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Abstract. The main purpose of the present paper is about characteriz-

ing properties of the perfect fluid space-time admits the gradient Ricci-

Bourguignon soliton. This gives some results about stability of the energy
momentum tensor and also under some conditions pursues that a perfect

fluid space-time is Ricci symmetric. As an special case, when a perfect

fluid space-time equipped with the Ricci-Bourguignon soliton which has
Ricci biconformal vector field, we show that the metric of this space is

Einstein.
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1. Introduction

The importance of studying Lorentzian manifolds in physics is that we
may model a gravitational field by some Lorentzian metric defined on a 4-
dimensional manifold M . Actually, in the General Theory of Relativity, the
gravitational field is the space-time curvature and its source is the energy-
momentum tensor. This space-time is modeled as a connected 4-dimensional
semi-Riemannian manifold endowed with a Lorentzian metric g of signature
(−,+,+,+). One of the most significant Lorentzian manifolds is the perfect
fluid space-time, a Lorentzian manifold of dimension n > 3 with Ricci tensor
satisfying in the following equation

(1) Ric = h1g + h2η ⊗ η,
where h1 and h2 are smooth functions on M and η is a 1-form that is metrically
equivalent to the unit time-like vector field ρ and g(X, ρ) = η(X), for all X ∈
χ(M) and g(ρ, ρ) = −1. Perfect fluids have been studied for many purposes of
view, see ( [2, 11,16,21,22]).
Let Mn be a Lorentzian manifold, it is called a generalized Robertson-Walker
space-time (GRW for short introduced in [1], [2]), if its metric in the local
coordinate satisfies:

ds2 = −dt2 + q(t)2g∗ij(x2, ..., xn)dxidxj , i, j = 2, ..., n,
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that is a warped product I×qM∗, and q is a positive smooth function on I, M∗

is an (n−1)-dimensional Riemannian manifold and if M∗ be 3-dimensional with
constant curvature, then we call it as a Robertson-Walker space-time (RW).
Every RW space-time is a perfect fluid space-time [26]. For more details, we
refer to ( [5,14,24,25,31,33]). Hence it is interesting to know under which con-
dition a perfect fluid space-time is also a RW space-time or more importantly
GRW. Chaubey [13], obtained the specific base condition that every perfect
fluid space-time can be a GRW. He considered an η-Ricci soliton on a perfect
fluid space-time, and under some conditions showed that every perfect fluid
space-time admitting a gradient η-Ricci soliton can be a GRW space-time. Re-
cently, Roy et al. [28] found some geometrical properties of perfect fluid space-
time with torse forming vector field ξ endowed with conformal Ricci-Yamabe
soliton. Also, De et al. [15] obtained some conditions when a perfect fluid
space-time is Ricci recurrent. For more study on the above mentioned soliton,
we cite ( [4,7,18,20,22,23]). Mantica et al. [24] work on perfect fluid space-time
endowed with harmonic generalized curvature tensor, and showed that under
certain conditions it is a GRW space-time. So it is remarkable how different
kinds of solitons on a perfect fluid space-time, characterize these manifolds.

In this paper, we consider a perfect fluid space-time with a gradient Ricci-
Bourguignon soliton (GRBS for short). Consider a family of metrics g(t) on a
Riemannian manifold Mn evolve by the Ricci-Bourguignon flow (RB), which
means that g(t) satisfies

(2)
∂g

∂t
= −2(Ric− µRg),

here Ric is the Ricci tensor, R is the scalar curvature and µ ∈ R is an arbitrary
constant [6]. The short time existence of this flow on any closed n-dimensional

manifold starting with an arbitrary initial metric g for µ <
1

2(n− 1)
have been

studied in [8].

Definition 1.1 ( [27]). Let Mn be a semi-Riemannian manifold with a smooth
vector field X such that:

(3) Ric+
1

2
LXg + λg + µRg = 0,

here LXg is the Lie derivative of the metric g along X; λ, µ ∈ R are constants
and R is the scalar curvature. Mn is called a Ricci-Bourguignon soliton.

Moreover, if for some smooth function f : Mn −→ R, X = ∇f , Mn is said
to be gradient Ricci-Bourguignon soliton (GRBS). For a GRBS equation (3)
becomes

(4) Ric+Hessf + λg + µRg = 0,
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here Hess = ∇2 denotes the Hessian. If µ = 0, then equation (2) reduces
to Ricci flow which is an intrinsic geometric flow on a pseudo-Riemannian
manifold (see [23]). Depending on λ the RB soliton is expanding, steady, or
shrinking whenever λ < 0, λ = 0, and λ > 0, respectively. Heretofore, some
interesting results have been obtained from taking X as a conformal vector
field which leads the manifold to be isometric to an Euclidean sphere [17].
Also, conditions that are needed for X to be Killing (i.e. LXg = 0) has been
discussed in that paper. In [9, 10] various classification and rigidity result for
a GRBS have been studied. Recently, some compactness conditions for the
Finsler manifold admitting RB soliton have been investigated in [3].

Some characterization results for a perfect fluid space-time that admits Ricci-
Bourguignon soliton were obtained in [30]. Motivated by all of the above men-
tioned ideas, we study the impact of considering the GRBS on a perfect fluid
space-time, and present our results as follows:
First, we state some preliminaries on the perfect fluid space-time, which may
be needed in our main Theorems, and then in Section 3, we peruse the geomet-
rical properties of GRBS on the perfect fluid space-time. In the last Section,
we suppose a Ricci bi-conformal vector field on perfect fluid space-time, which
has RB soliton and study the properties of this space-time.

2. Basic results about perfect fluid space-time

This section includes important preliminaries about perfect fluid space-time.
This manifold is described by the energy-momentum tensor, which could change
the nature of space-time [32]. A perfect fluid space-time is characterized by an
energy-momentum tensor T of the following form:

(5) T (Y, Z) = pg(Y,Z) + (σ + p)η(Y )η(Z),

where p and σ represent the isotropic pressure and energy-density of the perfect
fluid space-time, respectively. Here p+σ 6= 0 and σ > 0. Considering Einstein’s
field equation without cosmological constant, we conclude

(6) 2Ric−Rg = 2κT,

here T is the energy momentum tensor and κ is a constant. If Mn be a perfect
fluid space-time (1), using (5) and (6), we get

(7) h1 =
κ(p− σ)

2− n
, h2 = κ(p+ σ).

From (1), we obtain

(8) R = nh1 − h2,

and

(9) QY = h1Y + h2η(Y )ρ, ∀Y ∈ χ(M),
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where Ric(Y,Z) = g(QY,Z), ∀Y,Z ∈ χ(M). If R is a constant, then nY (h1) =
Y (h2) and the vice versa. We express the following lemma of [2] which will be
need in our proofs.

Lemma 2.1. For all perfect fluid space-times, one has

(i) (∇Y η)(ρ) = 0,

(ii) η(∇Y ρ) = g(∇Y ρ, ρ) = 0, ∀Y ∈ χ(M).

3. GRBS on perfect fluid space-time

In this section we suppose that the perfect fluid space-time Mn has constant
scalar curvature. Our first and most important result is about the condition
that makes the manifold to be Ricci flat.

Proposition 3.1. For a perfect fluid space-time admits a GRBS, we have

(10) R(Y, Z)Df = (∇YQ)(Z)− (∇ZQ)(Y ) + µ[(∇ZR)Y − (∇YR)Z],

for all Y, Z ∈ χ(M).

Proof. The method of proof is just like Proposition 3.1 in [13], so we briefly
state some main steps. From (4), we can write

(11) ∇YDf +QY + λY + µRY = 0.

Taking covariant derivative of above along Z, we lead
(12)
∇Z∇YDf + (∇ZQ)(Y ) +Q(∇ZY ) + λ(∇ZY ) + µ(∇ZR)Y + µR(∇ZY ) = 0.

Relocating Y by Z in above equation, usingR(Y,Z)Df = ∇Y∇ZDf−∇Z∇YDf−
∇[Y,Z]Df and (11), we obtain (10). �

Since we consider R as a constant, from (10), we have

R(Y, Z)Df = (∇YQ)(Z)− (∇ZQ)(Y ).

Now, contracting the above equation along the vector field Y , we obtain

(13) Ric(Z,Df) = 0.

On the other hand by (9), we get

(14) (∇ZQ)(Y ) = h2[(∇Zη)(Y )ρ+ η(Y )(∇Zρ)] + Z(h1)Y + Z(h2)η(Y )ρ.

Using (14) in (10), we find

R(Y,Z)Df = h2[(∇Y η)(Z)ρ− (∇Zη)(Y )ρ+ η(Z)(∇Y ρ)− η(Y )(∇Zρ)]

+Y (h1)Z − Z(h1)Y + Y (h2)η(Z)ρ− Z(h2)η(Y )ρ.

Contracting this over Y gives

Ric(Z,Df) = h2[(∇ρη)(Z)−(∇Zη)ρ+η(Z)divρ]+ρ(h2)η(Z)+Z(h2)+(1−n)Z(h1).



Gradient Ricci Bourguignon solitons on perfect fluid ... – JMMR Vol. 13, No. 2 (2024) 5

This equation together with (13), leads to

(15) −h2[(∇ρη)(Z)−(∇Zη)ρ+η(Z)divρ] = ρ(h2)η(Z)+Z(h2)+(1−n)Z(h1).

If g(∇Y ρ, Z) + g(Y,∇Zρ) = 0, that means ρ is a Killing vector field, then due
to lemma 2.1 and equation (7), we get

(16) ∇ρρ = divρ = ρ(h2) = ρ(h1) = 0.

Now we take a Killing vector field for the velocity field of space-time. So (15)
and (16) leading us to the next equation

(17) (1− n)Z(h1) + Z(h2) = 0.

Based on these assumptions we get:

Theorem 3.2. If the velocity vector field of a perfect fluid space-time Mn

(n ≥ 4) equipped with a GRBS is Killing, and the scalar curvature is constant,
then either
(i) (n− 1)p+ (n− 3)σ = 0, or
(ii) Ric = Cη ⊗ η.
Moreover if h1 = h2 6= 0, then ∇f is pointwise collinear with ρ.

Proof. By (1), we know

(18) Ric(ρ,Df) = (h1 − h2)ρ(f).

Using (13), after considering Z = ρ, we get

(19) (h1 − h2)ρ(f) = 0.

This shows that either h1 = h2( 6= 0) or ρ(f) = 0. If h1 = h2, then (7) gives

(20) (n− 1)p+ (n− 3)σ = 0.

Moreover, our hypothesis together with (17) conclude that h1, h2 are constants.
From (1) and (13), we get

(21) h1Z(f) + h2ρ(f)η(Z) = 0.

This equation implies that

(22) Df + ρ(f)ρ = 0.

The above equation implies that ∇f is pointwise collinear with ρ.
Now, we assume that ρ(f) = 0 and h1 6= h2. We know Df 6= 0 in general.
Based on the fact that ρ(f) = 0, thus g(ρ,Df) = 0. Therefore, taking covariant
derivative along the vector field X, and using (11), we conclude

g(∇Y ρ,Df)− (h1 − h2)η(Y )− λη(Y )− µRη(Y ) = 0.

Let Y = ρ in the above equation. Using (16), we find

(23) (h1 − h2) + λ+ µR = 0.

On the other hand by (21) we get h1Z(f) = 0 which implies that h1 = 0.
Indeed C = h2 is a constant, so Ric = Cη ⊗ η and by (7), p = σ. This finishes
the proof. �
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In this theorem, when n = 4, we have σ + 3p = 0, which means that the
perfect fluid space-time represents radiation era. From second equation (ii) and
Lemma 2.1, we infer that Mn has parallel Ricci tensor. Thus Mn is a Yang
pure space (YPS). This space is so useful in the gravitational and gauge theory
(see [19]).
The next result is obtained with just using (20). Actually, for 4-dimensional
perfect fluid space-time by (20), we have zero-active mass condition 3p+σ = 0
which named by Görnits [21].

Corollary 3.3. Let M4 be a perfect fluid space-time admitting a GRBS. Also
consider that the velocity vector field of M is Killing and ρ(f) 6= 0, then 3p+σ =
0.

Corollary 3.4. For a perfect fluid space-time Mn with GRBS, if the velocity
vector field ρ is Killing, and h1 = h2 on M , then the energy momentum tensor
is Killing along ρ.

Proof. Since h1 = h2, therefore from (1), we have

Ric = h1(g + η ⊗ η),

moreover, by (8),(6), and (7), we get

(24) T = −h1
2κ

[(n− 3)g − 2η ⊗ η].

Taking Lie derivative of above equation along the vector field ρ, infers

(LρT )(Y, Z) =
h1
κ

[(Lρη)(Y )η(Z) + (Lρη)(Z)η(Y )].

Also, the Lie derivative of η(X) = g(X, ρ) along the vector field ρ gives
(Lρη)(Y ) = 0. So we see

(LρT )(Y, Z) = 0.

This completes the proof. �

Corollary 3.5. For a perfect fluid space-time Mn which admits GRBS, if
h1 = h2 and the velocity vector field ρ is Killing, then the energy momentum
tensor is cyclic parallel.

Proof. Taking covariant derivative of (24), gives

(∇XT )(Y,Z) =
h1
κ

[(∇Xη)(Y )η(Z) + η(Y )(∇Xη)(Z)],

hence

(∇XT )(Y,Z) + (∇Y T )(Z,X) + (∇ZT )(X,Y ) =
h1
κ

[
η(X)[(∇Y η)(Z) + (∇Zη)(Y )]

+η(Y )[(∇Xη)(Z) + (∇Zη)(X)]

+η(Z)[(∇Y η)(X) + (∇Xη)(Y )]

]
.
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Since ρ is Killing, we get

(∇Xη)(Y ) + (∇Y η)(X) = 0.

Which yields

(∇XT )(Y,Z) + (∇Y T )(Z,X) + (∇ZT )(X,Y ) = 0

this completes the proof. �

Corollary 3.6. With the same conditions as the above corollary for a perfect
fluid space-time, we obtain

LρRic = 0,

(∇XRic)(Y, Z) + (∇YRic)(Z,X) + (∇ZRic)(X,Y ) = 0,

in addition with considering h1 = h2, and Lρg = 0, we know the velocity vector
field is Ricci inheritance, and the Ricci tensor is cyclic parallel.

Proof. Based on the fact that R and κ are constants, by (6), we know

LρRic = κLρT, ∇XRic = κ∇XT.
Hence, by Corollary 3.4 and Corollary 3.5, we obtain the result. �

Theorem 3.7. For a perfect fluid space-time Mn with the Lorentzian metric
of structure of GRBS, if ρ is Killing, and ρ(f) 6= 0, then Mn admits a unit
time-like tors forming vector field ∇ρ = ϕ(η ⊗ ρ), and the Einstein potential
function f satisfies in the following partial differential equation

(25)
∂2f

∂t2
= κ(p+ σ),

and it is determined by f = c1t
2 + c2, where c1 =

κ(p+ σ)

2
6= 0.

Proof. Let h1 = h2, then under this consideration (22) is satisfied. Differen-
tiating equation (22) covariantly along the vector field X, and using (11), we
find

(26) X(ρ(f))ρ+ ρ(f)∇Xρ = −QX − λX − µRX.
Letting X = ρ in (26), and taking inner product of the foregoing equation with
ρ, we get

(27) h2 − h1 − λ− µR = ρ(ρ(f)).

We consider an orthonormal base on the perfect fluid space-time and contract
(26) along X, then we get

(28) ρ(ρ(f)) = −nλ− (nµ+ 1)R.

Equation (8) together with (27) and (28), yields

(29) λ+ µR+ h1 = 0.

From (8) and (7), we know

(30) R(2− n) = κ((n− 1)p− σ).
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Plugging (29) and (30) into (28), we conclude

(31) ρ(ρ(f)) = κ(p+ σ).

Supposing ρ =
∂

∂t
, (31) becomes

(32)
∂2f

∂t2
= κ(p+ σ).

Considering f = c1t
2 + c2, where c1 6= 0 and c2 are independent of t. This

f satisfies in the equation (32) with c1 =
κ(p+ σ)

2
. The inner product of

equation (26) with ρ leads to

(h2 − h1 − λ− µR)η(X) = X(ρ(f)).

Using this in (26), and making use of (8), (7), and (29), with the same method
as Theorem 4.6 in [13], we obtain

∇ρ = ϕ(η ⊗ ρ),

where ϕ =
2h2
ρ(f)

. This completes the proof. �

This theorem specifies the structure of the gradient of the time-like vector
field.
Now we assume that the perfect fluid space-time admits a GRBS with gradient
vector field ∇f , and ρ(f) = 0, then by Theorem 3.2, we infer

(33) Ric = Cη ⊗ η,

where h2 = C 6= 0. Taking the covariant derivative of (33), gives

(34) (∇XRic)(Y, Z) = C[(∇Xη)(Y )η(Z) + η(Y )(∇Xη)(Z)].

We consider a Ricci recurrent perfect fluid space-time (i.e. the Ricci tensor
Ric satisfies (∇XRic)(Y,Z) = A(X)Ric(Y,Z), for every X,Y, Z ∈ χ(M) and
1-form A). From (34), we have

C[(∇Xη)(Y )η(Z) + η(Y )(∇Xη)(Z)] = A(X)Ric(Y,Z).

Let Z = ρ, so we get

∇Xρ = RA(X)ρ,

this shows g(∇Xρ, ρ) = RA(X)g(ρ, ρ) = 0, and since R 6= 0, then A(X) = 0.
Consequently ∇ρ = 0. By these relations it can be easily concluded:

Corollary 3.8. For a Ricci recurrent perfect fluid space-time with Killing ve-
locity vector field equipped with a GRBS and ρ(f) = 0, we conclude that it is
Ricci symmetric, and its velocity vector field ρ is parallel.

As a final result we assume a perfect fluid space-time as a pseudo Ricci
symmetric space with a GRBS.
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Definition 3.9 ( [29]). A semi-Riemannian manifold with a 1-form A such
that the non-vanishing Ricci tensor satisfies the following estimate

(35) (∇XRic)(Y, Z) = 2A(X)Ric(Y,Z) +A(Y )Ric(X,Z) +A(Z)Ric(X,Y ),

for every X,Y, Z ∈ χ(M) called as a pseudo Ricci symmetric space-time.

By this definition it is clear that

Corollary 3.10. For a pseudo Ricci symmetric space-time Mn which admits
a GRBS, if ρ is Killing and ρ(f) = 0, then Mn is Ricci symmetric and ρ is
parallel.

Proof. Let Z = ρ, then (35) together with (34), becomes

(36) R(∇Xη)(Y ) = 2A(X)η(Y ) +A(Y )η(X)−A(ρ)η(X)η(Y ).

Now, replacing X with ρ in the above equation, we get

A(Y ) = 3A(ρ)η(Y ).

Since η(ρ) = −1, then A(ρ) = 0, and A(Y ) = 0. Also, Y is arbitrary, from (35),
we know ∇Ric = 0, and by (36), ∇ρ = 0, which means that the pesudo Ricci
symmetric space-time Mn is Ricci symmetric, and the velocity vector field ρ is
parallel. �

4. Perfect fluid space-time with Ricci biconformal vector field

Bi-conformal vector field on a Riemannian manifold studied in [12]. Simi-
larly we can define bi-conformal vector fields for semi-Riemannian manifolds
as follows:

Definition 4.1. A vector field X on a semi-Riemannian manifold is named
Ricci bi-conformal vector field if it satisfies:

(37) (LXg)(U, V ) = h1g(U, V ) + h2Ric(U, V ),

and

(38) (LXRic)(U, V ) = h1Ric(U, V ) + h2g(U, V ),

for some arbitrary non-zero smooth function h1, h2.

If we consider that a perfect fluid space-time equipped with a biconformal
vector field, then we conclude:

Theorem 4.2. For the perfect fluid space-time Mn endowed with a RBS, its
metric is Einstein if it has a Ricci bi-conformal vector field with constants h1, h2
and its scalar curvature is constant.

Proof. From (3), we obtain

Ric(U, V ) +
1

2
LXg(U, V ) + λg(U, V ) + µRg(U, V ) = 0.
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Substituting (37) in above, we get

(2 + h2)Ric(U, V ) + (h1 + 2λ+ 2µR)g(U, V ) = 0,

so,

(39) Ric(U, V ) =
−(h1 + 2λ+ 2µR)

(2 + h2)
g(U, V ).

Therefore, if h1, h2 and R are constant, then the metric g is Einstein. �
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