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Abstract. The parallel systems are special important types of coherent struc-

tures and have many applications in various areas. In this paper we con-

sider a two-exchangeable-component parallel system for the Generalized Farlie-

Gumbel-Morgenstern (Generalized FGM) distribution. We study the reliability

properties of the residual lifetime of the system under the condition that both

components of the system are operating at time t, and obtain an explicit ex-

pression for the mean residual lifetime (MRL) for such system. The asymptotic

behavior of the proposed MRL function of the system is also investigated when

the exchangeable lifetimes of components have a Generalized FGM bivariate

exponential. Finally, we present some results for the Kendall’s Tau correlation

coefficient of Generalized FGM bivariate copula.
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1. Introduction

The mean residual lifetime function is one of the important measures in the

reliability theory. During the last few years, many authors have studied properties

of this function for coherent systems particularly parallel systems as well (see [1],

[13] and [21]).

Much attention of authors has been paid to analyze the reliability of systems with

independent components. Among others, we can imply to Asadi and Bayramoglu

[2], Zhao et al. [27], Kochar and Xu [11] and Salehi and Asadi [23]. In reality, the

components of the systems are dependent. Lately, many authors have been paid

their attentions into this problem. In this regard, we can refer to Navaro et al. [18],

Zhang [26], Sadegh [22], Navarro and Rubio [17], Rezapoor et al. [20], Jia et al. [9],

Tavangar and Asadi [24], and Navarro and Gomis [15].

The copula function is a useful statistical tool to model the dependence structure

among components of the system in the reliability theory (for example see [9] and

[20]). The word copula was first used in a mathematical or statistical sense by Sklar

in 1959. After that, copulas appeared in many literatures by several authors. In

this field we refer to [10] and as a good reference [19].

Suppose T1, T2, . . . , Tn are dependent random variables representing the lifetimes

of the components of a system. Assume that Ti has a continuous distribution Fi,

density fi and survival F̄i, i = 1, 2, . . . , n. Denote by T1:n, T2:n, . . . , Tn:n the ordered

lifetimes of the components. Two important special cases of coherent systems are

parallel systems and series systems. A parallel system, consisting of n components,

operates if and only if at least one component works. It is obvious that the lifetime

of the system is Tn:n. As a dual of parallel system, the lifetime of series system is

T1:n. Under the exchangeability assumption of Ti’s, the reliability function of the

parallel system, denoted by F̄n:n(t), is given by

F̄n:n(t) = P (Tn:n > t) =

n∑
j=1

(−1)j−1

(
n

j

)
P (T1:j > t),

for more details see [5].

Let T be the lifetime of a component with reliability function F̄ . Assuming that

the component has survived up to time t, the residual lifetime of T is defined as
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Tt = {T − t|T > t}. The reliability function of Tt is equal to

F̄ (x|t) = F̄ (x+ t)

F̄ (t)
.

The expected value of Tt called the mean residual lifetime or remaining lifetime of

component, can be defined as follow for all t,

M(t) = E(T − t|T > t) =

∫∞
t F̄ (x)dx

F̄ (t)
.

The mean residual lifetime of a parallel system with n components, denoted by

Mn(t), is

Mn(t) = E(Tn:n − t|Tn:n > t)

=
1

F̄n:n(t)

∫ ∞

t

F̄n:n(x)dx.

Bairamov et al. [3] considered the MRL function of a parallel system consisting of

i.i.d. components under the condition that all components are working at time t, and

presented some significant results. Several authors have been studied the general

case of this function for coherent systems. Among others, we refer to Asadi and

Bayramoglu [2], Zhao et al. [27], Li and Zhao [13], Sadegh [21] and Kochar and Xu

[11]. Here we study this function for a parallel system including two exchangeable

components under the condition that both components are operating at time t,

i.e. {T2:2 − t|T1:2 > t}. The expected value of this conditional random variable

is also known as mean general residual lifetime (MGRL) in some literatures (e.g.

see [13] and [27]). In following we explore some results on the limiting behavior

of presented MRL function for Generalized FGM bivariate exponential distribution

using an illustrative example.

This paper is organized as follows. Section 2 provides some concepts and neces-

sary preliminaries. In Section 3, we consider the residual lifetime of parallel systems

containing of two exchangeable components under the condition that both compo-

nents of the system are working at time t. Under the Generalized FGM model,

we give an explicit expression for the MGRL function of the system and explore

its asymptotic behavior by using an example. Finally, we obtain a formula for the

Kendall’s Tau correlation coefficient of Generalized FGM bivariate copula and show

that the extension range of Kendall’s Tau for the Generalized FGM copula is wider

than the one for the FGM copula in Section 4.
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2. Preliminaries

In this section we give some definitions and concepts that are used in the next

section. First, we introduce the copula function (see [19]).

Definition 2.1. A two-dimensional copula is a function C : [0, 1]2 → [0, 1] such

that

1. for every u, v ∈ [0, 1],

C(u, 1) = u , C(1, v) = v and C(u, 0) = 0 = C(0, v);

2. for every u1, u2, v1, v2 ∈ [0, 1] such that u1 ≤ u2 and v1 ≤ v2,

C(u2, v2)− C(u2, v1)− C(u1, v2) + C(u1, v1) ≥ 0.

In the following we present the definition of Generalized FGM copulas, for more

details see [4].

Definition 2.2. CGFGM is said to be the Generalized FGM copula on [0, 1]2, if for

all u, v ∈ [0, 1],

CGFGM(u, v) = uv

[
1 + θ

(
1− uα

)(
1− vα

)]m
,

where α > 0, m = 0, 1, 2, . . ., and

−min

{
1,

1

mα2

}
≤ θ ≤ 1

mα
,

are the dependent parameters.

Remark 2.1. When α = 1 and m = 1, Generalized FGM bivariate copula convert

to FGM bivariate copula that introduced by Morgenstern [14], Gumbel [7] and

Farlie [6]. If m = 0 or θ = 0, this model include the independent model.

From Eq. (2.6.1) in [19], the Generalized FGM survival copula denoted by

ĈGFGM, is equal to

ĈGFGM(u, v) = u+ v − 1 + CGFGM(1 − u, 1− v), 0 ≤ u, v ≤ 1.(1)

Now, if F̄ (x1, x2) is the Generalized FGM bivariate survival function of random

vector (X1, X2), using (1) we have

F̄ (x1, x2) = F̄1(x1) + F̄2(x2)− 1

+(1− F̄1(x1))(1− F̄2(x2))

[
1 + θ

(
1− (1− F̄1(x1))

α
)(

1− (1− F̄2(x2))
α
)]m

,(2)
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where F̄i is the reliability function of Xi, i = 1, 2, and α,m and θ are defined in

Definition 2.2.

3. The mean residual lifetime

In this section we consider a parallel system including two exchangeable compo-

nents with lifetimes T1 and T2 where Ti has absolutely continuous distribution and

survival function Fi, F̄i, i = 1, 2, respectively. The survival function of the general

residual lifetime of the system denoted by ψ(x|t), under the condition that both

components of the system are working at time t, is equal to

ψ(x|t) = P (T2:2 − t > x|T1:2 > t)

=
2F̄ (x+ t, t)− F̄ (x + t, x+ t)

F̄ (t, t)
.

For the Generalized FGM model, from (2) and under the assumption that the

system components have the same distribution F , we can rewrite ψ(x|t) as follows

ψ(x|t) = 1

F̄ 2(t) + F 2(t)
∑m

i=1

(
m
i

)
θi
(
1− Fα(t)

)2i

×
[
2F̄ (t)F̄ (x+ t)− F 2(x+ t)

m∑
i=1

(
m

i

)
θi
(
1− Fα(x+ t)

)2i

(3)

−F̄ 2(x+ t) + 2F (t)F (x+ t)

m∑
i=1

(
m

i

)
θi(1− Fα(t))i

(
1− Fα(x + t)

)i
]
.

The mean general residual lifetime of the system can be defined as follows

Ψ(t) = E(T2:2 − t|T1:2 > t) =

∫ ∞

0

ψ(x|t)dx, for t > 0.(4)

Theorem 3.1. Suppose that T1 and T2 have a Generalized FGM bivariate distri-

bution with parameters α, θ and m. Let Ψ(t) be the MGRL function of a parallel

system consisting of two exchangeable components that they have common distri-

bution function F . Then, for t > 0,

Ψ(t) =
1

1 + φ2(t)
∑m

i=1

(
m
i

)
θi
(
1− Fα(t)

)2i

[
2M1(t)−M2(t)

+
2φ(t)

∑m
i=1

(
m
i

)
θi
(
1− Fα(t)

)i

µi
1(t)

F̄ (t)
−

∑m
i=1

(
m
i

)
θiµi

2(t)

F̄ 2(t)

]
,
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where φ(t) = F (t)
F̄ (t)

, Ml(t) is the mean residual lifetime of the series system with l

independent and identical components for l = 1, 2, and for i = 1, 2, . . . ,m, j = 1, 2,

µi
j(t) =

∫ ∞

0

[
F (x+ t)

(
1− Fα(x+ t)

)i
]j
dx.

Proof: From (3), (4) and using simple algebra, the proof can be obtained easily.

Example 3.1. Let T1 and T2 denote the lifetimes of two components which are

connected in a parallel system. Assume that the exchangeable lifetimes T1 and T2

have Generalized FGM bivariate exponential distribution with parameters α, m, θ

and λ > 0. Using Theorem 3.1, we can obtain an explicit expression for Ψ(t). The

graphs of MGRL functions for different parameters are presented in Figures 1 and

2.

It is shown in Figure 1 that the shape of MGRL function depends on the pa-

rameter θ. In this case there exists a change point obtained by solving Ψ′(t) = 0,

that is denoted by t∗. If θ > 0, for t < t∗, the MGRL function is increasing, and

for t > t∗, the MGRL function is decreasing. For the another case, if θ < 0, for

t < t∗, the MGRL function is decreasing and when t > t∗, the MGRL function is

increasing. For large value of t, Ψ(t) is constant that is

lim
t→∞Ψ(t) =

3

2λ
.

This is the value of MGRL function in the independent case, (see [16]). These

results are shown in Figure 1 for two cases with different values of θ. In case a)

λ = 1, m = 2 and α = 1.5; and case b) λ = 0.5, m = 2 and α = 2.

Remark 3.1. In the Generalized FGM bivariate model, if m = 1 and α = 1, Ψ(t)

in Example 3.1 deduce to the mean general residual lifetime of a parallel system

consisting of two exchangeable components for FGM family, which is already derived

by Ucer and Gurler [25].

Corollary 3.1. Under the Generalized FGM model for the parallel system con-

sisting of two arbitrary components, it is easy to obtain Ψ(t) in the same way of

Theorem 3.1. Also, if the lifetimes of components have exponential distribution

with parameters λi > 0, i = 1, 2, then

lim
t→∞Ψ(t) =

1

λ1
+

1

λ2
− 1

λ1 + λ2
.
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Figure 1. The curves of Ψ(t) of parallel system consisting of two

components for the Generalized FGM distribution with exponential

marginals for different values of θ.

As shown in Figure 2, the parameters m and α are the scale parameters. We

plot the MGRL functions for two values of θ = 0.1,−0.03, in Figure 2.

Figure 2. The curves of Ψ(t) of parallel system consisting of two

components for the Generalized FGM distribution with exponential

marginals for different values of α.

4. Kendall’s Tau for the Generalized FGM copula

One of the most commonly used nonparametric measures of association for two

random variables is Kendall’s Tau (τ) introduced in terms of concordance. Let

(X1, Y1) and (X2, Y2) be independent and identically distributed random vectors.
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The population version of Kendall’s Tau is defined as the difference between the

probability of concordance and the probability of discordance, i.e.

τ = P [(X1 −X2)(Y1 − Y2) > 0]− P [(X1 −X2)(Y1 − Y2) < 0].

To introduce the sample version, let (x1, y1), (x2, y2), . . . , (xn, yn) denote a random

sample of n observations from a vector (X,Y ) of continuous random variables. So

that the Kendall’s Tau is represented as follow

τ =
C −D

C +D
=
C −D(

n
2

) ,

where C and D are the number of concordant pairs and discordant pairs, respec-

tively. For more details, we refer to [8] and [12], and as a good reference [19].

In this section, we present an explicit expression of the dependence measures

Kendall’s Tau for the Generalized FGM bivariate copula. Also, we show that the

admissible range of Kendall’s Tau for the Generalized FGM copula is wider than

the one for the FGM copula. First, we need to give an useful theorem to prove the

result (see [19] for a proof).

Theorem 4.1. Let X and Y be continuous random variables whose copula is C.

Then the population version of Kendall’s Tau for X and Y is given by

τ = 4

∫ 1

0

∫ 1

0

C(u, v)dC(u, v) − 1,

or equivalently

τ = 1− 4

∫ 1

0

∫ 1

0

∂

∂u
C(u, v)

∂

∂v
C(u, v)dudv.

In the following theorem, we reformulate the Kendall’s Tau correlation coefficient

for the Generalized FGM bivariate copula.

Theorem 4.2. Let (X,Y ) be a random vector having a Generalized FGM bivariate

distribution. Then, the Kendall’s Tau equals to

τ = 1− 4

(
1

α2

2m∑
i=0

(
2m

i

)
θi
[
B(i+ 1,

2

α
)
]2

+m2
2m−2∑
i=0

(
2m− 2

i

)
θi+2

[
B(i+ 2, 1 +

2

α
)
]2

−2m

α

2m−1∑
i=0

(
2m − 1

i

)
θi+1B(i+ 2,

2

α
)B(i+ 1, 1 +

2

α
)

)
,

where B(a, b) = Γ(a)Γ(b)
Γ(a+b) .
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Proof. Using Theorem 4.1 and taking the partial derivatives of Generalized FGM

copula, we have

τ = 1− 4

∫ 1

0

∫ 1

0

∂

∂u
CGFGM(u, v)

∂

∂v
CGFGM(u, v)dudv

= 1− 4

∫ 1

0

∫ 1

0

(
1 + θ(1 − uα)(1 − vα)

)2m

×
[
uv −

mαθuv
(
vα(1− uα) + uα(1− vα)

)
1 + θ(1− uα)(1− vα)

+
m2α2θ2vα+1uα+1(1 − uα)(1 − vα)[

1 + θ(1 − uα)(1− vα)
]2

]
dudv.

Now, using the Binomial expansion, i.e.

(
1 + θ(1 − uα)(1− vα)

)m

=
m∑
i=0

(
m

i

)[
θ(1− uα)(1 − vα)

]i
,

and the fact that∫ 1

0

∫ 1

0

u(1− uα)iv(1 − vα)idudv =

[
Γ(i+ 1)Γ( 2

α )

αΓ(i+ 1 + 2
α )

]2
,

the proof is complete.

Remark 4.1. The Kendall’s Tau correlation coefficient of Generalized FGM bivari-

ate copula is computed for some admissible range of associated parameter θ in Table

1. It is known that the range of Kendall’s Tau correlation coefficient for the FGM

copula is between [−0.22, 0.22], see [19]. However, by Table 1, we indicated that

the extension range of Kendall’s Tau for the Generalized FGM bivariate copula is

wider than the one for the FGM copula. According to Table 1, for the Generalized

FGM copula, the strongest positive of Kendall’s Tau correlation coefficient attains

τ ∼= 0.29 and also the weakest negative of Kendall’s Tau correlation coefficient is

τ ∼= −0.35.
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Table 1. The admissible values of dependent parameter θ and

Kendall’s Tau for the Generalized FGM copula with different values

of m and α.

m α θ τ

Lower bound Upper bound Lower bound Upper bound

1 0.001 -1.0000 l000.0 −4.99× 10−7 4.995× 10−4

2 0.01 -1.0000 50.000 −9.9× 10−5 0.0049

3 0.1 -1.0000 3.3333 -0.0134 0.0466

10 0.1 -1.0000 l.0000 -0.0437 0.0471

25 0.1 -1.0000 0.4000 -0.1037 0.0472

50 0.1 -1.0000 0.2000 -0.1923 0.0473

100 0.1 -1.0000 0.1000 -0.3403 0.0474

300 0.1 -0.3333 0.0333 -0.33989 0.04732

400 0.1 -0.2500 0.0250 -0.33987 0.04737

1 1 -1.0000 l.0000 -0.2222 0.2222

1 2 -0.2500 0.5000 -0.1249 0.2499

2 1 -0.5000 0.5000 -0.2088 0.2366

2 2 -0.1250 0.2500 -0.1215 0.2643

3 1 -0.3333 0.3333 -0.2051 0.2423

3 2 -0.0833 0.1666 -0.1204 0.2696

3 3 -0.0370 0.1111 -0.0782 0.2557

4 2 -0.0625 0.1250 -0.1199 0.2725

4 3 -0.0277 0.0833 -0.0779 0.2578

5 2 -0.0500 0.1000 -0.1196 0.2743

5 4 -0.0125 0.0500 -0.0546 0.2372

10 2 -0.0250 0.0500 -0.1190 0.2779

10 4 -0.00625 0.0250 -0.0545 0.2394

10 10 -0.0010 0.0100 -0.0138 0.1442

25 20 -0.0001 0.0020 -0.0041 0.0844

50 2 -0.0050 0.0100 -0.1185 0.2809

50 50 -8× 10−6 0.0004 -0.0007 0.0373

2 100 -5× 10−5 0.0050 -0.00019 0.01927

3 100 -3× 10−5 0.0033 -0.00017 0.0191

100 100 -10−6 0.0001 -0.00019 0.0193

300 1 -0.0033 0.0033 -0.1965 0.2522

300 2 -0.00083 0.00167 -0.1180 0.2822

400 1 -0.0025 0.0025 -0.1983 0.2552

400 2 -6.25× 10−4 0.00125 -0.1185 0.2816

400 3 -2.778× 10−4 0.00083 -0.0775 0.2637

400 20 -6.25× 10−6 1.25× 10−4 -0.00412 0.0845


