
events of the physical experiment (except that they are non-negative real num-
bers). Let us suppose that weight of the union of two incompatible events is
the mean value of the weights of the respective events, i.e.,

(12) w(E ∪ F ) =
p(E)w(E) + p(F )w(F )

p(E) + p(F )

For any incompatible events E,F where W (E) is the weight of the event E
and p(E) is the probability of the same eventE. In particular, if E and F are
complementary events, thenw(E ∪ F ) = p(E)w(E) + (1− p(E))w(F )
• PROPERTY7: If the relation12 for the weights holds, then

He(w1, ..., wn−1, w
′
, w” ; p1, ..., pn−1, p

′
, p”) = He(w1, ..., wn; p1, ..., pn)

+ pn[w
′ p

′

pn
(e1−p

′

− e1−pn) + w” p
”

pn
(e1−p”

− e1−pn)]
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where pn = p
′
+ p”, wn = p

′
w

′
+p”w”

p′+p” .

Proof :Taking into account the definition of the weighted exponential entropy
and writing pn = p

′
+ p”, wn = p

′
w

′
+p”w”

p′+p”

He(w1, ..., wn−1, w
′
, w” ; p1, ..., pn−1, p

′
, p”) =

=

n−1∑
i=1

wipie
1−pi + w

′
p

′
e1−p

′

+ w”p”e1−p”

=

n−1∑
i=1

wipie
1−pi + wnpne

1−pn − wnpne
1−pn + w

′
p

′
e1−p

′

+ w”p”e1−p”

=

n∑
i=1

wipie
1−pi − (p

′
w

′
+ p”w”)e1−pn + w

′
p

′
e1−p

′

+ w”p”e1−p”

= He(w1, ..., wn; p1, ..., pn)− p
′
w

′
e1−pn − p”w”e1−pn + p

′
w

′
e1−p

′

+ p”w”e1−p”

= He(w1, ..., wn; p1, ..., pn) + p
′
w

′
(e1−p

′

− e1−pn) + p”w”(e1−p”

− e1−pn).

• PROPERTY8: He(w1, ..., wn; p1, ..., pn) is a symmetric function with respect
to all pairs of variables (wk, pk), k = 1, ..., n (In other words, its value should
not change by replacing its protrusions).
• PROPERTY9:

He(w1, ..., wn;
1

n
, ...,

1

n
) = A(n)

w1 + ...+ wn

n
,

where A(n) being a positive number for every number n > 1 . Also by
settingw1 = w2 = ...wn = 1

n and w1 = w2 = ...wn = 1, we obtain He(
1
n , ...,

1
n ) =

A(n)

n2 and He(1, ..., 1,
1
n , ...,

1
n ) = A(n) respectively.

• PROPERTY10: He(w1, ..., wn; p1, ..., pn) is a concave function with respect
to p.
Proof :
let h = wpe1−p, p ∈ [0, 1] then

h
′
(p) = w(1− p)e1−p, h”(p) = w(p− 2)e1−p < 0.

We know that a sum of concave functions is also a concave function. Hence is
a concave function.

Theorem 3.2. If any zero probability is changed to a non zero probability
and wi > wj such that i > j , then the exponential entropy increases, i.e.,
He(w1, ..., wn, δ, p2, p3 − δ, ..., pn)−He(w1, ..., wn, 0, p2, ..., pn) > 0.
Proof:
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Definition 3.1 implies

He(w1, ..., wn, δ, p2, p3 − δ, ..., pn) − He(w1, ..., wn, 0, p2, ..., pn)

= w1δe
1−δ + w2p2e

1−p2 + w3(p3 − δ)e1−p3+δ

+

n∑
i=4

wipie
1−pi −

n∑
i=2

wipie
1−pi

= w1δe
1−δ + w3(p3 − δ)e1−p3+δ − w3p3e

1−p3

= w1δe
1−δ + w3(p3 − δ)e1−p3+δ

− w3(p3 − δ)e1−p3 − w3δ(e
1−p3)

= δ(w1e
1−δ − w3e

1−p3) + w3(p3 − δ)eδ−1.

Since p3 − δ > 0 we have

δ < p3 → e1−δ > e1−p3 → δw1e
1−δ > δw2e

1−p3 → δ(w1e
1−δ − w3e

1−p3) > 0

Again δ > 0 → (eδ − 1) > 0 → w3(p3 − δ)eδ−1 therefore

He(w1, ..., wn, δ, p2, p3 − δ, ..., pn)−He(w1, ..., wn, 0, p2, ..., pn) > 0.

Remark 3.3. Note that in Theorem 3.2 if any zero probability is changed to a
non zero probability by reducing last probability and wi > wj so that i > j
then weighted exponential entropy increases. Di Crescenzo and Longobardi [9]
have been defined weighted entropy as follow:

Definition 3.4. Let X be a non-negative random variable with probability
density function f(x), then the weighted entropy is defined (Di Crescenzo and
Longobardi [9]) as: Hw(X) = −

∫∞
0

xfx(x)logfX(x)dx Similarly, the weighted
exponential entropy for continuous random variable is defined by

(13) Hw
e (X) =

∫ ∞

0

xf(x)e1−f(x)dx.

The following example shows that the exponential entropy of two random
variables are possible to be identical although such a result is not possible for
weighted expotential entropy. The following example answers the question of
whethere in the case of equall exponential entropy for two random variables,
their wheighted exponential entropy of them, takes the same value.

Example 3.5. Let X and Y be random variables with pdff(x) = 2x, 0 < x < 1
and g(y) = 2(1 − y), 0 < y < 1 respectively. Then He(X) = He(Y ) = ( e2 −
e−1

2 )− e−1 But Hw
e (X) = 0.44,Hw

e (Y ) = 0.37 threfore Hw
e (X) > Hw

e (Y ).

Theorem 3.6. Let Y = ϕ(X) , whereϕ is a strictly monotone and non-negative
function, and |ϕ′

(X)| ≤ 1 , in order that both X and Y are absolutely continuous
random variables. Then Hw

e (ϕ(X)) ≤
∫ ϕ−1(∞)

ϕ−1(0)
ϕ(x)f(x)e1−f(x)dx and equality

is hold when |ϕ′
(X)| = 1.
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Proof :
Via equation (13), we have

Hw
e (Y ) =

∫ ∞

0

yfX(ϕ−1(y))
1

|ϕ′(ϕ−1(y))|
e
1−fX(ϕ−1(y)) 1

|ϕ′
(ϕ−1(y))| dy.

Let ϕ be strictly increasing. By setting Y = ϕ(x) , we obtain

Hw
e (Y ) =

∫ ϕ−1(∞)

ϕ−1(0)

ϕ(x)f(x)e
1− 1

ϕ
′
(x)

fx(x)
dx ≤

∫ ϕ−1(∞)

ϕ−1(0)

ϕ(x)f(x)e1−f(x)dx

If ϕ is strictly decreasing, we similarly obtain

Hw
e (Y ) =

∫ ϕ−1(∞)

ϕ−1(0)

ϕ(x)f(x)e
1− 1

−ϕ
′
(x)

fx(x)
dx ≤

∫ ϕ−1(∞)

ϕ−1(0)

ϕ(x)f(x)e1−f(x)dx.

Results:
Let Y = aX + b such that |a| ≤ 1 , b > 0 then Hw

e (Y ) ≤ Hw
e (X) + bHe(X)

Also, in Theorem 3.6 the inequality is reversed if |ϕ′
(X)| ≥ 1.

As we know, the transformation for discrete random variable has not been
changed. For weighted exponential entropy we have the same achievement
with the different weight. That is obtained based on the transformation.

3.1. Generalized of Weighted Exponential Entropy. In this section, we
will consider the weight function in a general manner. Moreover, the extension
of weighted entropy and weighted exponential entropy will be introduced and by
considering different weight functions, we will investigate its features. Finally,
some examples of continuous statistical distribution will be presented.

Definition 3.7. LetXbe a non-negative random variable with probability den-
sity function fX(x) and w(x) be a non-negative and differentiable weight func-
tion, then the generalized weighted entropy is defined by

GHw(x) = −
∫
s

w(x)f(x)logf(x)dx

Similarly the generalized weighted exponential entropy for continuous random
variable defined by GHw

e (x) =
∫
s
w(x)f(x)e1−f(x)dx.

Example 3.8. Let X and Y be random variables with f(x) = 2x, 0 < x < 1 and
g(y) = 2(1−y), 0 < y < 1 respectively.Then Presented in Example 1, it is shown
that: He(X) = He(Y )While by putting w(x) = x2 and simple calculations we
obtainGHw

e (X) = 0.29, GHw
e (Y ) = 0.22. Therefore GHw

e (X) > GHw
e (Y ).

In countinue to investigate generalized of weighted entropy for exponential
distribution, we show in the next example that in the exponential distribu-
tion with parameter λ , generalized weighted exponential entropy with weight
function w(x) = e−λx , is decreasing function of the λ.
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Example 3.9. Let X be a random variable with exponential distribution and
parameter λ > 0, w(x) = e−λx therefore:

GHw
e (x) =

∫ ∞

0

w(x)f(x)e1−f(x)dx

=
1

λ

∫ ∞

0

e−λxλ2e−λxe1−λe−λx

dx

=
1

λ2
(e− e1−λ)− e1−λ

λ

Since e−λ[ (λ+1)2

+ 12] < 1 so we have:

dGHw
e (x)

dλ
=

2λ2e1−λ + 2λe1−λ + λ3e1−λ − 2λe

λ4

=
2λe(e−λ[ (λ+1)2+1

2 ]− 1)

λ4
< 0.

Hence, GHw
e (x) is a decreasing function of λ .

Remark 3.10. If f is a density (probability) function the exponential entropy
of the wighted distributiong(x) = w(x)

E(w(x))f(x) is:

Hw
e (x) =

∑
D

w(x)

E(w(x))
f(x)e1−

w(x)
E(w(x))

f(x)

=

∞∑
j=0

e(−1)j

j!

∑
D

(
w(x)

E(w(x))
)j+1(f(x))j+1.

On noting that Heh(X) =
∑

D h(x)f(x)e1−f(x) =
∑∞

j=0
e(−1)j

j!

∑
D h(x)(f(x))j+1

so Heh(X) = Hw
e (x(w)) whereh(x) = w(X)

E(w(X))

j+1
, with variant weights of w(.)

we can find h(.) explicitly.

4. Conclusion
The properties and axiomaticly aspects of weighted exponential entropy are

given in this short note. We show that the exponential entropy of two random
variables are possible to be identical although such a result is not possible for
weighted expotential entropy. If ϕ is a strictly monotone and non-negative
function of x, a relation between weighted exponential entropy of x and ϕ have
been derived. The generalized weighted entropy and the generalized weighted
exponential entropy for continuous random variable have been presented. we
showed that in the exponential distribution with parameterλ > 0 generalized
weighted exponential entropy with weight function w(x) = e−λx is a decreasing
function of the λ. In continuation of this work, in the future, we can work on the
issue of inequalities related to weighted exponential entropy. Tsallis entropy
is a generalized form of Shannon entropy, considering this problem, we will
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generalize weighted entropy. We will also use weighted exponential entropy in
economics and image processing. The discussion of maximum entropy itself is
a complete and comprehensive topic that can be investigated for this, but this
topic will be discussed in a separate work.
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