
تعداد نشریات | 26 |
تعداد شمارهها | 447 |
تعداد مقالات | 4,557 |
تعداد مشاهده مقاله | 5,380,003 |
تعداد دریافت فایل اصل مقاله | 3,580,072 |
Index rank-$k$ numerical range of matrices | ||
Journal of Mahani Mathematical Research | ||
دوره 13، شماره 1 - شماره پیاپی 26، بهمن 2023، صفحه 525-534 اصل مقاله (344.99 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22103/jmmr.2023.21566.1445 | ||
نویسندگان | ||
Sharifeh Rezagholi* ؛ Rouholah Yasini | ||
Department of Mathematics, Payame noor university(PNU), Tehran, Iran | ||
چکیده | ||
We introduce the $\alpha-$higher rank form of the matrix numerical range, which is a special case of the matrix polynomial version of higher rank numerical range. We also, investigate some algebraic and geometrical properties of this set for general and nilpotent matrices. Some examples to confirm the results are brought. | ||
کلیدواژهها | ||
$\alpha-$higher rank numerical range؛ index higher rank numerical range؛ $\alpha-$numerical range؛ index numerical range | ||
مراجع | ||
1] Aretaki, A., & Maroulas, J. (2014). On the rank-k numerical range of matrix polynomials, Electronic J. Linear Algebra, 27, 809-820. https://doi.org/10.13001/1081-3810.1960
[2] Choi, M.D., Kribs, D.W., & Zyczkowski, K. (2006). Higher rank numerical ranges and compression problems, Linear Algebra Appl. 418(2-3), 828-839. https://doi.org/10.1016/j.laa.2006.03.019
[3] Choi, M.D., Giesinger, M., Holbrook, J.A., & Kribs, D.W. (2008). Geometry of higher-rank numerical ranges, Linear Multilinear Algebra. 56(1-2), 53-64. https://doi.org/10.1080/03081080701336545
[4] Gustafson, K.E., & Rao, D.K.M. (1997). Numerical Range: The Field of Values of Linear Operators and Matrices, Springer-Verlage.
[5] Horn, R., & Johnson, C. (1991). Topics in Matrix Analysis, Cambridge University Press.
[6] Li, C.K., Mehta, P.P., & Rodman, L. (1994). A Generalized numerical range: The range of a constrained sesquilinear form, Linear Multilinear Algebra, 37(1-3), 25-50. https://doi.org/10.1080/03081089408818311
[7] Li, C.K., & Rodman, L. (1994). Numerical range of matrix polynomials, SIAM J. Matrix Anal. Appl. 15(4), 1256-1265. https://doi.org/10.1137/S0895479893249630
[8] Safarzadeh, M., & Salemi, A. (2018). DGMRES and index numerical range of matrices, J. Comput. Appl. Math., 335, 349-360. https://doi.org/10.1016/j.cam.2017.12.009 | ||
آمار تعداد مشاهده مقاله: 175 تعداد دریافت فایل اصل مقاله: 197 |