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ABSTRACT. In this paper, we delve into Bayesian inference related to
multi-component stress-strength parameters, focusing on non-identical
component strengths within a two-parameter Rayleigh distribution un-
der the progressive first failure censoring scheme. We explore various
scenarios: the general case, and instances where the common location
parameter is either unknown or known. For each scenario, point and in-
terval estimates are derived using methods including the MCMC method,
Lindley’s approximation, exact Bayes estimates, and HPD credible inter-
vals. The efficacy of these methods is evaluated using a Monte Carlo
simulation and their practical applications are demonstrated with a real
data set.

Keywords: Multi-component stress-strength reliability, Lindley’s approx-
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1. Introduction

In reliability theory, the inference on the stress-strength parameter R =
P(Y < X) holds significant interest for researchers. Here, ¥ and X denote
stress and strength variables, respectively. A recent study by [4] considered
the inference for P(Y < X) within the context of non-identical component
strengths based on the Rayleigh distribution. A multi-component system com-
prises multiple components. Such a system has one overarching stress com-
ponent and k independent and identical strength components. A system’s
reliability is ensured if at least s out of the k& strength components surpass its
stress. This model was initially proposed by [3] as:

R, = Zk: (i) /DQ (1- FX(y))p(FX(y))k_deY(y)-

p=s -
0]
DK kohansal@sci.ikiu.ac.ir, ORCID: 0000-0002-1894-411X
https://doi.org/10.22103/jmmr.2023.21854.1471 © the Author(s)

Publisher: Shahid Bahonar University of Kerman

How to cite: A. Kohansal, Bayestan inference on reliability parameter with
non-identical-component strengths for Rayleigh distribution, J. Mahani Math. Res. 2024;
13(2): 33 - 52.

33


mailto:kohansal@sci.ikiu.ac.ir
https://doi.org/10.22103/jmmr.2023.21854.1471

34 A. Kohansal

In this model, the strength variables (X,..., X)) are independent and iden-
tically distributed (i.i.d) with cumulative distribution function Fx(-). Mean-
while, the stress variable Y has a distribution represented by Fy(-). Various
researchers have explored this model. For instance, [8] investigated the esti-
mation of R, for the Kumaraswamy distribution using progressively censored
samples. Similarly, [9] evaluated both Bayesian and classical estimations of Ry
under adaptive hybrid progressive censored data for the Weibull distribution.
A subsequent model developed by [11] extended multi-component reliability to

comprise k = (k1, k2, ..., k;,) components as:

k1 km m k: co m

Ree= Y - Y <H< ))/ H((1—Fi(y))’“
— — - Pi —00 ;__
P1=S1 Pm=8m \i=1 i=1
ki—pi

(1) x (Fi(y)" ") dPy ().
In this configuration, k; components belong to type ¢, where ¢ = 1,...,m,

and F;(-) denotes the cumulative distribution function of strengths for com-
ponents of the i-th type. It’s posited that a shared stress Y with distribution
Fy(-), impacts all components. The system is deemed reliable as long as at
least s = (s1, ..., 8m) out of k strength components surpasses the stress level.
Recent research by [10] contemplated this model for the modified Weibull ex-
tension distribution under progressive censoring. Furthermore, [12] delved into
this model for the modified Kumaraswamy distribution, focusing on progressive
first-failure censored samples. This paper narrows its scope to systems with
two component types, represented as k = (k1,ke) and s = (s1, s2), primarily
due to computational intricacies. This particular model was initially analyzed
by [15] for upper record values within the Kumaraswamy generalized distribu-
tions family. Additionally, [5] examined the reliability estimation of a stress-
strength model featuring nonidentical component strengths under a generalized
progressive hybrid censoring scheme. In conclusion, the multi-component reli-
ability parameter encompassing two non-identical strength components can be
extracted from equation (1) as:

Fa= Y Y () [ (- mwr @)

P1=81 p2=382 P

(2) % (1= Ba)™ (Fa()) 7" dFy (y).

The versatility of the model is evident from its generality. By adjusting param-
eters, it can be simplified to represent multi-component stress-strength with a
singular strength variable, or even just the stress-strength parameter. This can
be achieved by setting ko = 0 and k; = 1, ke = 0 respectively. This adaptabil-
ity of the model has been noted in studies such as [11], where the model was
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applied to scenarios where strength and stress variables adhere to a bathtub-
shaped distribution, paired with adaptive Type-II hybrid progressive censoring
samples.

When considering censoring schemes, Type-I and Type-II are foundational.
Their amalgamation gives rise to the hybrid scheme. A major limitation of
these methods is their inability to eliminate active units during the test phase.
This drawback paved the way for the introduction of the progressive censoring
scheme, a topic elaborately discussed in the seminal monographs by [1]. A
novel approach, termed first failure censoring, was proposed by [2]. By syner-
gizing the elements of both progressive and first failure censoring schemes, [18]
introduced the progressive first failure censoring scheme. This approach has
since garnered significant attention in the reliability literature, as evidenced by
works like [13], [16], and [17]. The Progressive First Failure Censoring Scheme
(PFFC) can be elucidated as follows: Suppose there are N groups in the ex-
periment, with each group containing w items. During the testing phase, R
groups are randomly removed from the test, along with the group containing
the first failure unit at the time of its first failure. Similarly, Ro groups are
randomly removed from the test when the second failure unit fails, and so on
for R, groups and the n-th failure unit, occurring at the n-th failure time. In
this scheme, the PFFC sample is represented as {T1.n:Nuw - - - s Tnin:Now §, and
the progressive censoring scheme is { Ry, ..., R, }, subject to the constraint that
R+ -+ R, +n = N. In the subsequent discussion, the PFFC sample is
denoted as {T1,...,T,}. The joint Probability Density Function (pdf) for the
failure times 77 < --- < T, under study, characterized by a continuous pdf de-
noted as f(-) and a Cumulative Distribution Function (cdf) denoted as F(+), is
provided as follows:

n
Fltrootn) o [T £ (1 = F(e)) 07 0 <ty < <ty < o0,
i=1
We present a schematic representation of this scheme in Figure 1. It is ev-

ident that the Progressive First Failure Censoring Scheme (PFFC) can be
transformed into First Failure Censoring and Progressive Censoring by setting

Ry =---= R, =0 and w = 1, respectively. Furthermore, it can be simplified
to Type-II Censoring by setting Ry =---=R,—1 =0,R, = N—n,and w = 1.
Finally, it becomes equivalent to complete data when Ry =--- = R,, =0, and

w = 1. The Two-Parameter Rayleigh (tR) distribution, characterized by scale
and location parameters A and u, respectively, has the following pdf and cdf:

(3) f(z) =2X\z — u)e_’\(””_“)z7 x> p, A p >0,
(4) Fz)=1—e M 25 X\ u>0.

The Bayesian approach is a statistical procedure that allows the systematic
incorporation of prior knowledge about the model and model parameters, the
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wR1 +w—1 wRy +w — 1 wR, +w —1
T T> T,
End

FIGURE 1. Schematic representation of progressive first failure scheme.

appropriate weighting of experimental data, and the use of probabilistic mod-
els for the modeling of sources of experimental error. In fact, this approach
allows researchers to take into account data as well as prior beliefs to calcu-
late the probability that an alternative is superior. In this paper, we derive
Bayesian inference for Rg x based on the PFFC sample when X and Y are two
independent random variables following the tR distribution.

The remainder of this paper is organized as follows: In Section 2, we ex-
plore Bayesian inference for Rk in various scenarios, including cases where
all parameters are unknown, the common location parameter is unknown, and
when it is known. To achieve this, we utilize the Markov Chain Monte Carlo
(MCMC) method, Lindley’s approximation, exact Bayes estimation, and High-
est Posterior Density (HPD) intervals for Rg . Section 3 presents the results
of simulations and data analysis. Finally, in Section 4, we draw conclusions
based on the findings of this study.

2. Inference on Ry in general case

If X1 ~ tR(A\,pu1), Xa ~ tR(A2,p2) and Y ~ tR(A, p) are independent
random variables, then the multi-component stress-strength parameter, Rs ik
can be obtained, from (3) and (4), as

k1 ko

R\ (B2 [ s e o
Rs,k: Z Z <pi) (pz)/ﬂ e A1 (y—p1) 101(1_6 A1 (y—p1) )kl p1

P1=81 p2=382

x e~ W=p2)?p2 (] _ o= Re(y=p2)* k2 =29} (3 — 1) A=) gy

We construct the likelihood function by the following samples:

Stress Strength

Y1 Un ... Uk, Vii. ... Vig,
Y =| : and X; = Lo , Xo = PR ,

Y, Ut oo Unpy Vi or Vi

where {Y1,...,Y,} is PFFC sample from tR(\, ) with {N,n,w,S1,...,S.},
{Ui1, ..., Ui, } and {Vi1,...,Vir, }, ¢ = 1,...,n, are two PFFC samples from
tR(A1, ) and tR(Ao, ) with the censoring scheme {Kji, ki, wi, Ry,..., R, }
and {Ks, ko, w2, Q1,...,Q, }, respectively. The likelihood function of A1, A,
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A, i, 1 and po can be obtained by

n k}l

L(A1, Ao, A, i,y pi1, poldata) o H ( H fi(uij) (1= Fl(uij1>)wl(le+1)71)

i=1  ji=1

k2
X ( H fg(vm)(l - FQ(UijQ))wQ(QnH)fl)f(yi)(l _ F(yi))w(siﬂ)ﬂ'

Jj2=1

To obtain censored data from X, Xo, and Y the following procedure is em-
ployed. Initially, in accordance with the method outlined in Section 1, certain
elements from the Y vector are censored. For any data point in Y that has been
censored, the corresponding row in the X; and X5 matrices is removed. Sub-
sequently, within the remaining matrices of X; and X5, the censoring scheme
is applied to each row. Using this approach, a PFFC sample of size n for Y
is obtained. Additionally, for the i-th observation in the Y vector, we acquire
PFFC samples {Ui1, ..., Uiy, } and {Vi1,..., Vig, } from the X; and X, matri-
ces. These samples are independent, and it is evident that the structure of the
likelihood function can be described as previously mentioned.

In this section, Bayesian inference for Rs y is examined under squared error
loss functions, assuming that \i, Ao, A, u, @1, and po are independent random
variables. Based on the observed censoring samples, the joint posterior density
function is as follows:

T(A1, A2, A, g, pi1, pofdata) oc LdatalAr, Ao, A, g, po, 1)
(5) x 1 (Ar)ma(Az)ms (A)ma(p)ms (pe) e (pi2)

At
A2

o AJ e A N ey by > 0,
o NG tem02A2 N, gy by > 0,
o A8 LembA X g bg > 0,

m1(A\1)
)
)
) <1, pe (0,t), where t can be any finite arbitrary value,
)
)

(

o (

m3(A

ma(

m5(p1) o< 1, py € (0,t1), where ¢; can be any finite arbitrary value,
(

(o) < 1, pe € (0,t2), where to can be any finite arbitrary value.

As evident from equation (5), it is not feasible to obtain the Bayes estimate in a
closed form. Therefore, we resort to approximating it using the Markov Chain
Monte Carlo (MCMC) method. From the joint posterior density function, we
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can derive the posterior pdfs of A1, Aa, A, i, p1, and po as follows:

n k1
Alp1, data ~ I'(nk + a1, by + wy Z Z (uij, — p11)*(Rj, + 1)),
i=1 j1=1
n ko
Aa|p2, data ~ T'(nky + ag, by + wo Z Z (vijy — 112)* (@5, + 1)),
i=1 jo=1

Alp, data ~ I'(n + ag, by + w Z(yl —1)?(S;i + 1)),
i=1

m(pl\, data) oc ([ [(vi — )

i=1

3w 3 (gi—p)(Si+1)
e i=1

)

n ki
n ki “Mwi 33 (uijy —p1) 2 (Ryy +1)
ﬁ(u1|)\1,data) 0.8 (H H (uijl - ,U1)>6 i=1j1=1 ,
i=1j1=1
n k2 —A2w2 i kZQ (Vijo—112)%(Qjp+1)
m(nz| Az, data) o (T T (vie — p2))e e :
i=1ja=1

It is worth noting that generating samples from the posterior pdfs of u1, p2, and
w1 should be accomplished using the Metropolis-Hastings method, given that
these pdfs are not known. To facilitate this, we propose the Gibbs sampling
algorithm, which is elaborated in detail in Appendix A. Consequently, the
Bayes’ estimate of R x under the squared error loss functions can be expressed
as:

Ty
~ 1
(6) RAE = T > Rpsic
t=1

Also, the 100(1 — v)% HPD credible interval of Rsx can be constructed, using

the method of [6] as follows. Order R(1)sk,- .., R(r,)sk a8 R((l)s k) <<

R((T Js.k) and construct all the 100(1 — )% confidence intervals of R, as:
b)S,

(R((l)s,k) ’ R(([T(l—w)})s,k)>’ o (R(um)s,k) ’ R(([T])s,k))’

where [T] symbolizes the largest integer less than or equal to T. The HPD
credible interval of Ry is the shortest length interval.

Remark 2.1. Inference on Rg i with unknown common u
If X1 ~tR(A1,p), Xo ~tR(Ae, ) and Y ~ tR(A, ) are independent ran-
dom variables, then the multi-component stress-strength parameter, Rsx can
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be obtained, from (3) and (4), as

ki ko .
k k
Racm 30 3 () () [ ey

P1=51 p2=S82

x e~ M2 W=IPa (] o= he (=) Yha=P2g ) (y — )e AW gy ¢ = = (U=’

k1 k: 1
Z i <k1> <k2>>\/ t)\1P1+/\2P2+>\—1
b1 D2 0

P1=81 p2=352

(1L —¢r)kmpr(] — prayke=p2gy

55 )

p1=s1p2=s2 q1=0 ¢2=0 1/ AP « 9

X

1
% (_1)Q1+Q2)\/ tr(Prta)+Xe(p2ta2)+A-1 4
0

k ky ki—p1 ka—
o o 1T o [ (i
pi—s1 pa—ss q1=0 qa=0 1/ \P2 T q2

(,1)Q1+Q2)\
X )
AMpr+ @)+ Aa(p2+q2) + A

(7)

Indeed, as observed, it is not possible to evaluate the Bayes estimate of Rs i in
a closed form. Therefore, we need to approximate it using two methods:

MCMC method: The approach for utilizing the MCMC method is quite
analogous to what has been previously outlined, so we will not delve into further
detail here.

Lindley’s approximation: One of the most practical techniques for de-
riving the Bayes estimate is introduced by [14]. We are aware that the Bayes
estimation of u(#), under the squared error loss function, should be computed
as follows:

[u(6)e?@ap
TeQ@dg
where Q(0) = p(0) + £(©), p(#) and £(0) are logarithm of the prior density of

6 and log-likelihood function, respectively. By [14], we can approximate the
equation (8) as

(8) E(u(f)|data) =

1
E(u(f)|data) = u + 3 Z zj:(uij + 2uip;)oi

Q LD ) D) D) BT
i 7 k p
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where 0 = (0y,...,0m), i,j,k,p = 1,...,m, 0 is the Maximum Likelihood
. 2 3

Estlmates (MLESs) of 0, u = u(), u; = g—eu, Ui = 39878“0, lijr = m,

p; = aa ,and 0;; = (7, j)-th element in the inverse of matrix [—¢;;] all evaluated

at the MLE of the parameters. So, by simplifying the equation (9), in some
steps, in the case of four parameters 6 = (61, 0s,03,0,), we have

4 4 4
1
E(u(0)ldata) = u+ Y uyd; +ds +dg + 5 D D Ajuics,

j=1 j=1i=1

where

4 3 4 =
dj= ZPini’ 7=1,234, ds= Zzuipaip; do= 5 Zunﬂii,

=1 i=1p=1 i=1

i<p
Aj= Zewau - Z leﬂpaw, j=1,-- 4
i=1p=1
1<p

In our case (01,03,03,04) = (A1, A2, A, 1) and ©w = u(Ay, Az, A\, ) = Rsk, we
have

a1 —1 as — 1 az — 1

P1L = 1)\ _b17 p2 = 2 _b27 pP3 = 3 _b3a 04207

1

nkq nko n

fi1=———= Fl12=0, li13=0, Flog=——, Flo3=0, ¥l33=——
11 /\% 12 ) 13 ) 22 /\2 ,  t23 , 433 N2
b1g = 2w Z Z wij, — 1) (Rjy + 1), oy = 2wy Y Z vij, — W) (Qj, + 1),

1=1j51=1 =1 jo=1

34 = 2w Z(yz —1)(Si +1),

T D D D L

i=1j1= 1 Wigy i=1 jo= 2 Vig, — :u o Yi — /J/)
k1 ko
— 2nA\wy Z (le + 1) 2nAowsy Z Q]2 + ]_ — QAwZ S; + 1

Jji=1 Jj2=1 i=1
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Using 4;5,4,j = 1,2,3,4, we can obtain 0y5,%,j = 1,2,3,4 and

k1
2nkq 2nkso 2n
b = N loog = N l333 = 8 li44 = —2nwy ];(le + 1),
kg n
lagg = —2nwo Z (Qjo +1), faaa= 2w Z(Sz +1),
jz—l i=1
n n n 1
T 5 DRI 5o S N S
i=1 j1=1 u‘ﬁ i=1 jo=2 v”l i Wi T B

and other £;;;, = 0. Moreover, uy = u;4 =0, 7 = 1,2,3,4 and we have

S EEEOOCNE)

p1=s1p2=s2 q1=0 ¢2=0 42
<_1)Q1+Q2+1)\(p1 +q1)
2
(A1 +@1) + X2 (p2 + g2) +N)

0SSO

p1=s1 p2=s2 q1=0 ¢2=0 2
(1)t et IX(py 4 ¢o)
27
(M(pr+q1) + Aa(p2 + q2) + )

X
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S5 b b 3 )] 1] (g | e

p1=s1p2=s2 ¢1=0 q2=0
y (=1)2F2 (A (p1 + q1) + Xa(p2 + 2))
2
(M (p1+ @) 4+ Aa(p2 + q2) + )

=3 S () (L ()

p1=81p2=s2 q1=0 ¢2=0

2(_1)Q1+Q2>\( p1 + (J1)
(/\1(]01 Fq1) +da(ps+ @) +A)°

w303 S S (B () (o) ()

p1=s1 p2=s2 q1=0 g2=0
2(=1)1+ 2\ (p2 + g2)
(M1 + @) + Ao(p2 + g2) +A)°

w3 SIS (0 ()

p1=s1p2=s2 ¢1=0 q2=0 42

2

2(=1)2 T2 (X (pr + q1) + Aao(p2 + ¢2))
(M (p1+ @) + Aa(ps + @2) + A)°
: 5 EEOMC)C
PL=s1 pa=ss q1=0 ¢2=0 b2 q1 q2
2(—=1)1 72 \(py + q1)(p2 + )
(Mp1 4 @) + Xa(p2 + 2) + )\)3’

w3 SIS (0 (4,

p1=s1p2=s2 q1=0 ¢2=0
y (=) (py 4+ q1) (A (p1 + @1) + Aa(p2 + q2) — A)
(M1 + @) + Ae(p2 + q2) + )\)3
e Y Y AYE AV
e ;lpzzjsz qlz_:o qzz_:o< )(m)( q )( q2 )
o (1)1 (py 4 go) (M (p1 + q1) + Ao (P2 + g2) — A)
()\1(171 +Q1)+)\2(p2+QQ)+)\)3 .

U12

X

)
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Consequently, under the squared error loss function, the Bayes estimate of Rs i
is

(10) RLin=R sk‘FZUyd +ds+dg+ = ZZA u;os;.

jl'Ll

It is worth noting that all parameters should be computed using their MLEs,
denoted as (A1, A, A, ).

Remark 2.2. Inference on Ry with known common g

Similar to Remark 2.1, when the common parameter p is known, and as-
suming that A;, A2, and A follow independent gamma distributions as prior
distributions, the joint posterior density function of A\;, A2, and A can be de-
rived as follows:

m(A1, Ag, A, data) = ANpRFer Tt \phetaz =l yntbas =L

n k
vwr 355 (g )Ry A1) Asws 35 35 (w0 (Qy 1)

X e i=1j7=1 i=1jo=1

1) xe B

where

= (b1 + w1y Z wigy — )2 (Ry, + 1))

=1 71=1
G ka1
nka+
X (by+wa Y Y (vijy — ie-1)*(Qjp + 1))
i=1 jo=1
n+as -1
(b3 + w Z fie-1))(Si + 1)) {F(n/ﬁ + a1)l'(nkg + ag)l'(n + as)}

By solving the following triple integral, the Bayesian estimation of Rs y, under
the squared error loss function can be obtained. So,

RE, ///Rs,kw(Al,AQ,Am,data)dAldAgdA

3 b b oy [ (4] G [ e

p1=s1 p2=s2 q1=0 ¢2=0

A
x
/0 /0 /o M1+ aq1) + Aa(p2 +q2) + A

(12) % 7(A1, Ao, A, data)dAydAsdA.
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Now by applying 7 (A1, A2, A, data) from (11) in the equation (12) and utilizing
the idea of [11], part of the triple integral can be solved as follows:

A w| < 1w <1,

Ay wyi < —1,wy < —1,

M =
Az |U)1| < lwe < —1,
Ay wp < -1, |u/2| <1,
where
A = wl-w)?(l-w)? 5 1 .
1= vrtratrs 1(V1+l/2+l/3,1/1,l/2, +V1—|—1/2+1/3,w1,w2),
Ag = m Fl(lvl/l)VQa 1+ +vo+s; %a w;}}il)a

Az = LU (1 s 4 1, 1+ 0y + ve + 5w, ),

vitratvs

Ay = llzw) Fi(1,vi,v3+ 1,1+ vy + vo + v3; 21 ws).

vi+tva+tvs T—wy ?

Also, in this representation, we have

vi =nki +a1, vo=nky+as, vz=n+as,

n ki
by +wn Z Z (Uijl - ﬂ(t—l))z(le + 1)

-1 i=1j1=1
wp =1 — n )

(1 +a)(bs +w Z (yi — n—1))%(Si + 1))

b2 + wo Zn: Z (Uljz M(tfl))Q(QJé + 1)

1=1j2=1

(p2 + q2) (b3 + w ;(yi — pe-1))(Si + 1)) ’

’LUQZ].—

Also,

1
Fi(a, 8,8, v;2,y) = B(av—a)/o 1 =) (1 — t) P (1 — ty) P dt.

The function Fy(a, 8, 8’,7;x,y) is a hypergeometric series and can be readily
evaluated using standard software. Consequently, the Bayes estimate of Rs ik
can be obtained as follows:

(13)

3 >5[ [ [ IR

p1=s1p2=s2 ¢1=0 ¢2=0
As we need to solve a numerical integral to obtain the Bayes estimate in equa-
tion (13), similar to previous sections when the parameter p is known, we
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employ the MCMC Bayes estimation method and calculate the HPD credible
intervals.

3. Simulation study and data analysis

3.1. Numerical experiment and discussion. In this section, we perform
a comparison of different estimates using Monte Carlo simulations. The cri-
teria for comparing point estimates is the mean square errors (MSEs), while
for interval estimates, we consider average confidence lengths (AL) and cover-
age percentages (CP). Various censoring schemes, different parameter values,
and hyper-parameters are employed in our simulation studies. Our results are
based on 2000 repetitions, and the number of repetitions in the Gibbs sampling
algorithm is set to T' = 3000. The significance level for obtaining HPD credible
intervals is set at 0.95. The different censoring schemes used in obtaining the
results are detailed in Table 1.

TABLE 1. Different censoring schemes.

(ky, Kp, wp) C.S. (n, N, w) C.S.
R1  (0,0,0,0,5) 51 (0,0,0,0,5)
(5,10,2) Ry (5,0,0,0,0) (5,10,2) S2 (5,0,0,0,0)
Ry (1,1,1,1,1) Ss  (1,1,1,1,1)
Ry (079,10 Sy (079,10)
(10,20,3) Rs (10,0*9) (10,20,3) Sy (10,0*9)
Rg (1*10) S (1*10)

Now, let’s consider different scenarios. First Case (General Case): Assuming
(A1, Ao, A, g, o, 1) = (1.5,0.5,0.4,2,1,1.5), we conduct simulation studies and
compare different Bayes estimates under two priors: Prior 1 (a; = 0, b; =
0, j=1,2,3) and Prior 2 (a; =1, b; = 0.4, j =1,2,3). We apply equation
(6) to obtain the Bayes estimates of R k. The simulation results are presented
in Table 2.

Second Case (Common Parameter p Unknown): Assuming (Ag, Ao, A, 1) =
(0.75,1.5,0.5,2), we conduct simulation studies and compare different Bayes
estimates under two priors: Prior 3 (a; = 0, b; = 0, j = 1,2,3) and Prior
4 (aj =1, bj = 0.5, j =1,2,3). We apply Lindley’s approximation (equa-
tion (10)) to obtain the Bayes estimates of Rg k. The simulation results are
presented in Table 3.

Third Case (Common Parameter p Known): Assuming (A1, Ag, A, pu) =
(1,0.5,0.45,2.5), we conduct simulation studies and compare different Bayes
estimates under two priors: Prior 5 (a; =0, b; =0, j = 1,2,3) and Prior 6
(a; =1, b; =0.75, j =1,2,3). We apply equation (13) to obtain the Bayes
estimates of Rs k. The simulation results are presented in Table 4.

Tables 2-4 reveal that informative priors (priors 2, 4, and 6) perform the
best based on the MSE values. Additionally, in the first case, Bayes esti-
mates obtained by the MCMC method outperform those obtained by Lindley’s
approximation. It is also observed that among the different intervals, HPD
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intervals based on informative priors (priors 2, 4, and 6) have the best per-
formance in terms of AL and CP values. Furthermore, we have some general
observations from Tables 2-4:

e As n increases for fixed s and k, MSEs and ALs decrease while CPs
increase. This may be attributed to the fact that with an increase in
n, the number of failures increases, leading to more information being
gathered and thus improving the performance of the estimates.

e By increasing k for fixed s and n, MSEs and ALs decrease while CPs
increase. This could be due to the same reason as mentioned above, as
more failures lead to better estimation performance.

TABLE 2. Simulation results in general case.

MCMC
(k1,k2,mn,s1,s2) C.S Prior 1 Prior 2
MSE AL CP MSE AL CP
(R1,R1,51) | 0.0531 0.6152 0.041 | 0.0475 0.5843 0.944
(5,5,5,2,2) (Ra, R, So) | 0.0542  0.6142  0.940 | 0.0485 0.5714  0.945

(R3, Rs, S3) | 0.0550 0.6167 0.941 | 0.0467 0.5981 0.945
(Ry1, R1,54) | 0.0445 0.5237 0.945 | 0.0409 0.4851 0.949
(5,5,10,2,2) (Ra, Rp, Ss) | 0.0428 0.5034 0.946 | 0.0401 0.4777 0.948
(Rs, Rs, Sg) | 0.0433 0.5367 0.946 | 0.0400 0.4950 0.949
(R4, R4,S51) | 0.0395 0.4574 0.948 | 0.0358 0.4218  0.949
(10,10,5,2,2) (Rs, Rs,S2) | 0.0384 0.4496 0.949 | 0.0347 0.4128  0.950
(Rg, Rg, S3) | 0.0378 0.4480 0.949 | 0.0338 0.4119  0.950
(R4, R4,54) | 0.0335 0.4019 0.950 | 0.0281 0.3636  0.952
(10,10,10,2,2) (Rs, Rs,Ss) | 0.0315 0.3951 0.950 | 0.0275 0.3815 0.951
(Rg, Rg,S¢) | 0.0323 0.4185 0.951 | 0.0267 0.3625 0.951
(R, R1,51) | 0.0524 0.6235 0.940 | 0.0459 0.5618 0.945
(5,5,5,4,4) (Rg, Ry, S2) | 0.0534 0.6185 0.941 | 0.0475 0.5596 0.944
(R3, R3,S3) | 0.0539 0.6060 0.940 | 0.0486 0.5758 0.944
(Ry,R1,54) | 0.0438 0.5218 0.946 | 0.0395 0.4681 0.949
(5,5,10,4,4) (Rg, Ry, Ss5) | 0.0445 0.5395 0.945 | 0.0390 0.4625 0.948
(R3, R3, Sg) | 0.0429 0.5308 0.945 | 0.0387 0.4663  0.949
(R4, R4,51) | 0.0368 0.4750 0.948 | 0.0348 0.4309 0.950
(10,10,5,4,4) (Rs, Rs,S2) | 0.0374 0.4763 0.947 | 0.0339  0.4325 0.949
(Rg, Rg, S3) | 0.0389 0.4609 0.949 | 0.0322 0.4285 0.949
(R4, R4,54) | 0.0310 0.3951 0.950 | 0.0251 0.3324  0.950
(10,10,10,4,4) (Rs, Rs,Ss) | 0.0325 0.3851 0.951 | 0.0264 0.3374 0.951
(Rg, Rg, Sg) | 0.0336 0.3962 0.951 | 0.0275 0.3418 0.952

3.2. Real data analysis. In this section, we analyze a real dataset for illustra-
tive purposes. Recently, [7] conducted a comparison of wind speed data from
two districts on the Aegean coast of Turkey to illustrate the stress-strength
model. Such a comparison is essential for researchers involved in installing
wind turbines. In this study, we also use NASA’s POWER satellite data for
Fethiye and Datca stations are located on the Aegean coast of Turkey. Given
the high wind energy potential in this region, it is valuable to assess wind ca-
pacities using only satellite data without any physical investment. Data from
NASA’s POWER source can be directly accessed using its data access viewer
(https://power.larc.nasa.gov/data-access-viewer/). For this study, we utilize
wind speed observations (m/s) at a 10 m height on two hourly basis in January
2023. The data from the Fethiye station, recorded from 12 a.m. to 12 p.m.
(every two hours) each day of January 2023, is considered the first type of
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TABLE 3. Simulation results when common parameter y is unknown.
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MCMC Lindley
(k1,ka,mn,s1,s2) C.8 Prior 3 Prior 4 Prior 3 | Prior 4
MSE AL CP MSE AL CP MSE MSE
(R1,R1,51) 0.0484 0.5291 0.941 0.0437 0.5050 0.945 0.0523 0.0503
(5,5,5,2,2) (Ra, R2, S2) 0.0496 0.5314 0.940 0.0427 0.5196 0.946 0.0518 0.0509
(R3, R3, S3) 0.0467 0.5237  0.940 0.0441 0.4967 0.945 0.0520 0.0514
(R1,R1,54) 0.0412 0.4328 0.947 | 0.0393 0.3919 0.949 0.0467 0.0452
(5,5,10,2,2) (R2, R2, S5) 0.0409 0.4219 0.946 0.0389 0.4082 0.948 0.0470 0.0442
(R3, R3, Sg) 0.0417 0.4209 0.947 | 0.0375 0.3967 0.949 0.0481 0.0439
(R4, R4, S1) 0.0370 0.5037 0.949 0.0358 0.4747 0.950 0.0411 0.0391
(10,10,5,2,2) (Rs5, Rs, S2) 0.0381 0.5029 0.948 0.0349 0.4695 0.951 0.0420 0.0399
(R¢, Rg, S3) 0.0379 0.4967 0.949 0.0367 0.4782 0.950 0.0415 0.0381
(R4, R4, S4) 0.0313 0.3799 0.950 0.0275 0.3595 0.953 0.0378 0.0356
(10,10,10,2,2) (Rs5, R5, S5) 0.0303 0.3826 0.951 0.0269 0.3447 0.952 0.0385 0.0367
(Rg, Rg, Sg) 0.0315 0.3819 0.951 0.0270 0.3426 0.952 0.0390 0.0349
(R1,R1,51) 0.0475  0.5344 0.940 | 0.0423 0.4927 0.944 0.0537 0.0496
(5,5,5,4,4) (Ra, Ra, S») | 0.0485 0.5319 0.941 | 0.0418 0.5067 0.945 | 0.0529 | 0.0509
(R3, R3, S3) | 0.0466 0.5263 0.940 | 0.0435 0.4996 0.945 | 0.0544 | 0.0499
(R1,R1,54) 0.0408 0.4228 0.947 | 0.0369 0.4019 0.949 0.0485 0.0466
(5,5,10,4,4) (R2, R2, S5) 0.0412 0.4310 0.948 | 0.0374 0.4067 0.950 0.0496 0.0453
(R3, R3, Sg) 0.0400 0.4375 0.947 | 0.0360 0.3994 0.949 0.0477 0.0449
(R4, R4, S1) 0.0385 0.5037 0.950 0.0349 0.4674 0.950 0.0409 0.0388
(10,10,5,4,4) (Rs, R5, S2) 0.0377 0.4960 0.949 0.0356 0.4628 0.950 0.0417 0.0396
(R¢, Rg, S3) 0.0396 0.4970 0.949 0.0337 0.4646 0.951 0.0419 0.0377
(R4, R4, Sa) 0.0303 0.3790 0.951 0.0286 0.3419 0.953 0.0369 0.0344
(10,10,10,4,4) (Rs, R5, S5) 0.0315 0.3619 0.950 0.0296 0.3510 0.952 0.0359 0.0340
(R¢, Rg, Se) 0.0309 0.3648 0.950 0.0288 0.3449 0.952 0.0377 0.0337
TABLE 4. Simulation results when common parameter u is known.
MCMC Exact

(k1,ka,n,s1,s2) C.S Prior 5 Prior 6 Prior 5 | Prior 6

AL CP AL CP MSE MSE

(R1, R1,51) | 0.4957 0.940 | 0.4528 0.945 | 0.0443 | 0.0415

(5,5,5,2,2) (Ra, R, S2) | 0.5019  0.941 | 0.4417 0.945 | 0.0438 | 0.0407

(R3, R3, S3) 0.4936 0.940 0.4328 0.946 0.0429 0.0423

(R1,R1,54) 0.4325 0.946 0.3975 0.949 0.0385 0.0343

(5,5,10,2,2) (Ra, R, S5) | 0.4284  0.947 | 0.3888 0.948 | 0.0395 | 0.0338

(R3, R3, Sg) 0.4222 0.946 0.3812 0.949 0.0374 0.0330

(R4, R4, S1) 0.4019 0.949 0.3684 0.950 0.0352 0.0329

(10,10,5,2,2) (Rs, Rs, S») | 0.4163 0.948 | 0.3519 0.950 | 0.0349 | 0.0319

(Re, Rg, S3) | 0.4028 0.949 | 0.3618 0.949 | 0.0364 | 0.0300

(R4,R4,S4) | 0.3625 0.950 | 0.3028 0.952 0.0319 0.0285

(10,10,10,2,2) (Rs, Rs, S5) | 0.3592  0.950 | 0.3019 0.952 | 0.0308 | 0.0279

(Rg, Re, Sg) 0.3519 0.951 0.3067 0.953 0.0323 0.0267

(R1,R1,51) 0.5019 0.941 0.4628 0.946 0.0437 0.0423

(5,5,5,4,4) (Ro. R, So) | 0.4918 0.940 | 0.4527 0.947 | 0.0455 | 0.0433

(R3, R3,S3) | 0.5067 0.942 | 0.4592 0.946 0.0446 0.0415

(R1,R1,54) 0.4281 0.945 0.3517 0.948 0.0377 0.0334

(5,5,10,4,4) (Ra, Ro, S5) | 0.4235 0.945 | 0.3469 0.948 | 0.0367 | 0.0328

(R3, R3, Sg) 0.4197 0.946 0.3684 0.949 0.0388 0.0367

(R4, R4, 51) | 0.3974 0.948 | 0.3281 0.950 | 0.0320 | 0.0308

(10,10,5,4,4) (Rs, Rs, S2) | 0.4028 0.948 | 0.3319  0.951 | 0.0335 | 0.0300

(Rg, Rg, S3) 0.4095 0.949 0.3274 0.950 0.0328 0.0289

(R4, R4, Sa) 0.3418 0.950 0.2749 0.951 0.0285 0.0259

(10,10,10,4,4) (Rs, Rs, S5) | 0.3320 0.951 | 0.2817 0.952 | 0.0295 | 0.0246

(Rg, Rg, S¢) 0.3417 0.950 0.2899 0.951 0.0276 0.0230

strength data X;. Data recorded from 12 p.m. to 12 a.m. (every two hours) is
considered the second type of strength data X5. The daily average wind speed
data from the Datca station is regarded as stress data Y. Consequently, we
have k1 = k; = 6 and n = 31 for our model.
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First, we fit the tR distribution to the three datasets separately and obtain
the following results:

For Xy, Xl = 0.1691, 1 = 0.0998, and the p-value= 0.1240.
For Xo, 3\\2 = 0.1636, 1z = 0.1012, and the p-value= 0.1398.
For Y, A= 0.0366, & = 0.5070, and the p-value= 0.7119.

Based on the p-values, we conclude that the tR distribution provides suit-
able fits for the X7, X5, and Y datasets. The estimated parameters for these
datasets indicate that only the general case can be considered for their analysis.
We provide the empirical distribution functions and PP plots for these three
datasets in Figure 2. For the complete dataset, with s = (2,2) and k = (6, 6),

Empirical CDF PP-Plot for X,
1 1
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/'
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FIGURE 2. Empirical distribution function (left) and the PP-
plot (right) for X; (first row), for X5 (middle row), and for Y’
(third row).
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using non-informative priors, we obtain Egkc as 0.1412 and the corresponding
95% HPD interval as (0.0815, 0.2098). Now, we generate two different censoring
the progressive scheme as follows:

Scheme 1: RM = R?) = (0%9), S = (2*%,0*7),
(k=(6,6),s =(2,2),w =w; =wy =1).

Scheme 2: RY) = R = (1*%), § = (2%, 0*7),
(k=(3,3),s=1(2,2),w =w; =wy =1).

For Scheme 1, using non-informative priors, we obtain Eé‘f[kc as 0.1596 and
the corresponding 95% HPD interval as (0.0915,0.2215). For Scheme 2, also
with non-informative priors, we obtain ﬁé\’/fkc as 0.0158, and the correspond-
ing 95% HPD interval as (0.0006,0.0351). Upon comparing point and interval
estimates, we observe that Scheme 1 performs better than Scheme 2, as antic-
ipated. Furthermore, it is noticed that since all the estimates of Rsy are less
than 0.5, the Datca district should be given special attention for further in-
vestigations into wind energy power plant investments based on the considered
scenario.

4. Conclusion

In this paper, Bayesian inference on Rsy with non-identical component
strengths in the presence of the PFFC scheme for the tR distribution has
been thoroughly examined. This problem is quite general, and it encompasses
various scenarios, including:

o The R i parameter can be transformed into the R, ; parameter when
k = (k,0), or the R = P(X <Y) parameter when k = (1,0).
e The PFFC scheme can be adapted into different censoring schemes,

such as first failure censoring when Ry = --- = R,, = 0, progressive
censoring when w = 1, Type II censoring when R} = --- = R,,_1 =
0,R, = N —n,w = 1, and complete sample case when Ry = -+ =
R,=0,w=1.

e The two-parameter Rayleigh distribution can be reduced to the Rayleigh
distribution when p = 0.

As demonstrated, by addressing this problem, we can automatically tackle
several related problems and scenarios. The study presents different estimates
considering various scenarios, including cases where location parameters are dif-
ferent, the same, unknown, or known. Through Monte Carlo simulation studies,
different estimates are compared. The results highlight that informative priors
outperform non-informative ones in both point and interval estimates. Addi-
tionally, Bayes estimates obtained using the MCMC method perform better
than those obtained using Lindley’s approximation. Moreover, an increase in
the number of failures leads to the gathering of more information, subsequently
improving the accuracy of estimates. This comprehensive examination offers
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valuable insights into Bayesian inference in the presence of non-identical com-
ponent strengths and progressive censoring schemes, providing a foundation for
addressing similar problems in various contexts.

Appendix A

The algorithm of Gibbs sampling is as follows:

(1) Start with initial values (/\1(0), )\2(0), /\(0)), H1(0), H2(0) and H(0)-

(2) Set t =1.

(3) Generate ju1(4) from m(p1|Ay(4—1), data), using Metropolis-Hastings method,
with N(g1(41),1) as proposal distribution.

(4) Generate jig(s) from m(p2|Aa;—1), data), using Metropolis-Hastings method,
with N(uat—1),1) as proposal distribution.

(5) Generate ju() from 7(u|\;—1), data), using Metropolis-Hastings method,
with N (g —1),1) as proposal distribution.

n ki
(6) Generate Aj(y) from I'(nk+ay,by+wr > Y (wij, —pa—1))*(Rj, +1)).

i=141=1
n ko
(7) Generate Ay(;) from F(nk2+a2,b2+w2 > Z (vijz—uz(t,l))Q(Qj2+l)).

i=1j2=1
n
(8) Generate Ay from I'(n +ag, by + w Y (y; — p—1))*(Si + 1)).
i=1
(9) Evaluate

k1 ko

kO (ko [ o
Rowe= 2, 2 (Pi) (Pz)/ﬂ e~ M=) n

P1=S51p2=52

% (1 _ e_Al(t)(y_Hl(t))z)kl_ple_AZ(t)(y_HQ(t))2p2
% (1 _ e*Az(t)(y*ltz(t))r")lw*mz)\(y _ u(t))eik(”(yiw”)?‘dy.

(10) Set t =1t + 1.
(11) Repeat T} times, steps 3-10.
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