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Abstract. In this paper, two iterative methods are constructed to solve the

operator equation Lu = f where L : H → H is a bounded, invertible and self-

adjoint linear operator on a separable Hilbert space H. By using the concept

of frames of subspaces, which is a generalization of frame theory, we design

some algorithms based on Galerkin and Richardson methods, and then we

investigate the convergence and optimality of them.
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1. Introduction

During the recent decade, several new applications of frames have been developed.

Potential of frame is an almost unexplored field in numerical analysis hereof. On

the one hand, the redundancy of a frame can give the freedom to implement further

properties, which would be mutually exclusive in the Riesz bases case, e.g. both high

∗ CORRESPONDING AUTHOR

JOURNAL OF MAHANI MATHEMATICAL RESEARCH CENTER

VOL. 4, NUMBERS 1-2 (2015) 25-37.

c⃝MAHANI MATHEMATICAL RESEARCH CENTER

25



26 HASSAN JAMALI AND MOHSEN KOLAHDOUZ

smoothness and small support. On the other hand, while working with a weaker

concept, the concrete construction of a frame is usually much simpler than an

stable multi-scale basis. Consequently, there is some hope that the frame approach

might simplify the geometrical construction on bounded domains. To handle these

emerging applications of frames, new methods have to be developed. One starting

point is to first build frames ”locally” and then piece them together to obtain global

frames for the whole space. One advantage of this idea is that it will facilitate the

construction of frames for special applications by initially constructing frames or

choosing already known frames for smaller spaces. And in a second step one would

construct a frame for the entire space from them. This arises the concept of Frames

of Subspaces.

In this paper, we will use frames of subspaces to get some approximate solutions

for operator equation

(1.1) Lu = f,

where L : H → H is a bounded (so there exist two positive constants c1 and c2,

such that

(1.2) c1 ∥ u ∥H≤∥ Lu ∥H≤ c2 ∥ u ∥H , ∀u ∈ H.

), invertible and self-adjoint linear operator on a separable Hilbert space H. A nat-

ural approach to construct an approximate solution is to solve a finite dimensional

analog of the problem (1.1). In [7, 8], you can see the development of the adaptive

numerical methods for solving the problem (1.1) by using frames. To begin with,

we first will briefly recall definitions and basic properties of frames and frames of

subspaces. For detailed information, we refer the reader to the survey article by

Cassaza and Gitta Kutyniok [5] and the book by Christensen [6].

2. Preliminaries

Throughout this paper H shall always denote an arbitrary separable Hilbert

space. Furthermore, all subspaces are assumed to be closed. Moreover, Λ denotes

a countable index set and I denotes the identity operator. Also, if W is a subspace

of a Hilbert space H, we let πW denote the orthogonal projection of H onto W .

Assume that H is a separable Hilbert space, Λ is a countable index set and

Ψ = (ψλ)λ∈Λ ⊂ H is a frame for H. This means that there exist constants 0 <
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AΨ ≤ BΨ <∞ such that

(2.1) AΨ ∥ f ∥2H≤
∑
λ∈Λ

|< f, ψλ >|2≤ BΨ ∥ f ∥2H , ∀f ∈ H.

For the frame Ψ, the synthesis operator T : ℓ2(Λ) → H is defined by

T ((cλ)λ∈Λ) =
∑

λ∈Λ cλψλ,

and the analysis operator T ∗ : H → ℓ2(Λ) is defined by

T ∗(f) = (< f, ψλ >)λ∈Λ .

Also, the operator S := TT ∗ : H → H defined by

S(f) =
∑

λ∈Λ < f, ψλ > ψλ,

is called the frame operator. Note that T is surjective, T ∗ is injective, T ∗ is the

adjoint of T and in view of (2.1) T is bounded, in fact we have

∥ T ∥=∥ T ∗ ∥≤
√
BΨ.

Since ker(T ) = (Ran(T ∗))
⊥
, we have ℓ2(Λ) = Ran(T ∗) ⊕ ker(T ). It was shown in

[4], for the frame Ψ = (ψλ)λ∈Λ, S is a bounded, invertible and positive operator

satisfying AΨIH ≤ S ≤ BΨIH and B−1
Ψ IH ≤ S−1 ≤ A−1

Ψ IH . Also, the sequence

Ψ̃ = (ψ̃λ)λ∈Λ = (S−1ψλ)λ∈Λ,

is a frame (called the canonical dual frame) for H with bounds B−1
Ψ , A−1

Ψ . Every

f ∈ H has the expansion

f =
∑

λ∈Λ < f,ψλ > ψ̃λ =
∑

λ∈Λ < f, ψ̃λ > ψλ.

We note that a complete sequence Ψ = (ψλ)λ∈Λ in H is called a Riesz basis if there

exist constants AΨ, BΨ > 0 such that

AΨ ∥ C ∥2ℓ2(Λ)≤∥
∑

λ∈Λ cλψλ ∥2H≤ BΨ ∥ C ∥2ℓ2(Λ),

holds for all C = (Cλ)λ∈Λ ∈ ℓ2(Λ). It could be seen that each Riesz basis for a

Hilbert space H is a frame for H. For an index set Λ̃ ⊂ Λ, (ψλ)λ∈Λ̃ is called a frame

sequence if it is a frame for its closed span.

Now we pass on to study frames of subspaces, let H be a separable Hilbert space

and Λ be a countable index set. For a family of weights {ωλ}λ∈Λ ⊂ R+, the family

of subspaces {Hλ}λ∈Λ of the Hilbert space H is called the frames of subspaces with

respect to {ωλ}λ∈Λ for H, if there exist constants 0 < A ≤ B <∞ such that

(2.2) A ∥ f ∥2≤
∑
λ∈Λ

ω2
λ ∥ πHλ

(f) ∥2≤ B ∥ f ∥2 ∀f ∈ H.



28 HASSAN JAMALI AND MOHSEN KOLAHDOUZ

The constants A and B are called the frame bounds of the frames of subspaces. If

A = B then the frames of subspaces {Hλ}λ∈Λ with respect to {ωλ}λ∈Λ is called

A-tight frames of subspaces. It was proved in [5], the frames of subspaces {Hλ}λ∈Λ

is complete, in the sense that spanλ∈Λ{Hλ} = H. The following theorem [5], shows

that how we can string together frames for each of the subspaces Hλ to obtain a

frame for the whole H.

Theorem 2.1. Let Λ be an index set, {ωλ}λ∈Λ ⊂ R+, and {ψλi}i∈IΛ be a frame

sequence in H with frame bounds Aλ and Bλ. Define Hλ = spani∈IΛ{ψλi} for

all λ ∈ Λ, and suppose that 0 < A = infλ∈ΛAλ ≤ B = supλ∈ΛBλ < ∞. Then

{ωλψiλ}λ∈Λ,i∈Iλ is a frame for H if and only if {Hλ}λ∈Λ is a frames of subspaces

with respect to {ωλ}λ∈Λ for H.

Proof. See [5]. □

For a frames of subspaces {Hλ}λ∈Λ with respect to {ωλ}λ∈Λ define(∑
λ∈Λ ⊕Hλ

)
ℓ2

=
{
{ψλ}λ∈Λ : ψλ ∈ Hλ,

∑
λ∈Λ ∥ ψλ ∥2<∞

}
,

with inner product given by

⟨{ψλ}λ∈Λ, {φλ}λ∈Λ⟩ =
∑

λ∈Λ ⟨ψλ, φλ⟩.

Now the synthesis operator

TH,ω :
(∑

λ∈Λ ⊕Hλ

)
ℓ2

→ H,

for the frames of subspaces {Hλ}λ∈Λ, with respect to {ωλ}λ∈Λ is defined by

TH,ω(f) =
∑

λ∈Λ ωλfλ ∀f = {fλ}λ∈Λ ∈
(∑

λ∈Λ ⊕Hλ

)
ℓ2
.

Also, the adjoint T ∗
H,ω of the synthesis operator is called the analysis operator. In

fact, the concrete formula of T ∗
H,ω : H →

(∑
λ∈Λ ⊕Hλ

)
ℓ2

is given by

T ∗
H,ω(f) = {ωλπHλ

(f)}λ∈Λ.

Similar to the case of frame theory, the synthesis operator TH,ω is bounded, linear

and onto operator, and the analysis operator T ∗
H,ω is (possibly into) isomorphism.

In an orderly fashion, here we define Frames of subspaces operator SH,ω as follow

SH,ω(f) = TH,ωT
∗
H,ω(f) =

∑
λ∈Λ ω

2πHλ
(f).

Likewise the frame situation, SH,ω is a positive, self-adjoint and invertible operator

on H with AIH ≤ SH,ω ≤ BH , where A and B are the bounds of the frames of

subspaces. Further, the following reconstruction formula satisfies:
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f =
∑

λ∈Λ ω
2S−1

H,ωπHλ
(f) ∀f ∈ H.

It can be proved that {S−1
H,ωHλ}λ∈Λ is a frames of subspaces with respect to

{ωλ}λ∈Λ. In fact, the following proposition holds true

Proposition 2.2. Let {Hλ}λ∈Λ be a frames of subspaces with respect to {ωλ}λ∈Λ,

and let L : H → H be a bounded and invertible operator on H. Then {L(Hλ)}λ∈Λ

is a frames of subspaces with respect to {ωλ}λ∈Λ.

Proof. See [5]. □

3. Galerkin Method by Using Frames of Subspaces

Galerkin method provides a general framework for approximation of operator

equation, which includes the finite element method as a special case. Let H be a

separable Hilbert space, and a(., .) : H → H be a bounded bilinear form, i.e.

(3.1) |a(u, v)| ≤M ∥u∥H ∥v∥H ∀u, v ∈ H,

for some M > 0, and H-elliptic in the sense that

(3.2) a(u, v) ≥ C ∥v∥2H ∀v ∈ H,

for some C > 0. Suppose f ∈ H, we consider solving the variational equation

(3.3) a(u, v) =< f, v > ∀v ∈ H,

of finding u ∈ H such that satisfies in (3.3). Next theorem ensures the existence

and uniqueness of solution u.

Lemma 3.1 (Lax-Milgram Lemma). Assume H is a Hilbert space, a(., .) is a

bounded, H-elliptic bilinear form on H, and f ∈ H. Then there is a unique solution

of the problem

u ∈ H, a(u, v) =< f, v > ∀v ∈ H.

Proof. See [2]. □

In general, it is impossible to find the exact solution of (3.3) if the space H

is infinite dimensional. A natural approach to construct an approximate solution

is to a solve finite dimensional analog of (3.3). Thus, we let HN ⊂ H be an N -

dimensional subspace. We project the problem (3.3) onto HN ,

(3.4) uN ∈ HN , a(uN , v) =< f, v > ∀v ∈ HN .
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Under the assumption that the bilinear form a(., .) is bounded and H-elliptic, and

f ∈ H, we can apply Lax-Milgram Lemma once more and conclude that the problem

(3.4) has a unique solution uN which, in general, approximates the exact solution

u. To increase accuracy, it is natural to seek the approximate solution uN in a

large subspace HN . Thus, for a sequence of subspaces HN1 ⊂ HN2 ⊂ · · · ⊂ H, we

compute the corresponding sequence of approximate solutions uNi ∈ HNi , i ∈ N.
This solution finding procedure is called Galerkin Method. In [1] by using frame, an

adaptive algorithm based on Galerkin method is developed for solving the equation

(1.1).

Proposition 3.2. Assume H is a Hilbert space, HN ⊂ H is a subspace of H, a(., .)

is a bounded, H-elliptic bilinear form on H, and f ∈ H. Let u ∈ H be the solution

of the problem (3.3), and uN ∈ HN be the Galerkin approximation defined in (3.4).

Then there is a constant c such that

∥u− uN∥H ≤ c infv∈HN
∥u− v∥H .

Proof. See [2]. □

Corollary 3.3. We make the assumptions stated in proposition 3.2. Assume HN1 ⊂
HN2 ⊂ · · · is a sequence of finite dimensional subspaces of H with the property that

(3.5)
∪
n≥1

Hn = H.

Then the Galerkin method converges:

(3.6) ∥u− un∥H → 0 as n→ ∞,

where un ∈ Hn is the Galerkin solution defined by (3.4).

Proof. See [9]. □

Assume that {Hi}i∈N be a frames of subspaces. We consider the bilinear form

a(., .) :=< L., . >,

on H, and the problem of finding u such that

(3.7) a(u, v) =< f, v > ∀v ∈ H.
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We note that a is bounded and H-elliptic. Now, by projecting (3.7) onto Hi the

problem takes the form of finding ui such that

(3.8) ui ∈ Hi, a(ui, v) =< f, v > ∀v ∈ Hi.

Note that by Lax-Milgram Lemma, (3.8) has a unique solution as ui. Let xi be the

solution of the equation

(3.9) a(xi, v) =< f, v > ∀v ∈ H1 +H2 + · · ·+Hi.

Since

(3.10) H1 ⊆ H1 +H2 ⊆ · · · ⊆ H,

the sequence of solutions {xi}i∈N of equation (3.9), coincides with the sequence

of approximate solutions produced by Galerkin method for (3.10). The following

lemma expresses that we can obtain the Galerkin approximate solution of the equa-

tion (1.1) by considering smaller subspaces.

Lemma 3.4. Let {Hi}i∈N be a frames of subspaces with respect to {ωi}i∈N ⊂ R+,

with bounds A, B, and with the property that Hi ∩ Hj = 0 (i ̸= j). Suppose that

ui is the solution of the equation (3.8) and xi is the solution of the equation (3.9),

then

xi = u1 + u2 + · · ·+ ui.

Also, the following inequality holds true

1

B

i∑
j=1

ω2
j ∥uj∥

2 ≤ 1

c21
∥f∥2 .
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Proof. We have

a(xi − u1 − u2 − · · · − ui, v) = a(xi, v)− a(u1, v)− a(u2, v)− · · · − a(ui, v)

= f(v)− a(u1, v1 + v2 + · · ·+ vi)

− a(u2, v1 + v2 + · · ·+ vi)

− · · · − a(ui, v1 + v2 + · · ·+ vi)

= f(v)− a(u1, v1)− a(u2, v2)− · · · − a(ui, vi)

= f(v)− f(v1)− f(v2)− f(v3)− · · · − f(vi)

= f(v)− f(v1 + v2 + · · ·+ vi)

= f(v)− f(v) = 0,

that means xi = u1 + u2 + · · · + ui. Now by the definition of frames of subspaces

and since πHju = uj , we then have

A ∥u∥2H ≤
∑
j

ω2
j ∥uj∥

2 ≤ B ∥u∥2H .

Combining this inequality with the inequality (1.2), we obtain

1

B

i∑
j=1

ω2
j ∥uj∥

2 ≤ 1

c21
∥f∥2 .

□

Now, we are ready to design an algorithm, by using frames of subspaces and

based on the Galerkin method, that gives an approximate solution to the equation

(1.1).
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SOLVE [ϵ, f, L] → uϵ

(i) Let i := 1, u0 := 0, α0 := 0

(ii) ui :=GALERKIN [Hλi , L]

(iii) αi := αi−1 + ω2
i ∥ui∥

2

(iv) xi := xi−1 + ui

(v) If 1
c21

∥f∥2 − 1
Bαi ≤ ϵ2, Set uϵ = xi and stop. Else

(vi) i := i+ 1 go to (ii).

To investigate the convergence of the algorithm SOLVE, we present the following

theorem.

Theorem 3.5. The output of the algorithm SOLVE satisfies ∥u− uϵ∥ ≤ ϵ.

Proof. We have

∥u∥2 = ∥u− xi + xi∥2

= ∥u− xi∥2 + ∥xi∥2

≥ ∥u− xi∥2 +
1

B

i∑
j=1

ω2
j ∥uj∥

2
.

Therefore, by applying the inequality (1.2), we get

∥u− xi∥2 ≤ ∥u∥2 − 1

B

i∑
j=1

ω2
j ∥uj∥

2

≤ 1

c21
∥f∥2 − 1

B

i∑
j=1

ω2
j ∥uj∥

2 ≤ ϵ2,

as we desired. □

According to the algorithm SOLVE, the convergence rate of this algorithm orig-

inates from the algorithm GALERKIN, and it depends directly on it. But, by

adding ui to xi−1, an improved convergence rate is achieved. The optimal output

is produced when the sequence {Hi}i∈I consists of pairwise orthogonal subspaces.

4. Richardson Iterative method by Using Frames of Subspaces

The most straight forward approach to an iterative solution of a linear system is

to rewrite the equation (1.1) as a linear fixed-point iteration. One way to do this is

the Richardson iteration. The abstract method reads as follows:



34 HASSAN JAMALI AND MOHSEN KOLAHDOUZ

write Lu = f as

u = (I − L)u+ f .

For given u0 ∈ H, define for k ≥ 0,

(4.1) uk+1 = (I − L)uk + f.

Since Lu− f = 0, we can write

uk+1 − u = (I − L)uk + f − u− (f − Lu)

= (I − L)uk − u+ Lu

= (I − L)(uk − u).

Hence

∥ uk+1 − u ∥H≤∥ I − L ∥H→H∥ uk − u ∥H ,

so that the sequence (4.1) converges if

(4.2) ∥ I − L ∥H→H< 1.

It is sometimes possible to precondition (1.1) by multiplying both sides by a matrix

M ,

(4.3) MLu =Mf,

so that convergence of sequence (4.1) is improved. This is a very effective technique

for solving differential equations, integral equations, and related problems [2, 3].

One way to do this, is to find a matrixM which approximates L−1 i.e. M ≈ L−1 or

ML ≈ I [9], which in this case (4.2) would be satisfied as well i.e. ∥ I−ML ∥H→H<

1. Here, we want to seek M by using frames of subspaces.

Let {Hλ}λ∈Λ be a frames of subspaces with respect to {ωλ}λ∈Λ for a separable

Hilbert space H with the frames of subspaces operator SH,ω. By proposition 2.2,

{L(Hλ)}λ∈Λ is a frames of subspaces with respect to {ωλ}λ∈Λ. We denote the

frames of subspaces operator of {L(Hλ)}λ∈Λ by S′
H,ω, and we note that

S′
H,ω(f) =

∑
λ∈Λ

ω2
λLπHλ

L−1f = L
∑
λ∈Λ

ω2
λπHλ

L−1f

= LSH,ωL
−1f,

that means S′
H,ω = LSH,ωL

−1.
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Proposition 4.1. Let {Hλ}λ∈Λ be a frames of subspaces with respect to {ωλ}λ∈Λ

for H, and let L be a bounded, invertible and self-adjoint operator on H. If S′
H,ω

denotes the frames of subspaces operator of {L(Hλ)}λ∈Λ with bounds A and B, then

(4.4)

∥∥∥∥I − 2

c21A+ c22B
LS′

H,ωL

∥∥∥∥
H→H

≤ c22B − c21A

c21A+ c22B
,

where c1 and c2 are as in (1.2).

Proof. For every ν ∈ H we have⟨(
I − 2

c21A+ c22B
LS′

H,ωL

)
ν, ν

⟩
= ∥ν∥2H − 2

c21A+ c22B

⟨
S′
H,ωLν, Lν

⟩
= ∥ν∥2H − 2

c21A+ c22B

⟨∑
λ∈Λ

ω2
λπLHλ

(Lν), Lν

⟩

= ∥ν∥2H − 2

c21A+ c22B

∑
λ∈Λ

ω2
λ ∥πLHλ

(Lν)∥2H

≤ ∥ν∥2H − 2A

c21A+ c22B
∥Lν∥2H

≤ ∥ν∥2H − 2A

c21A+ c22B
c21 ∥ν∥

2
H

=

(
c22B − c21A

c21A+ c22B

)
∥ν∥2H .

Similarly, we obtain

−
(
c22B − c21A

c21A+ c22B

)
∥ν∥2H ≤

⟨(
I − 2

c21A+ c22B
LS′

H,ωL

)
ν, ν

⟩
.

So, we conclude (4.4) □

Since
c22B−c21A

c21A+c22B
< 1, by proposition 4.1 we can putM := 2

c21A+c22B
LS′

H,ω to precon-

dition (1.1). Thus, by performing the Richardson iteration (4.1) on preconditioned

linear equation (4.3), we then get the following theorem

Theorem 4.2. Let {Hλ}λ∈Λ be a frames of subspaces with respect to {ωλ}λ∈Λ for

H with frames of subspaces operator SH,ω, and let L be as in (1.1). Put u0 = 0 and

for k ≥ 1,

uk = uk−1 +
2

c21A+ c22B
LS′

H,ω (f − Luk−1),

where S′
H,ω denotes the frames of subspaces operator of {L(Hλ)}λ∈Λ with bounds A

and B,and c1,c2 are as in (1.2), then
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∥u− uk∥H ≤
(
c22B − c21A

c21A+ c22B

)k

∥u∥H .

In particular the vectors uk converge to u as k → ∞.

Proof. By definition of uk we obtain

u− uk = u− uk−1 +
2

c21A+ c22B
LS′

H,ω (f − Luk−1)

=

(
I − 2

c21A+ c22B
LS′

H,ωL

)
(u− uk−1)

=

(
I − 2

c21A+ c22B
LS′

H,ωL

)2

(u− uk−2)

= · · ·

=

(
I − 2

c21A+ c22B
LS′

H,ωL

)k

(u− u0) .

Therefore

∥u− uk∥ ≤
∥∥∥∥I − 2

c21A+ c22B
LS′

H,ωL

∥∥∥∥k ∥u∥.
Combining this inequality with (4.4) gives the result. □

Now, we are in a position to derive an algorithm in order to approximate the

solution u of the equation (1.1). This algorithm depends on the knowledge of the

bounds of the frames of subspaces {L(Hλ)}λ∈Λ, and constants stated in (1.2). It is

guaranteed that the convergence rate depends on them too.
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RICHARDSON [L, ϵ, A,B, c1, c2] → uϵ

(i) Let α0 =
c22B−c21A

c21A+c22B

(ii) k := 0, uk := 0

(iii) k := k + 1

(1) uk = uk−1 +
2

c21A+c22B
LS′

H,ω (f − Luk−1)

(2) αk := (α0)
k ∥f∥H

c1

(iv) If αk ≤ ϵ stop and set uϵ := uk, if else go to (iii).

Regarding to the parameter
(

c22B−c21A

c21A+c22B

)k

stated in theorem 4.2 , in the case when we

have a tight frames of subspaces {L(Hλ)}λ∈Λ in hand, the algorithm RICHARD-

SON gains its highest rate of convergence of
(

c22−c21
c21+c22

)k

.
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