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Abstract. In this paper, a class of matrices, namely, Drazin-dagger ma-

trices, in which the Drazin inverse and the Moore-Penrose inverse com-

mute, is introduced. Also, some properties of the generalized inverses of
these matrices, are investigated. Moreover, some results about the Moore-

Penrose inverse, the Drazin inverse and the numerical range of some re-

ciprocal matrices are obtained. In particular, the relations between re-
ciprocal matrices, Drazin-Dagger matrices and star order are established.

Also, some properties of the generalized inverses of the conjugate EP ma-

trices are studied. To illustrate the results, some numerical examples are
also given.
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1. Introduction and preliminaries

Let Mm×n(F) be the set of all m × n matrices with entries in the field F,
where F is the real field R or the complex field C. For the case that m = n, the
algebra Mn×n(F) is denoted by Mn(F). For A ∈Mm×n(C), the Moore-Penrose
inverse of A is the unique matrix X ∈ Mn×m(C) that satisfies the following
properties:

(1) AXA = A, XAX = X, (AX)∗ = AX, (XA)∗ = XA.

The Moore-Penrose inverse of A is denoted by A†, and it is known that (A†)† =
A. For more information, see [2, 5, 15]. Next, we state some other known
generalized inverses of a square complex matrix A ∈ Mn(C) with index k.
Note that the index of A, ind(A), is the smallest nonnegative integer m such
that rank(Am) = rank(Am+1). The Drazin inverse of A, denoted by AD, see [2]
or [15], is the unique matrix X ∈Mn(C) satisfying

(2) XAX = X, AX = XA, XAm+1 = Am.
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In 2014, Malik and Tome in [11] defined the DMP (Drazin Moore-Penrose)
inverse of A as the unique matrix X ∈Mn(C) which satisfies

(3) XAX = X, XA = ADA, AmX = AmA†.

The DMP inverse of A is denoted by AD,†, and it is known that AD,† = ADAA†.
The MPD (Moore-Penrose Drazin) inverse A†,D of A is defined, see [11], as

(4) A†,D = A†AAD.

For A ∈ Mn(C), the core-nilpotent decomposition of A is A = A1 + A2 in
which A1, A2 ∈ Mn(C), rank(A1) = rank(A2

1), A2 is nilpotent, and A1A2 =
A2A1 = 0 [15]. Moreover, A1 = AADA. In 2018, Mehdipour and Salemi
introduced the CMP (Core-Moore-Penrose) inverse of A by using the core part
A1. The CMP inverse of A, see [14], is a matrix X ∈Mn(C) such that satisfies
the following properties:

(5) XAX = X, AXA = A1, AX = A1A
†, XA = A†A1.

This matrixX is unique and denoted byAc†. It is known thatAc† = A†AADAA†.
In 2020, Mosić in [16] introduced a new class of matrices, namely, the Drazin-
Star matrices, as AD,∗ = ADAA∗. A matrix A ∈ Mn(C) is a normal matrix if
AA∗ = A∗A, and A is called an EP (Equal Projection) matrix if AA† = A†A.
Malik, Rueda and Thome in [10] introduced m-EP matrices, and Mehdipour
and Salemi in [14] introduced core-EP matrices. A matrix A ∈ Mn(C) with
ind(A) = m, is called an m-EP matrix if AmA† = A†Am, and it is said to be
a core-EP matrix if A†A1 = A1A

†. Moreover, A is called SD (star-dagger) if
A∗A† = A†A∗. The Moore-Penrose and Drazin inverses of matrices have many
applications in various fields such as engineering, statistics and other sciences.
In particular, they can be used in graph theory, differential equations, and
Markov chains; one can see [3, 7, 18,20] for the mentioned applications.

A matrix A = (aij) ∈ Mn(R) is called a reciprocal matrix if aij > 0 and

aij =
1

aji
for all i, j = 1, 2, . . . , n. We know that the reciprocal matrices have

important applications in the AHP method, the Analytic Hierarchy Process
Method which is a tool in the analysis of decision-making, designed to as-
sist decision makers in solving complex problems involving a larger number of
decision-makers, as well as numerous criteria; for more information, see [19].

Let A ∈ Mn(C). The numerical range or the field of values of A is defined
as:

W (A) = {x∗Ax : x ∈ Cn, x∗x = 1},
which is useful in understanding matrices and has many applications in numer-
ical analysis, differential equations, systems theory, etc; see [6, 9]. W (A) is a
compact and convex set in C and contains the spectrum of A, σ(A). Recall
that, the open right half plane of C is denoted by RHP := {z ∈ C : Re z > 0}.
The following properties are several fundamental facts about the numerical
range of complex matrices:
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Proposition 1.1. [9, Chapter 1] Let A ∈ Mn(C). Then the following asser-
tions are true:

(1) W (AT ) = W (A), and W (A) = W (A) := {z : z ∈W (A)};
(2) W (αA+ βI) = αW (A) + β, where α, β ∈ C;
(3) W (U∗AU) = W (A), where U ∈Mn(C) is unitary;
(4) W (A) ⊂ RHP if and only if A+A∗ is positive definite, where a matrix

X ∈Mn(C) is positive definite if x∗Xx > 0 for all nonzero x ∈ Cn;
(5) W (A) ⊂ R if and only if A is Hermitian.

In this paper, we will study some algebraic properties of the Drazin-Dagger
matrices, reciprocal matrices and con-EP matrices. For this, in Section 2, by
using the Drazin inverse and the Moore-Penrose inverse, we introduce a class
of matrices, namely, Drazin-Dagger matrices (shortly, DD matrices), and we
study some algebraic properties of these matrices. In Section 3, we consider the
reciprocal matrices and we give some results about their well-known generalized
inverses and their numerical range. In Section 4, we consider the conjugate EP
matrices and we give some results for the generalized inverses of these matrices
and by considering the star order, we obtain some other results. To illustrate
the main results in the paper, we give some numerical examples.

2. Drazin-Dagger matrices

In this section, by using the Drazin inverse and the Moore-Penrose inverse,
we introduce a class of matrices in which the Drazin inverse and the Moore-
Penrose inverse commute. Also, we obtain some results for these matrices.

Definition 2.1. A matrix A ∈Mn(C) is called a DD (Drazin-Dagger) matrix,
if

ADA† = A†AD.

In the following theorem, we give some properties of DD matrices.

Theorem 2.2. Let A ∈ Mn(C) be a DD matrix with ind(A) = m. Then the
following assertions are true:

(1) AD,†AD = A†,DA†;
(2) Ac† = ADA†A2A† = A†A2A†AD;
(3) A†Am = ADAm;
(4) ADA†AD = A†ADA†;
(5) ADA†Am+1AD,† = A†AmA†;
(6) A∗A(AD)2A†A = A∗AD.
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Proof. To prove the assertion (i), by (1), (2), (3) and (4), we have

AD,†AD = ADAA†AD

= ADAADA†

= ADA†

= A†AD

= A†AA†AD

= A†AADA†

= A†,DA†.

So, the result in (i) holds. To prove the first equality in (ii), by (2), we have

Ac† = A†AADAA†

= A†ADAAA†

= ADA†A2A†;

as required. The second equality can be verified in the same manner as in the
proof of the first equality, and so, the proof of (ii) is complete. To prove the
assertion (iii), by (2) and (1), we have

A†Am = A†ADAm+1

= ADA†Am+1

= ADAADA†Am+1

= ADADAA†AAm

= ADADAm+1

= ADAm;

as required. To prove the assertion (iv), by (1) and (2), we have

ADA†AD = ADA†AA†AD

= A†ADAADA†

= A†ADA†.

This completes the proof of (iv). To prove the assertion (v), by (3) and (2), we
have

ADA†Am+1AD,† = ADA†Am+1A†

= A†ADAm+1A†

= A†AmA†.
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So, the result in (v) holds. Finally, to prove the assertion (vi), by (2) and (1),
we have

A∗A(AD)2A†A = A∗AADADA†A

= A∗AADA†ADA

= A∗ADAA†AAD

= A∗AD;

completing the proof. �

In the following theorem, we present an equivalent definition for DD matri-
ces. For this, we need the following lemma.

Lemma 2.3. Let A ∈Mn(C) with ind(A) = m. Then the following assertions
are true:

(1) [17, Corollary 2.5] ADA† = A†AD if and only if A†AADA = AADAA†;
(2) [14, Theorem 3.5] A is core-EP if and only if A is m-EP.

Theorem 2.4. Let A ∈Mn(C) with ind(A) = m. theoremen A is a DD matrix
if and only if A is m-EP.

Proof. Using the fact that AADA = A1, where A1 is the core part of A, we
see, by Lemma 2.3(i), that A is DD if and only if A is core-EP. Now, by using
Lemma 2.3(ii), this is equivalent to A being m-EP; completing the proof. �

For A,B ∈ Mm×n(C), it is said that A is below B under the star partial
order (denoted by A ≤∗ B) if A∗A = A∗B and AA∗ = BA∗; see [15, Def.
5.2.1.].

Lemma 2.5. [8, p. 10670] Let A,B ∈Mm×n(C). Then A ≤∗ B if one of the
following equivalent conditions is satisfied:

(1) AA∗ = BA∗ and A∗A = A∗B;
(2) AA† = BA† and A†A = A†B;
(3) AA† = AB† and A†A = B†A.

In the following theorem, we state a result about the star order for DD
matrices.

Theorem 2.6. Let A,B ∈Mn(C). If A ≤∗ B and A is a DD matrix, then

(AD)2BA† = A†B(AD)2 and Ac†A = ADA†BA.

Proof. To prove the first equality, by (2) and Lemma 2.5(ii), we have

ADA† = A†AD ⇒ ADAADA† = A†ADAAD

⇒ ADADAA† = A†AADAD

⇒ (AD)2BA† = A†B(AD)2.
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So, the result holds. To prove the second equality, by (1), (2), Lemma 2.5(ii)
and the fact that Ac† = A†AADAA†, we have

Ac†A = A†AADAA†A

= A†AADA

= A†ADAA

= ADA†AA

= ADA†BA.

So, the proof is complete. �

3. On generalized inverses of reciprocal matrices A ∈ Mn(R)
with n < 4

We recall that a matrix A = (aij) ∈Mn(R) is a reciprocal matrix if aij > 0

and aij =
1

aji
for all i, j = 1, 2, . . . , n. Obviously, the only 1 × 1 reciprocal

matrix is A = [1], which is nonsingular. So, in this section, we study the
generalized inverses of 2× 2 and 3× 3 singular reciprocal matrices. Note that

all 2 × 2 reciprocal matrices are singular; because det(

[
1 a
1
a 1

]
) = 0. In the

following theorem which is a key result in this section, we study the Moore-
Penrose inverse and the Drazin inverse of these matrices.

Theorem 3.1. Let A ∈Mn(R) with n ∈ {2, 3} be a singular reciprocal matrix.
Then

A† =
1

‖A‖2F
AT and AD =

1

n2
A,

where for A = (aij), ‖A‖2F =
∑
i,j |aij |2.

Proof. To prove the first equality, for n = 3, consider a reciprocal matrix A

as A =

1 a b
1
a 1 c
1
b

1
c 1

. Since det(A) = 0, it follows that ac = b. Now, by

taking B :=
1

‖A‖2F

1 1
a

1
b

a 1 1
c

b c 1

, and a simple computation and also by using

the equation ac = b, we see that the equalities BAB = B and ABA = A hold.
Obviously, (AB)T = AB and (BA)T = BA, and so, by (1), we have B = A†;
as required. By (1) and in the same manner as in the above proof, the result
holds for n = 2, and so, the proof of the first equality is complete. To prove the
second equality, similarly, by (2), the result holds; completing the proof. �

The result in Theorem 3.1 does not hold for singular reciprocal matrices
with higher sizes; see the following example.
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Example 3.2. Let A =


1 2 10 5
1
2 1 5 1

2
1
10

1
5 1 2

1
5 2 1

2 1

. Obviously, A is a singular recipro-

cal matrix. By simple computations, we can see that

A† =


−0.0020 0.0206 −0.0164 0.0323
−0.0698 0.1088 −0.1147 0.5238
0.0421 0.1426 −0.0869 −0.1080
0.1188 −0.2929 0.2761 0

, and

1

‖A‖2F
AT =


0.0063 0.0032 0.0006 0.0013
0.0126 0.0063 0.0013 0.0126
0.0632 0.0316 0.0063 0.0032
0.0316 0.0032 0.0126 0.0063

.

So, A† 6= 1

‖A‖2F
AT . Moreover,

1

n2
A =


0.0625 0.1250 0.6250 0.3125
0.0313 0.0625 0.3125 0.0313
0.0063 0.0125 0.0625 0.1250
0.0125 0.1250 0.0313 0.0625

, and

AD =


0 0.3404 −0.3190 0.4681

−0.0170 0 −0.2020 0.4894
0.0128 0.1617 0 −0.1446
0.0277 −0.1489 0.4681 0

,

and hence,
1

n2
A 6= AD. Therefore, the result in Theorem 3.1 does not hold for

n = 4.

In the next theorem, we present some results about the well-known gener-
alized inverses of reciprocal matrices.

Theorem 3.3. Let A ∈Mn(R) with n ∈ {2, 3} be a singular reciprocal matrix.
Then the following assertions are true:

(1) A is SD (i.e., ATA† = A†AT );
(2) ADA†A = AA†AD;

(3) (AD)† =
n4

‖A‖4F
(A†)D;

(4) AD is SD;

(5) A2A†AD =
1

n2
A2;

(6) ADA† =
1

n2‖A‖2F
AAT ;

(7) AD,† =
1

n2‖A‖2F
A2AT .
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Proof. To prove the assertions (i), (ii) and (iii), by Theorem 3.1, we see that

ATA† = A†AT =
1

‖A‖2F
(AT )2, ADA†A = AA†AD =

1

n2‖A‖2F
AATA, (AD)† =

n2

‖A‖2F
AT and (A†)D =

‖A‖2F
n2

AT . So, the results hold. To prove the assertion

(iv), by part (i), A is an SD matrix, and so, by [2, Ex. 33 in p. 167], (A†AT )D =
(A†)D(AT )D = (AT )D(A†)D. Hence, by part (iii) and the fact that (AD)T =
(AT )D (see [2, Ex. 27 in p. 166]), we have

(AD)T (AD)† = (AT )D
n4

‖A‖4F
(A†)D

=
n4

‖A‖4F
(A†AT )D

=
n4

‖A‖4F
(A†)D(AT )D

= (AD)†(AD)T .

This shows that AD is an SD matrix. To prove the assertion (v), by part (ii),
(2), (1) and Theorem 3.1, we can see that

A2A†AD = AADA†A

= ADAA†A

= ADA

=
1

n2
A2.

So, the result in (v) holds. In view of Theorem 3.1, the assertion (vi) is obvious.
To prove the assertion (vii), by Theorem 3.1 and the fact that AD,† = ADAA†,
the result holds. So, the proof is complete. �

We have the following result about the Frobenius norm of 2 × 2 or 3 × 3
reciprocal matrices. We denote by Jn the n × n matrix whose all entries are
equal to 1.

Proposition 3.4. Let A be a 2×2 or 3×3 reciprocal matrix. Then ‖A‖F ≥ n.
The equality holds if and only if A = Jn.

Proof. We know that (x +
1

x
) ≥ 2 for every x > 0. This shows, by a simple

computation, that ‖A‖F ≥ n; as required. Also, by the fact that (x +
1

x
) = 2

if and only if x = 1, we see that ‖A‖F = n if and only if A = Jn. So, the proof
is complete. �

By Theorem 3.1, Propositions 1.1((i) and (ii)) and 3.4, we have the following
result about the numerical range of a singular reciprocal matrix.

Corollary 3.5. Let A be a 2× 2 or 3× 3 singular reciprocal matrix. Then
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W (A†) ⊆W (AD) ⊆W (A).

We also have the following equivalent conditions for singular reciprocal ma-
trices.

Theorem 3.6. Let A be a 2× 2 or 3× 3 singular reciprocal matrix. Then the
following conditions are equivalent:

(1) A is a DD matrix;
(2) A is a normal matrix;
(3) W (A†) = W (AD);
(4) A = Jn;
(5) A is a Hermitian matrix.

Proof. (i)⇒ (ii); By Theorem 3.1, we have ADA† = 1
n2‖A‖2F

AAT and A†AD =
1

n2‖A‖2F
ATA. Since A is DD, it follows that AAT = ATA; as required.

(ii) ⇒ (iii); By the fact that every normal matrix is EP (see [15, Remark
2.2.39]), we have A† = AD, and so, the result holds.

(iii) ⇒ (iv); By Theorem 3.1 and Proposition 1.1((i) and (ii)), we have
1
‖A‖2F

W (A) = 1
n2W (A). Thus, ‖A‖F = n, and hence, by Proposition 3.4,

A = Jn.
(iv)⇒ (v); This is obvious.
(v)⇒ (i); Since A is a Hermitian matrix, it follows that A is EP. Hence, by

Theorem 2.4, A is a DD matrix. Therefore, the proof is complete. �

Recall that a point α ∈ C on the boundary of W (A) is called a sharp point
of W (A) [9, Chapter 1], if there are angles θ1 and θ2 with 0 6 θ1 < θ2 < 2π
for which

Re(eiθα) = max{Re(z) : z ∈W (eiθA)}, for all θ ∈ (θ1, θ2).

The following theorem shows that when the numerical range of a singular re-
ciprocal matrix has no sharp point. For this, we need the following lemmas.

Lemma 3.7. [4, Theorem 5] Let A ∈ Mn(C) and α ∈ C. Then α is a sharp
point of W (A) if and only if A is unitary similar to αIm ⊕ B (m ≤ n) such
that α /∈W (B).

Lemma 3.8. [1, Theorem 2.5] Let A ∈Mn(C) be a singular matrix such that
the origin is a boundary point of W (A). Then Ak is an EP matrix for every
k ∈ N.

Theorem 3.9. Let A ∈Mn(R) with n ∈ {2, 3} be a singular reciprocal matrix.
Then W (A) has no sharp point if and only if A 6= Jn.

Proof. Obviously, if A = Jn, then W (A) = [0, n], and so, it has two sharp
points. Now, we assume that A 6= Jn and we will show that W (A) has no
sharp point. For n = 3, the singularity of A implies that A has two eigenvalues
λ1 = 0 with algebraic multiplicity 2, and λ2 = 3 with algebraic multiplicity
1. We know, by [9, Theorem 1.6.3], that every sharp point of W (A) is an
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eigenvalue of A. So, we first claim that the origin is an interior point of W (A).
For this, if the origin is a boundary point of W (A), then by Lemma 3.8, A is

an EP matrix, and hence, by Theorem 3.1, we have
1

‖A‖2F
ATA =

1

‖A‖2F
AAT .

Thus, A is normal, and so, by Theorem 3.6, A = J3; a contradiction.
Now, we show that 3 is an interior point of W (A). For this, if 3 is a sharp

point of W (A), then by Lemma 3.7, there exists a unitary matrix U ∈ M3(C)

such that A = U∗
[
B 0
0 3

]
U , where 3 /∈ W (B). Thus, B = 0 or B is similar

to

[
0 1
0 0

]
. Since A 6= J3, it follows, by Proposition 3.4, that ‖A‖F > 3.

Now, if B = 0, then ‖A‖F = 3; a contradiction. For the case that B is

similar to

[
0 1
0 0

]
, we see that A is similar to C :=

0 1 0
0 0 0
0 0 3

. This shows

that rank(A) = rank(C); a contradiction, because clearly, rank(A) = 1 and
rank(C) = 2. Therefore, 3 is an interior point of W (A); as required.

For n = 2, since A 6= J2, it follows, by [9, Theorem 1.3.6], that W (A) is a
closed elliptical disk in which the eigenvalues of A are the interior points of it.
So, the proof is complete. �

At the end of this section, we consider the order A ≤∗ B in which A is below
B under the star partial order. We know that if A ≤∗ B, then A† ≤∗ B†;
see [15, Corollary 5.2.9]. But, in general, the star partial order AD ≤∗ BD
does not hold when A ≤∗ B; see the following example.

Example 3.10. Let A =

1 2 0
0 0 0
0 0 0

 and B =

 1 2 0
−4 2 0
0 0 0

. Hence, A ≤∗ B.

By a simple computation, we have

AD =

0.3333 0.6667 0
0 0 0
0 0 0

, and BD =

0.2 −0.2 0
0.4 0.1 0
0 0 0

.

It shows that AD 
∗ BD.

The following theorem shows that if A ≤∗ B, then the star partial order
AD ≤∗ BD is valid for singular reciprocal matrices.

Theorem 3.11. Let A,B ∈ Mn(R) with n ∈ {2, 3} be two singular reciprocal
matrices. If A ≤∗ B, then AD ≤∗ BD.
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Proof. By Lemma 2.5(i), we have AAT = BAT and ATA = ATB. So, by
Theorem 3.1, we can see

AD(AD)T =
1

n4
AAT

=
1

n4
BAT

= BD(AD)T ;

as required. Similarly, we can see that (AD)TAD = (AD)TBD, and hence the
proof is complete. �

4. Conjugate EP matrices

Recall that A ∈ Mn(C) is said to be con-EP (conjugate EP) if R(A) =
R(AT ), where R(.) is the row space of a matrix. Obviously, A is con-EP if

and only if AA† = A†A. The matrix A is called con-EPr if A is con-EP and
rank(A) = r. Obviously, A is con-EPr if and only if A† is con-EPr. Also, con-
EP matrices coincides with that of EP matrices for the class of real matrices and
the class of nonsingular matrices; but not for nonreal matrices, for example,

the matrix A =

[
1 i
i −1

]
is con-EP, but it is not EP. We know that every

conjugate normal matrix (i.e., AA∗ = A∗A) is con-EP. The matrix A is called
EPr if A is EP and rank(A) = r. For more information, see [12, 13]. Now,
we state the following result about the numerical range of these matrices. For
this, we need the following lemmas.

Lemma 4.1. [12, Theorem 3] Let A ∈Mn(C). Then A is con-EP if and only
if AA is EPr and rank(AA) = rank(A).

Lemma 4.2. Let A ∈Mn(C). If A is a con-EP matrix, then (AA)† = A
†
A†.

Proof. SinceA is con-EP, it follows, by [12, Theorem 2], thatA = U

[
D 0
0 0

]
UT ,

where U is unitary and D is nonsingular. Hence, AA = U

[
DD 0

0 0

]
U∗, and

so,

(6) (AA)† = U

[
(DD)−1 0

0 0

]
U∗.

On the other hand, we have A† = U

[
D−1 0

0 0

]
U∗. Thus,

(7) A
†
A† = U

[
(D)−1 0

0 0

]
U
∗
U

[
D−1 0

0 0

]
U∗ = U

[
(DD)−1 0

0 0

]
U∗.

Therefore, by relations (6) and (7) the result holds. �
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Theorem 4.3. Let A,B ∈ Mn(C) be two con-EP matrices. If A ≤∗ B, then
the following assertions are true:

(1) AA ≤∗ BB. In addition W (AA) ⊆W (BB);

(2) AB = A†AB2 = BAA†B, and BA = B2AA† = BA†AB.

Proof. To prove the assertion (i), at first, we claim that AA ≤∗ BB. For this,
we must show that (AA)(AA)† = (AA)(BB)† and (AA)†(AA) = (BB)†(AA).

By Lemma 2.5(iii), Lemma 4.2 and the fact that AA† = A†A, we have

(AA)(BB)† = AA B
†
B†

= AA A
†
B†

= AA†AB†

= AA†AA†

= AA A
†
A†

= (AA)(AA)†.

In the same manner as above, we have (BB)†(AA) = (AA)†(AA). Thus,
AA ≤∗ BB. Since A is con-EP, it follows by Lemma 4.1, that AA is EP.
Therefore, by [1, Theorem 2.9], the proof of the assertion (i) is complete.

To prove the assertion (ii), by Lemma 2.5(ii), we have A = BA†A and

A = AA†B. Hence, by the fact that AA† = A†A, we can see

AB = BA†AB = BAA†B, and AB = AA†BB = A†AB2.

Also, we have

BA = BBA†A = B2AA†, and BA = BAA†B = BA†AB,

completing the proof. �
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