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Abstract. Let G be a finite group. If A ≤ G, recall that A is weakly

S-semipermutable in G provided there is K E G such that KA is S-
permutable in G, and K ∩ A is S-semipermutable in G. The purpose of

this paper is to demonstrate that weakly S-semipermutability of special

types of subgroups in a finite group G can help us to determine structural
properties of G. For example, given a prime p, a p-soluble finite group G

and a Sylow p-subgroup Gp of G, we will show that G is p-supersoluble if

the maximal subgroups of Gp are weakly S-semipermutable in G. More-
over, we use the concept of weakly S-semipermutability to prove new

criteria for p-nilpotency of finite groups.
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1. Introduction

Throughout this paper, all groups are finite. An active research area in finite
group theory is the study of subgroup embedding properties. A problem of
particular interest is to study the structure of a group G under the assumption
that some given subgroups of G satisfy a given embedding property. The
symbol π(n) denotes the set of all primes dividing the positive integer n; as
usual, π(G) = π(|G|), the set of all primes dividing the order of G and Gp

denotes a Sylow p-subgroup of G when p ∈ π(G). Let G be a group and
A ≤ G. Recall that A is permutable (π-quasi-normal or S-permutable) in G
if AK = KA for all subgroups (Sylow subgroups) K of G. These concepts
generalize the concept of a normal subgroup and were introduced by Ore [12]
in 1939 (Kegel [6] in 1962); furthermore, they were investigated by many other
authors. If K is a permutable (π-quasi-normal or S-permutable) subgroup
of G, then K is a subnormal subgroup of G, by Ore [12] (Kegel [6]). For
all permutable subgroups L of G, LG/LG ⊆ Z∞(G/LG) where Z∞(G) is the
hypercenter of G and LG is the intersection of all normal subgroups N of G
such that L ≤ N , Maier and Schmid [10]. We consider U to be the class of
supersoluble groups. Recall that the U-hypercenter of a group G, denoted by
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ZU(G), is the product of all normal subgroups K of G such that all chief factors
of G below K have prime order.

Let G be a group and A ≤ G. Recall that A is S-semipermutable in G if for
any Gp ∈ Sylp(G), where (|A|, p) = 1, we have AGp = GpA. It is clear that if
A ≤ G is S-permutable in G, then A is S-semipermutable in G, but in general,
the converse is not true. For example, let A be a Sylow 2-subgroup of S3, the
symmetric group of degree 3. Then A is S-semipermutable in S3, but it is not
S-permutable in S3.

In [5], a new subgroup embedding property generalizing S-semipermutability
was introduced, namely the concept of ν-permutability. We will recall the
definition of this notion in Section 2. The purpose of this paper is to show that
the ν-permutability of some subgroups of Sylow subgroups of a group G can
help us to prove the p-supersolubility or p-nilpotency of G.

We mention that many other generalizations of S-semipermutability appear
in the literature. For example, S.E. Mirdamadi and G.R. Rezaeezadeh [11]
introduced the concept of SS-semipermutability, which not only generalizes
S-semipermutability, but also SS-quasinormality.

2. Preliminaries

G.R. Rezaeezadeh and H. Jafarian Dehkordy [5] define the weakly S-semiper-
mutable (ν-permutable) subgroups.

Definition 2.1. Let G be a group and A ≤ G. Then A is said to be weakly
S-semipermutable (ν-permutable) in G provided there is K E G such that
KA is S-permutable in G and K ∩A is S-semipermutable in G .

It is clear that if K ≤ G is S-semipermutable in G, then K is ν-permutable in
G. However, the converse is not true. For instance, let K denote the subgroup
〈(12)〉 of S4, the symmetric group of degree 4. Then K is easily seen to be
ν-permutable in S4, but K is not S-semipermutable in S4.

Lemma 2.2. [9, Lemma 2.1 (6)] Let G be a group, p ∈ π(G) be a prime and
A be a p-subgroup of G. Then A is S-permutable in G if and only if Op(G)
normalizes A.

Lemma 2.3. [9, Lemma 2.2 (3)] Let G be a group and p ∈ π(G) be a prime
and A ≤ Op(G). If A is S-semipermutable in G, then A is S-permutable in G.

Lemma 2.4. [3, Chapter III, Satz 5.2] Let G be a minimal non-nilpotent
group. Then the following hold:

(1) For some p ∈ π(G), there exists Gp ∈ Sylp(G) such that Gp E G and
G = GpQ, where Q is a cyclic non-normal Sylow q-subgroup of G for
some prime q 6= p.

(2) If p > 2, then Gp has exponent p. If p = 2, then Gp has exponent 2 or
4.

(3) If Gp is abelian, then Gp is elementary abelian.
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(4) Φ(Gp) ≤ Z(G).
(5) Gp/Φ(Gp) is a chief factor of G.

Lemma 2.5. [13, Lemma 2.2] Let G be a group and p ∈ π(G) a prime with
(|G|, p− 1) = 1. Then the subsequent statements stand:

(1) If N EG and |N | = p, then N ≤ Z(G).
(2) If G has a Sylow p-subgroup such that it is cyclic, then G is p-nilpotent.
(3) If M ≤ G such that |G : M | = p, then M EG.

Lemma 2.6. [5, Lemma 2.7] Let G be a group, A be a ν-permutable subgroup
of G, N EG and L ≤ G. Then the following hold:

(1) If A ≤ L ≤ G, then A is ν-permutable in L.
(2) If (|A|, |N |) = 1, then AN/N is ν-permutable in G/N .
(3) If for some prime p ∈ π(G), A is a p-subgroup of G, then AN/N is

ν-permutable in G/N .

Lemma 2.7. [5, Lemma 2.8] Let N EG be a minimal normal and elementary
abelian subgroup. Then N has no nontrivial proper subgroup K such that any
subgroup of N with order |K| is ν-permutable in G.

Lemma 2.8. [2, Theorem 1.8.17] Let G be a group with Φ(G) = 1. Then
F (G) is the direct product of all abelian minimal normal subgroups of G, where
Φ(G) denotes the Frattini subgroup of G and F (G) denotes the Fitting subgroup
of G.

Lemma 2.9. [1, Chapter 1, Theorem 7.19] If KEG, then K ≤ ZU(G) if and
only if K/Φ(K) ≤ ZU(G/Φ(K))

Lemma 2.10. [8, Lemma 2.4] Let p be a prime and G a group with (|G| , p−
1) = 1. Suppose that Gp is a Sylow p-subgroup of G such that every maximal
subgroup of Gp has a p-nilpotent supplement in G, then G is p-nilpotent.

Theorem 2.11. [5, Theorem 3.2] Let G be a group, p ∈ π(G) with (|G|, p −
1) = 1 and Gp is a Sylow p-subgroup of G. If every maximal subgroup of Gp is
ν-permutable in G, then G is p-nilpotent.

Theorem 2.12. [5, Theorem 3.3] Let G be a group, p ∈ π(G) with (|G| , p−
1) = 1 and Gp be a Sylow p-subgroup of G. If every cyclic subgroup of Gp with
order p or 4 (if Gp is a nonabelian 2-group) has a p-nilpotent supplement in G
or is ν-permutable in G, then G is p-nilpotent.

3. Main Results

Theorem 3.1. Let G be a p-soluble group and Gp ∈ Sylp(G) where p ∈ π(G).
If each of the maximal subgroups of Gp is ν-permutable in G, then G is p-
supersoluble.

Proof. Assume that the theorem is false and consider a counterexample G with
minimal order.
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Step 1. Op′(G) = 1.
Assume that Op′(G) 6= 1, then G/Op′(G) is p-supersoluble by Lemma 2.6

(2) and the choice of G, so G is p-supersoluble. That is a contradiction.
Step 2. N := Op(G) is the unique minimal normal subgroup of G, and we

have Φ(G) = 1.
Let N be a minimal normal subgroup of G, then N is an abelian p-subgroup

of G by Step 1. Hence N ≤ Op(G) ≤ Gp. If N = Gp, then G/N is obviously
p-supersoluble. If N < Gp, then G/N is p-supersoluble by Lemma 2.6 (3) and
the choice of G. Since the class of all p-supersoluble groups is a saturated
formation, it follows that N is the unique minimal normal subgroup of G and
that Φ(G) = 1. Lemma 2.8 shows that Op(G) = N , and so Op(G) is the unique
minimal normal subgroup of G.

Step 3. Final contradiction.
There is a maximal subgroup D of G such that G = ND, N ∩D = 1 by

Step 2. Set Dp := Gp ∩ D. Then Gp = NDp. We have Dp < Gp because
otherwise N ≤ Gp = Dp ≤ D, which is contrary to the choice of D. Assume
that G∗p is a maximal subgroup of Gp with Dp ≤ G∗p. By hypothesis, G∗p is
ν-permutable in G. Hence, there is a normal subgroup K of G such that KG∗p
is S-permutable in G and such that K ∩ G∗p is S-semipermutable in G. If
K = 1, then G∗p is S-permutable in G, and Lemma 2.2 implies that G∗p = N ,
whence Gp = NDp = G∗p, a contradiction. So K 6= 1, and Step 2 implies that
N ≤ K. Then N ∩G∗p = N ∩ (K ∩G∗p) is easily seen to be S-semipermutable
in G since N and K ∩ G∗p are S-semipermutable in G. Lemma 2.3 implies
that N ∩G∗p is S-permutable in G. Since Gp ≤ NG(N ∩G∗p), Lemma 2.2 now
implies that N ∩G∗p EG. Then N ∩G∗p = 1 or N ∩G∗p = N . If N ∩G∗p = N ,
then N ≤ G∗p and Gp = NDp = G∗p. That is a contradiction. If N ∩ G∗p = 1,

then Gp = NDp = NG∗p. Since |Gp| = |N |
∣∣G∗p∣∣ / ∣∣N ∩G∗p∣∣ = |N |

∣∣G∗p∣∣, we have

|N | = |Gp| /
∣∣G∗p∣∣ = p, and since G/N is p-supersoluble by the argumentation

in Step 2, it follows that G is p-supersoluble. This contradiction completes the
proof. �

Theorem 3.2. Let G be a group and p ∈ π(G) with (|G|, p − 1) = 1. Let Gp

be a Sylow p-subgroup of G. Suppose that any maximal subgroup of Gp, that
does not have a p-nilpotent supplement in G, is ν-permutable in G. Then G is
p-nilpotent.

Proof. Assume that the theorem is false, and consider a counterexample with
minimal order.

Step 1. G has a unique minimal normal subgroup N , G/N is p-nilpotent,
and we have Φ(G) = 1.
Let N be a minimal normal subgroup of G. We show that G/N is p-nilpotent.
Of course, this is the case when |G/N | is not divisible by p. Therefore, we as-
sume now that |G/N | is divisible by p. Then G/N is a group with p ∈ π(G/N)
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and (|G/N |, p− 1) = 1. Also, GpN/N is a Sylow p-subgroup of G/N . Consid-
ering the canonical group isomorphism Gp/(Gp ∩N) −→ GpN/N , we see that
any maximal subgroup of GpN/N is the image of some maximal subgroup of
Gp. So, by hypothesis and Lemma 2.6 (3), any maximal subgroup of GpN/N is
ν-permutable in G/N or has a p-nilpotent supplement in G/N . Consequently,
the group G/N satisfies the hypotheses of the theorem and the minimality of
G implies that G/N is p-nilpotent.
Since the class of p-nilpotent groups is a saturated formation, it follows that
N is the only minimal normal subgroup of G and that Φ(G) = 1.

Step 2. Op′(G) = 1.
Assume that Op′(G) 6= 1. Then it follows from Step 1 that G/Op′(G) is p-
nilpotent. Thus G is p-nilpotent. That is a contradiction, and so we have
Op′(G) = 1.

Step 3. Op(G) = 1.
Assume that Op(G) 6= 1. Then N ≤ Op(G). Since Φ(G) = 1 by Step 1, there
is a maximal subgroup M of G with N � M . Then G = NM . We have
N ∩ M E M . Since N ≤ Op(G) is minimal normal in G, we have that N
is abelian, and so we have N ∩M E N . It follows that N ∩M E G. Since
N is minimal normal in G and N � M , it follows that N ∩M = 1. Hence,
M ∼= M/(N ∩M) ∼= MN/N = G/N , and so we see from Step 1 that M is
p-nilpotent.
Now, let G∗p be a maximal subgroup of Gp which is ν-permutable in G. We
claim that G∗p has a p-nilpotent supplement in G. We have G∗p 6= 1 because
otherwise Gp would have order p, and Burnside’s p-nilpotency criterion would
imply that G is p-nilpotent. Since G∗p is ν-permutable in G, there is a normal
subgroup K of G such that KG∗p is S-permutable in G and such that K ∩G∗p
is S-semipermutable in G. If K = 1, then G∗p is S-permutable in G, and
Lemma 2.2 shows that G∗p 6= 1 is in fact normal in G. Then N ≤ G∗p and hence
G = NM = G∗pM , so that M is a p-nilpotent supplement of G∗p in G. If K 6= 1,
then N ≤ K by Step 1, and we have N ∩ G∗p = N ∩ (K ∩ G∗p). Since N and
K∩G∗p are S-semipermutable in G, it is easy to see that N∩G∗p = N∩(K∩G∗p)
is S-semipermutable in G. Then it follows from Lemma 2.3 that N ∩ G∗p is
S-permutable in G, and since N ∩G∗p is normal in Gp, it follows from Lemma
2.2 that N ∩G∗p is normal in G. The minimal normality of N in G implies that
N ∩ G∗p = 1 or N ∩ G∗p = N . If N ∩ G∗p = 1, then |N | = p, and since G/N is
p-nilpotent by Step 1, it follows that G is p-nilpotent, a contradiction. Thus
N ∩G∗p = N and hence N ≤ G∗p. So we have G = NM = G∗pM , so that M is
a p-nilpotent supplement of G∗p in G.
By the preceding paragraph and by hypothesis, any maximal subgroup of Gp

has a p-nilpotent supplement in G. Lemma 2.10 implies that G is p-nilpotent.
This contradiction shows that Op(G) = 1.

Step 4. N is not solvable.
By Steps 2 and 3, we have Op′(N) ≤ Op′(G) = 1 and Op(N) ≤ Op(G) = 1.
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Therefore, a minimal normal subgroup of N can neither be a p′-group nor a
p-group. Thus, N cannot be p-solvable. In particular, N cannot be solvable.

Step 5. Final contradiction.
Because of Lemma 2.10, there is a maximal subgroup of Gp which does not have
a p-nilpotent supplement in G, say G∗p. By hypothesis, G∗p is ν-permutable in
G. Hence, there is a normal subgroup K of G such that KG∗p is S-permutable
in G and such that K ∩G∗p is S-semipermutable in G.

Assume that K∩G∗p 6= 1. Then (K∩G∗p)G, the normal closure of K∩G∗p in G, is

nontrivial, whence N ≤ (K∩G∗p)G. Since (K∩G∗p)G is solvable by [4, Theorem
A], it follows that N is solvable. This contradicts Step 4. Therefore, we have
K ∩G∗p = 1.
Since G∗p is maximal in Gp, it follows that K ∩Gp has order at most p. Since
K ∩ Gp is a Sylow p-subgroup of K, it follows from Burnside’s p-nilpotency
criterion that K is p-nilpotent. As Op′(K) ≤ Op′(G) = 1 by Step 2, it then
follows that K is a p-group. Thus K ≤ Op(G) = 1 by Step 3.
Consequently, G∗p = KG∗p is S-permutable in G, and Lemma 2.2 shows that
G∗p is in fact normal in G. It follows that G∗p = 1 because otherwise N ≤ G∗p,
so that N would be solvable, which is not true by Step 4. As G∗p = 1, we have
that Gp has order p. Now, Burnside’s p-nilpotency contradiction implies that
G is p-nilpotent. This contradiction completes the proof. �

Theorem 3.3. Let G be a group, L E G, and Lp ∈ Sylp(L), where p ∈ π(L)
with (|L|, p − 1) = 1. Assume that each of the maximal subgroups of Lp, that
has no p-supersoluble supplement in G, is ν-permutable in G. Then all chief
factors of G between L and Op′(L) are cyclic.

Proof. Assume that the theorem is false and consider a counterexample (G,L)
for which |G| |L| is minimal.

Step 1. L is p-nilpotent.
By hypothesis, any maximal subgroup of Lp is ν-permutable in G or has

a p-supersoluble supplement in G. Using Lemma 2.6 (1), we conclude that
any maximal subgroup of Lp is ν-permutable in L or has a p-supersoluble
supplement in L. Since (|L|, p − 1) = 1, any p-supersoluble supplement of
a maximal subgroup of Lp is p-nilpotent. So Theorem 3.2 implies that L is
p-nilpotent.

Step 2. Lp = L.
Op′(L) ∈ Hallp′(L) by Step 1. Let Op′(L) 6= 1, then all chief factors of

G/Op′(L) between L/Op′(L) and Op′(L)/Op′(L) are cyclic by Lemma 2.6 (2),
and the choice of (G,L). So all chief factors of G between L and Op′(L) are
cyclic. That is a contradiction.

Step 3. Φ(Lp) = 1.
Let Φ(Lp) 6= 1, then all chief factors of G/Φ(Lp) below L/Φ(Lp) are cyclic

by Lemma 2.6 (3) and the choice of (G,L). So all chief factors of G below L
are cyclic by Lemma 2.9. That is a contradiction.
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Step 4. All of the maximal subgroups of Lp are ν-permutable in G.
Let M be a maximal subgroup of Lp and B be p-supersoluble supplement

of M in G, then G = MB = LpB and Lp ∩ B 6= 1. Since Lp ∩ B C B, there
exists a minimal normal subgroup N of B with N ≤ Lp ∩ B. It is clear that
|N | = p. Since Lp is an elementary abelian subgroup and G = LpB, we have
that N CG. So all chief factors of G/N below Lp/N are cyclic by Lemma 2.6
(3) and by the choice of (G,L), then all chief factors of G below Lp are cyclic.
That is a contradiction.

Step 5. Lp is not a minimal normal subgroup of G.
Suppose that Lp is a minimal normal subgroup of G. Since all maximal

subgroups of Lp are ν-permutable in G by Step 4, we obtain a contradiction to
Lemma 2.7.

Step 6. Let N be a minimal normal subgroup of G with N ≤ Lp. Then
Lp/N ≤ ZU(G/N). Moreover, N is the only minimal normal subgroup of G
contained in Lp, and we have |N | > p.

The hypothesis is still true for (G/N,Lp/N) by Lemma 2.6 (3), so all
chief factors of G/N below Lp/N are cyclic by the choice of (G,L). Hence
Lp/N ≤ ZU(G/N). If |N | = p, then all chief factors of G below Lp are cyclic.
That is a contradiction. If N1 is another minimal normal subgroups of G
contained in Lp, then N1N/N1 ≤ Lp/N1, then |N | = p by G-isomorphism
N1N/N1

∼= N . That is a contradiction.
Step 7. Final contradiction.
Let N be a minimal normal subgroup of G with N ≤ Lp. Since Lp is

elementary abelian by Step 3, N has a complement in Lp, say S. Now, let
R be a maximal subgroup of N which is normal in some Sylow p-subgroup of
G. Set A := RS. Then A is maximal in Lp. Hence, A is ν-permutable in G,
and so there is a normal subgroup K of G such that KA is S-permutable in
G and such that K ∩ A is S-semipermutable in G. Assume that K ∩ Lp = 1.
Then A = KA ∩ Lp is S-permutable in G, which implies that R = N ∩ A is
S-permutable in G. Since R is normal in a Sylow p-subgroup of G, it follows
from Lemma 2.2 that R is normal in G. So we have |N | = p, which is a
contradiction. Therefore, 1 6= K ∩ Lp E G. The previous step shows that
N ≤ K ∩Lp. Then R = N ∩A = N ∩ (K ∩A) is S-permutable in G, and since
R is normal in a Sylow p-subgroup of G, it follows that R is normal in G. Thus
|N | = p, which is a contradiction in completing the proof. �

Theorem 3.4. Let G be a group and LEG. Assume that, for each p ∈ π(L)
and each non-cyclic Sylow p-subgroup Lp of L, any maximal subgroup of Lp

is ν-permutable in G or has a p-supersoluble supplement in G. Then all chief
factors of G below L are cyclic.

Proof. Assume that the theorem is false and consider a counterexample (G,L)
for which |G| |L| is minimal. Let q be the smallest prime divisor of |L|, then L is
q-nilpotent by Lemma 2.6 (1), and Theorem 3.2. Assume that Lq′ ∈ Hallq′(L).
If Lq′ = 1, then all chief factors below L are cyclic by Theorem 3.3. That is
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a contradiction. So we can assume that Lq′ 6= 1, and we have Lq′ C G. So
all chief factors of G/Lq′ below L/Lq′ are cyclic. On the other hand, all chief
factors of G below Lq′ are cyclic by the choice of (G,L). Therefore it follows
that all chief factors of G below L are cyclic. That is a contradiction. �

Theorem 3.5. Let G be a group, L E G such that G/L is p-supersoluble,
where p ∈ π(L) with (|L|, p−1) = 1, and Lp ∈ Sylp(L). If each of the maximal
subgroups of Lp is ν-permutable in G, then G is p-supersoluble.

Proof. By Theorem 3.3, every chief factor between L and Op′(L) is cyclic. In
particular, every chief factor between L and Op′(L) has order p or p′-order.
Of course, any chief factor of G below Op′(L) has p′-order. Since G/L is
p-supersoluble by hypothesis, we also have that any chief factor between G and
L has order p or p′-order. Consequently, any chief factor of G has order p or
p′-order. So G is p-supersoluble. �

Theorem 3.6. Let G be a group, p be the smallest prime dividing the order of
G, and Gp ∈ Sylp(G). If there exists a subgroup D of Gp with 1 < |D| < |Gp|
such that all subgroups K of Gp with |K| = |D| or |K| = 2 |D| (If Gp is a
non-abelian 2-group) is ν-permutable in G, then G is p-nilpotent.

Proof. We closely follow the proof of Theorem 3.2 in [7]. Assume that the
theorem is false and consider a counterexample G with minimal order.

Step 1. Op′(G) = 1.
If Op′(G) 6= 1, then G/Op′(G) is p-nilpotent by Lemma 2.6 (2) and the

choice of G. Then G is p-nilpotent. That is a contradiction.
Step 2. |D| > p
Assume that |D| = p. Since G is not p-nilpotent, there is a minimal non-p-

nilpotent subgroup G1 of G. By Satz 5.4 in Chapter IV of [3], G1 is minimal
non-nilpotent. Then G1 = P1 o Q, where P1 ∈ Sylp(G1) and Q ∈ Sylq(G1)
for q 6= p by Lemma 2.4. Let x ∈ P1 \ Φ(P1) and E = 〈x〉. Then |E| = p or
|E| = 4 by Lemma 2.4, where |E| = 4 is only possible when P1 is a non-abelian
2-group. Hence E is ν-permutable in G, thus in G1 by Lemma 2.6 (1). Since
x ∈ P1 \ Φ(P1) was arbitrarily chosen, we have that 〈x〉 is ν-permutable in
G1 for every x ∈ P1 \ Φ(P1). Since Φ(P1) ≤ Z(G1), we also have that 〈x〉 is
ν-permutable in G1 for any x ∈ Φ(P1). Then G1 is p-nilpotent by Theorem
2.12. This contradiction shows that |D| > p.

Step 3. |Gp : D| > p.
According to the previous content and Theorem 2.11, it is easy to see.
Step 4. If N is a minimal normal subgroup of G with N ≤ Gp, then

|N | ≤ |D|.
Assume that |N | > |D|. Since N is minimal normal in G and a p-group,

we have N is an elementary abelian. By hypothesis, every subgroup of N with
order |D| is ν-permutable in G. This is a contradiction to Lemma 2.7.

Step 5. Suppose that N is a minimal normal subgroup of G with N ≤ Gp,
then G/N is p-nilpotent.
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If |N | < |D|, then G/N is p-nilpotent by Lemma 2.6 (3) and the choice of
G. So |N | = |D| by Step 4. Let N ≤ K ≤ Gp and |K/N | = p. Since N is not
cyclic by Step 2, every subgroup containing N is not cyclic. Hence there is a
maximal subgroup L 6= N of K such that K = NL. Of course |N | = |D| = |L|,
thus L is ν-permutable in G. Then K/N = LN/N is ν-permutable in G/N by
Lemma 2.6 (3). If p = 2 and Gp/N is non-abelian, assume that X/N is a cyclic
subgroup of Gp/N with |X/N | = 4. Since X is not cyclic and X/N is cyclic,
there exists a maximal subgroup L ofX such thatN is not contained in L. Thus
X = LN and |L| = 2 |D|, hence L is ν-permutable in G and X/N = LN/N is
ν-permutable in G/N . Then G/N is p-nilpotent by Theorem 2.12.

Step 6. Op(G) = 1.
Assume that Op(G) 6= 1. Let N be a minimal normal subgroup of G with

N ≤ Op(G), thus G/N is p-nilpotent by Step 5. Since the class of p-nilpotent
groups is a formation, we see from the previous step that N is the only min-
imal normal subgroup of G contained in Op(G). Since Op′(G) = 1, we have
Φ(G) ≤ Op(G). Now, if Φ(G) 6= 1, then it follows that N ≤ Φ(G), whence
G/Φ(G) and hence G is p-nilpotent. This contradiction shows that Φ(G) = 1.
Hence G has a maximal subgroup M such that M ∩ N = 1 and G = MN .
In particular, M ∼= G/N is p-nilpotent. Then M = MpMp′ = (M ∩ Gp)Mp′ ,
where Mp′ is the normal p-complement of M . Let S be a maximal subgroup
of Mp = Gp ∩M . Thus NSMp′ is p-nilpotent by Step 3 and the choice of G,
so G is p-nilpotent. That is a contradiction.

Step 7. Every minimal normal subgroup of G is not p-nilpotent.
Let L be a minimal normal subgroup of G such that L is p-nilpotent. Then

Lp′ ≤ Op′(G) = 1, thus L is a p-subgroup and therefore L ≤ Op(G) = 1 by
Step 6. That is a contradiction.

Step 8. G is non-abelian simple group.
Assume that G is not a simple group, thus, there is non-trivial normal

subgroup L of G. If |Lp| > |D|, then L is p-nilpotent by the choice of G. That
is a contradiction to Step 7. If |Lp| ≤ |D|, then there is P ∗ ≤ Gp such that
Gp ∩L ≤ P ∗ and |P ∗| = p |D|, hence P ∗ ∈ Sylp(P ∗L). All maximal subgroups
of P ∗ are ν-permutable in P ∗L by Lemma 2.6 (1), then P ∗L is p-nilpotent by
Theorem 2.11, and therefore L is p-nilpotent. That is a contradiction to Step 7.

Step 9. Final contradiction.
Let H be a subgroup of Gp with order |D|. By hypothesis, H is ν-permutable

in G. We show that H is S-semipermutable in G. Since H is ν-permutable in
G, there is a normal subgroup T of G such that TH is S-permutable in G and
such that T ∩H is S-semipermutable in G. Since G is simple, we have T = 1 or
T = G. If T = 1, then H = TH is S-permutable and hence S-semipermutable
in G, as wanted. Also, if T = G, then H = H ∩ T is S-semipermutable in G.
Now, let Q be a Sylow q-subgroup of G for some q ∈ π(G) with q 6= p. Then
HQ is a subgroup of G since H is S-semipermutable in G. We have G 6= HQ
since G is non-abelian simple. Also, since H is S-semipermutable in G, we
have HQg = QgH for all g ∈ G. Applying Hilfssatz 4.10 of Chapter VI of [3],
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we conclude that H or Q is contained in a proper normal subgroup of G. This
is a contradiction since G is simple, completing the proof. �
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