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Abstract. This article develops a direct method for solving numerically multi

delay-fractional differential and integro-differential equations. A Galerkin method

based on Legendre polynomials is implemented for solving linear and nonlinear

of equations. The main characteristic behind this approach is that it reduces

such problems to those of solving a system of algebraic equations. A conver-

gence analysis and an error estimation are also given. Numerical results with

comparisons are given to confirm the reliability of the proposed method.
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1. Introduction

In the last few decades, many authors pointed out that fractional differential

equations (FDEs) are very suitable for description of many problems in science and

engineering such as, bioengineering [1], electromagnetism [2], economics [3], sig-

nal processing [4], medicine [5], continuum and statistical mechanics [6], etc. The

fundamental existence and uniqueness theorems for solutions of FDEs have been

presented by many authors [7], [8]. Most FDEs do not have analytical solutions,

so numerical methods are required [9]-[17]. Recently, these equations have been

solved by homotopy-perturbation method [18], variational iteration method [19],

homotopy analysis method [20], Adomian decomposition method [21], finite differ-

ence approximation methods [22], Legendre, Bessel and Bernestein approximation

methods [23]-[25], B-spline collocation methods [26], Legendre and Bernoulli wavelet

methods [27], [28], and so on.

In recent years, solving delay FDEs draws increasing attention by scientists. In

[29] Taylor collocation method was proposed to solve fractional pantograph equa-

tions. In [30] Bhalekar et al. investigated a fractional generalization of Bloch equa-

tion that includes both fractional derivatives and time delays. Ref. [31] presented

modified Chebyshev wavelet methods and studied the convergence analysis for solv-

ing delay-fractional differential and integro-differential equations. Muthukumar and

Priya [32] gave operational matrices to any interval for the differentation and in-

tegration of shifted Jacobi polynomials and applied them to solve the numerical

solution of delay FDEs. Ref. [33] is devoted to the existence results for fractional

neutral integro-differential evolution systems with infinite delay in Banach spaces.

In [34], Baleanu et al. studied an initial value problem for a class of k-dimensional

systems of fractional neutral functional differential equations with bounded delay

by using Krasnoselskiis fixed point theorem. In [35], the authors proved the exis-

tence of solutions for delay FDEs at the neiborhood of its equilibrium point. Also,

they obtained the birfurcation curves for a class of delay FDEs within a differential

operator of Caputo type with the lower terminal at −∞. Baleanu et al. [36] stud-

ied a numerical method and gave a stability analysis to solve the fractional Bloch

equation with delay.

In [37]-[39], Doha et al. have presented spectral methods for solving boundary

value problems. The main advantage of spectral methods lies in their accuracy
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for a given number of unknowns. For smooth problems in simple geometries, they

offer exponential rates of convergence/spectral accuracy. In this study by means of

a Galerkin method based on Legendre polynomials, we consider the approximate

solution of multi delay-fractional differential and integro-differential equations in

the form

Dαu(x) = f(x, u(x), Dβ1u(x),..., Dβru(x), Dβ1u(ax− τ), ..., Dβru(ax− τ),∫ x

0

g(x, t, u(at− τ))dt,

∫ x

ax−τ

h(x, t, u(t))dt).(1)

The initial conditions are

u(i)(0) = di, i = 0, 1, ..., n,(2)

where n < α ≤ n + 1, n ∈ N ∪ {0}, 0 < β1 < β2 < ... < βr < α, Dα denotes

the caputo fractional derivative of order α and f, g, and h are continuous linear or

nonlinear functions, τ is delay, ax−τ is called delay argumant, and di are constants.

The fractional derivatives are defined in the caputo sense (see [7], page 79)

C
a D

α
xf(x) =

1

Γ(n+ 1− α)

∫ x

a

f (n+1)(t)

(x− t)α−n
dt, n < α ≤ n+ 1, n ∈ N ∪ {0} .

Caputo’s differential operator coincides with the usual differential operator of an

integer order and has the property of linear operation as (see [7], page 90)

Dα(λf(x) + µg(x)) = λDαf(x) + µDαg(x), ∀ λ, µ ∈ R,(3)

where Dα = C
a D

α
x . Also, Caputo fractional derivative of power function f(x) = xk,

k ∈ N is (see [40], page 36)

Dαxk =

{
0 k < α

Γ(k+1)
Γ(k−α+1)x

k−α k ≥ α.

In this paper, the fractional derivatives are considered in the Caputo sense and we

put C
a D

α
x = Dα in the next sections.

The paper is organized as follows: In Section 2, we give basic definitions and pre-

liminaries. In Section 3, the convergence analysis is presented. Section 4 is devoted

to the numerical method for solving multi delay-fractional differential and integro-

differential equations. In Section 5, we present our method for selected examples

and introduce an error estimation for proposed method. Finally a conclusion is

given.
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2. Preliminaries

2.1. Shifted Legendre polynomials. Legendre polynomials on the interval [−1, 1]

can be determined with the following recursive formula (see [41], page 27):

L0(z) = 1, L1(z) = z, Li+1(z) =
2i+ 1

i+ 1
zLi(z)−

i

i+ 1
Li−1(z), i = 1, 2, ....

By the change of variable z = 2x− 1, we will have the well-known shifted Legendre

polynomials on [0, 1]. These polynomials can be determined with the following

recursive formula (see [41], page 27):

P0(x) = 1, P1(x) = 2x−1, Pi+1(x) =
(2i+ 1)(2x− 1)

(i+ 1)
Pi(x)−

i

i+ 1
Pi−1(x), i = 1, 2, ....

The analytical form of the shifted Legendre polynomials of degree i, Pi(x), is as

follows [23]:

Pi(x) =
i∑

k=0

(−1)i+k (i+ k)!

(i− k)!

xk

(k!)2
,

where Pi(0) = (−1)i and Pi(1) = 1. We also have the orthogonality conditions for

Pi(x) as ∫ 1

0

Pi(x)Pj(x)dx =

{
1

2i+1 if i = j

0 if i ̸= j.

2.2. Function approximation in terms of shifted Legendre polynomials.

Suppose that H = L2([0, 1]), m ∈ N∪{0}, {P0(x), P1(x), ..., Pm(x)} ⊂ H be the set

of shifted Legendre polynomials on [0, 1], Y = span{P0(x), P1(x), ..., Pm(x)}, and
f be an arbitrary element in H. Since Y is a finite dimensional vector space, f has

the unique best approximation out of Y such as f1 ∈ Y (see [42], page 328)

∥f(x)− f1(x)∥ ≤ ∥f(x)− g(x)∥, ∀g ∈ Y.

Since f1 ∈ Y , there exists unique coefficients c0, c1, ..., cm such that

f(x) ∼= f1(x) =
m∑
j=0

cjPj(x).

By orthogonality condition of shifted Legendre polynomials, we have

cj = ⟨f, Pj⟩ =
∫ 1

0

f(x)(2j + 1)Pj(x)dx, j = 0, 1, ...,m.(4)
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3. Convergence analysis

Theorem. Let
∑∞

j=0 cjPj(x) be the Legendre series of u(x) ∈ H = L2([0, 1]), then

um(x) =
∑m

j=0 cjPj(x) convergences to u(x) as m → ∞.

Proof. By using relation (4), we have

cj = ⟨u(x), Pj(x)⟩ , j = 0, 1, ...,m.(5)

First we will show that the sequence of partial sums of
∑∞

j=0 cjPj(x), um(x), is a

Cauchy sequence in Hilbert space of H. Let un(x) be an arbitrary partial sums of∑∞
j=0 cjPj(x), i.e., un(x) =

∑n
j=0 cjPj(x), and m > n, then we have

∥um(x)− un(x)∥2 = ∥
m∑

j=n+1

cjPj(x)∥2 =

⟨
m∑

j=n+1

cjPj(x),
m∑

k=n+1

ckPk(x)

⟩

=
m∑

j=n+1

m∑
k=n+1

cj c̄k ⟨Pj(x), Pk(x)⟩ =
m∑

j=n+1

1

2j + 1
| cj |2<

m∑
j=n+1

| cj |2 .

By Bessel’ inequality, we have

m∑
j=n+1

| cj |2≤
∞∑
j=0

| cj |2≤ ∥u∥2 < ∞.

Thus, ∥um(x) − un(x)∥2 → 0 as m,n → ∞, that is, um(x) is a Cauchy sequence

hence um(x) converges to g ∈ H. Finally we show that g(x) = u(x). By using

relation (5) and property of continuity of inner product, we get

⟨g(x)− u(x), Pj(x)⟩ = ⟨g(x), Pj(x)⟩ − ⟨u(x), Pj(x)⟩

= lim
m→∞

⟨um(x), Pj(x)⟩ − cj

= cj − cj = 0,

hence g(x) = u(x) and the proof is completed.

4. Numerical implementation

In this section, we consider the multi delay-fractional differential and integro-

differential equation (1). We use a Galerkin method based on shifted Legendre

polynomials on [0, 1] to find an approximate solution of (1).
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We first consider the solution u(x) of equation (1) as

u(x) ∼= um(x) =
m∑
j=0

cjPj(x), 0 ≤ x ≤ 1,(6)

where cj , j = 0, 1, ...,m are the unknown coefficients and Pj(x), j = 0, 1, ...,m are

the shifted Legendre polynomials. By using the relations (3) and (6), we have

Dβu(x) ∼=
m∑
j=0

cjD
βPj(x), s < β ≤ s+ 1, s ∈ N ∪ {0} .(7)

Now, we can find the approximation of Dβu(ax − τ) in terms of the series (7) at

delay time as

Dβu(ax− τ) ∼=
m∑
j=0

cjD
βPj(ax− τ).(8)

Also the integral parts of the equation (1) at delay time are∫ x

0

g(x, t, u(ax− τ))dt ∼=
∫ x

0

g(x, t,
m∑
j=0

cjPj(at− τ))dt,(9)

and ∫ x

ax−τ

h(x, t, u(x))dt ∼=
∫ x

ax−τ

h(x, t,

m∑
j=0

cjPj(t))dt.(10)

By substituting relations (7)-(10) in (1), we define the residual function Res(x) as

Res(x) =

m∑
j=0

cjD
αPj(x)− f(x,

m∑
j=0

cjPj(x),

m∑
j=0

cjD
β1Pj(x), ...,

m∑
j=0

cjD
βrPj(x),

m∑
j=0

cjD
β1Pj(ax− τ), ...,

m∑
j=0

cjD
βrPj(ax− τ),

∫ x

0

g(x, t,

m∑
j=0

cjPj(at− τ))dt,

∫ x

ax−τ

h(x, t,

m∑
j=0

cjPj(t))dt).

(11)

To employ the Galerkin algorithm, we choose m > n, then

(12)


∫ 1

0
(2j + 1)Res(x)Pj(x)dx = 0, j = 0, 1, ...,m− n− 1,

∑m
j=0 cjP

(i)
j (0) = di, i = 0, 1, ..., n.
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Now, we have an algebraic system of (m + 1) equations with (m + 1) unknown

coefficients c0, c1, ..., cm. By solving this system of equations and using (6), we

obtain the solution of (1). Note that the mentioned system of equations (12) can

be linear or nonlinear.

5. Error estimation and numerical results

Now, we will obtain an error estimation for the proposed method. Let us consider

em(x) = u(x)−um(x) as the error function, where u(x) is the exact solution of (1).

Thus, um(x) satisfies the following problem

Dαum(x) = f(x, um(x), Dβ1um(x), ..., Dβrum(x), Dβ1um(ax− τ), ..., Dβrum(ax− τ),∫ x

0

g(x, t, um(at− τ))dt,

∫ x

ax−τ

h(x, t, um(t))dt) +Res(x),(13)

and

u(i)
m (0) = di, i = 0, 1, ..., n,(14)

where Res(x) is the residual function associated with um(x) defined in (11). We

proceed to find an approximation em,M (x) to the em(x) by (M +1) elements of the

Legendre basis, in a same way as we did before for the problem (1). Subtracting

(13) and (14) from (1) and (2) respectively, the error function em(x) satisfies in the

equation

Dαem(x) = F (x, em(x), Dβ1em(x), ..., Dβrem(x), Dβ1em(ax− τ), ..., Dβrem(ax− τ),∫ x

0

G(x, t, em(ax− τ))dt,

∫ x

at−τ

H(x, t, em(t))dt)−Res(x),

and

e(i)m (0) = 0, i = 0, 1, ..., n.

By solving this error problem in the similar way, presented in Section 4, we get

the approximation em,M (x). Also, in this section, we present some examples to

illustrate the efficiency of proposed method in Section 4.

Example 5.1. Consider the linear delay FDE

(15)

{
Dαu(x) = −u(x)− u(x− 0.3) + e−x+0.3, 0 ≤ x ≤ 1, 2 < α ≤ 3,

u(x) = e−x, x < 0,
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Figure 1. The comparison of u(x) by the present method for α = 2.7, 2.8, 2.9,

3, m = 8 and the exact solution at α = 3 of Example 5.1.

with the initial conditions u(0) = 1, u′(0) = −1, u′′(0) = 1 and the exact solution

u(x) = e−x for α = 3. Fig. 1 displays the comparison of u(x) for α = 2.7, 2.8, 2.9, 3,

m = 8 and the exact solution at α = 3. The computational results of u(x) for

different α and m = 8 together with the exact solution at α = 3 are given in Table

1. Fig. 1 and Table 1 illustrate that the present method has a good convergence

to the exact solution at α = 3. The comparison of absolute errors by the present

method with Hermit method [43] in the case of α = 3 are shown in Table 2.

Table 1. The approximate solutions by the present method for α = 2.7, 2.8,

2.9, 3 and m = 8 of Example 5.1.

x Exact at α = 3 α = 3 α = 2.9 α = 2.8 α = 2.7

0 1 1 1 1 1

0.2 0.81873075 0.81873075 0.81828725 0.81765402 0.81675161

0.4 0.67032005 0.67032005 0.66773158 0.66410535 0.65902566

0.6 0.54881164 0.54881164 0.54186684 0.53223045 0.51887618

0.8 0.44932896 0.44932896 0.43569767 0.41682932 0.39081390

1 0.36787944 0.36787944 0.34541921 0.31428085 0.27142778

Table 2. Comparison of the absolute errors for α = 3 of Example 5.1.

Present method Hermite method [43]

x |e8(x)| |e10(x)| N = 8

0 0 2.220 × 10−16 0

0.2 2.211 × 10−11 4.263 × 10−13 6.200 × 10−9

0.4 6.629 × 10−11 1.301 × 10−13 5.760 × 10−8

0.6 1.482 × 10−10 1.539 × 10−11 1.796 × 10−7

0.8 1.453 × 10−9 4.343 × 10−11 3.735 × 10−7

1 3.046 × 10−9 8.259 × 10−11 6.368 × 10−7

Example 5.2. Consider the linear delay-fractional intergro-differential equation

(16)

{
Dαu(x) = u(x− 1) +

∫ x

x−1
u(t)dt, x ≥ 0, 0 < α ≤ 1,

u(x) = ex, x < 0,
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with the initial condition u(0) = 1 and the exact solution u(x) = ex for α =

1. The computational results of u(x) for different α and m = 6 together with

the exact solution at α = 1 are given in Table 3. This table illustrates that the

proposed method converges to the exact solution at α = 1, when α approacges to 1.

The comparison of absolute errors by the present method with Chebyshev wavelet

method [31] are shown in Table 4.

Table 3. The approximate solutions by the present method for α = 0.7, 0.8,

0.9, 1 and m = 6 of Example 5.2.

x Exact at α = 1 α = 1 α = 0.9 α = 0.8 α = 0.7

0 1 1 1 1 1

0.6 1.8221188 1.8223044 1.9076207 2.0255934 2.1664417

1 2.7182818 2.7180602 2.8001488 2.9341851 3.1128243

1.6 4.9530324 4.9535165 4.9437440 5.0520380 5.1660665

2 7.3890561 7.3897028 7.1709457 7.1587915 7.1832633

2.4 11.023176 11.023248 10.354205 10.055469 9.9027334

3 20.085537 20.086533 17.855939 16.550763 15.648826

Table 4. Comparison of the absolute errors for α = 1 of Example 5.2.

Present method Cheby. wav. met. [31]

x |e10(x)| |e16(x)| M = 10 M = 20

0.3 1.7634 × 10−9 2.2204 × 10−16 5.8167 × 10−6 5.6594 × 10−13

0.9 8.2961 × 10−9 4.4409 × 10−16 1.9001 × 10−5 7.1431 × 10−14

1.5 7.8517 × 10−10 7.7716 × 10−16 3.0253 × 10−5 2.2538 × 10−13

2.1 1.7401 × 10−8 2.7756 × 10−15 5.6658 × 10−5 3.2304 × 10−13

2.4 1.4358 × 10−9 1.8874 × 10−15 7.6596 × 10−5 4.2307 × 10−13

2.7 9.1024 × 10−9 4.5519 × 10−15 1.0303 × 10−4 5.9689 × 10−13

3 4.6530 × 10−9 6.4393 × 10−15 1.4481 × 10−4 8.1709 × 10−13

Example 5.3. Consider houseflies model [32] in the form

(17)

{
Dαu(x) = −du(x) + cu(x− τ)(k − czu(x− τ)), x > 0, 0 < α ≤ 1,

u(x) = 160, x ∈ [−τ, 0].

In Eq. (17), we consider τ = 3, d = 0.147, k = 0.5107, c = 1.81 and z = 0.000226.

Fig. 2 displays the comparison of u(x) by the present method for α = 0.5, 0.75, 0.9, 1,

m = 3 and the exact solution at α = 1. This model is solved by Jacobi method

[32] (Legendre basis: a = 0, b = 0) for α = 0.5, 0.75, 0.9, 1, m = 4. Fig. 3 displays

the comparison of u(x) by Jacobi method for α = 0.5, 0.75, 0.9, 1, m = 4 and the

exact solution at α = 1. We can see from Figs. 2 and 3 that the proposed method
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Table 5. The approximate solutions by the present method for α = 0.5, 0.75,

0.9, 1 and m = 3 of Example 5.3.

x Exact at α = 1 α = 1 α = 0.9 α = 0.75 α = 0.5

0 160.00 160.00 160.00 160.00 160.00

0.6 220.55 220.61 222.14 226.24 233.75

1.2 275.98 275.85 275.89 280.97 291.68

1.8 326.73 326.88 323.79 326.98 336.96

2.4 373.20 373.14 368.40 367.05 372.72

3 415.75 415.84 412.29 403.95 402.12

3.6 466.46 466.40 458.02 440.46 428.32

4.2 532.82 532.73 508.14 479.36 454.45

4.8 609.32 609.43 565.21 523.44 483.67

5.4 691.67 691.63 631.79 575.46 519.13

6 776.58 776.54 710.45 638.22 563.99

has better numerical results. Also, the computational results of u(x) by the present

method for different α and m = 3 together with the exact solution at α = 1 are

given in Table 5.
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Figure 2. The comparison of u(x) by the present method for α = 0.5, 0.75,

0.9, 1, m = 3 and the exact solution at α = 1 of Example 5.3.

Figure 3. The comparison of u(x) by Jacobi method [32] for α = 0.5, 0.75, 0.9,

1, m = 4 and the exact solution at α = 1 of Example 5.3.



NUMERICAL METHOD FOR DELAY ... —JMMRC VOL. 4, NUMBERS 1-2 (2015) 21

Table 6. The approximate solutions by the present method for α = 0.3, 0.6,

0.9, 1 and m = 9 of Example 5.4.

x Exact at α = 1 α = 1 α = 0.9 α = 0.6 α = 0.3

0 0 0 0 0 0

0.2 0.19866933 0.19866933 0.24493930 0.49616749 0.69498967

0.4 0.38941834 0.38941834 0.44437968 0.68633782 0.67100691

0.6 0.56464247 0.56464247 0.61226150 0.77695869 0.68988345

0.8 0.71735609 0.71735609 0.74656901 0.80518248 0.70040363

1 0.84147098 0.84147098 0.84101027 0.80351705 0.72725857

Example 5.4. Consider the nonlinear delay FDE

Dαu(x) = 1− 2u2(
x

2
), 0 ≤ x ≤ 1, 0 < α ≤ 1,(18)

with the initial condition u(0) = 0 and the exact solution u(x) = sin(x) for α = 1

[44]. In Table 6, a comparison between the numerical results of the approximate

solutions obtained by the present method for α = 0.3, 0.6, 0.9, 1 and m = 9 and the

exact solution at α = 1 are given. This table illustrates that the proposed method

converges to the exact solution at α = 1, when α approacges to 1.

6. conclusion

In the present work, we developed a direct method for solving multi delay-

fractional differential and integro-differential equations. By utilizing the Legendre

basis and Galerkin method, we reduced the main problem to the problem of solving

a system of algebraic equations. Comparing the present method with several other

methods that have been advanced for solving our problems shows that the present

technique is reliable and powerful.
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