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Abstract. In this paper, a coherent system consisting of non-identical depen-

dent active components and equipped with non-identical dependent standby

components is considered. The main object of this study is the random quan-

tity which account the number of surviving standby components when the

system is failed. We represent the distribution function of the corresponding

random variable in terms of system signature.

AMS Classification: 62E15; 60K10.

Keywords: Stochastic ordering, Archimedean copula, order statistics, standby

redundancy, reliability systems.

1. Introduction

A commonly used technique to increase the reliability or the availability of a

system is a redundant standby. A hot standby has the same failure rate as the

active components of the system, while a warm standby has a failure rate larger
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than an active component. A cold standby means that the redundant component

is inactive, and the likelihood of failure is assumed to be zero.

Recently, Eryilmaz [3] studied the reliability of a k-out-of-n system equipped

with a single warm standby component. He carried out a reliability analysis for a

system equipped with a single warm standby unit and obtain an explicit expression

for the reliability function of the system for arbitrary lifetime distributions. The

behavior of warm standby components with respect to a coherent system was con-

sidered by Eryilmaz [2]. In particular, he studied the number of surviving warm

standby components at the time of system failure in terms of system signature

and discussed its potential utilization with a certain optimization problem, when

the system has identical components with identical components. We shall to con-

sider a coherent system with non-identical components equipped with non-identical

redundant standby. Because of non-identical active components and standby redun-

dancies, we may assume that the standby components are either warm or hot. We

also consider the possible dependencies between the active components or between

standby redundancies using an Archimedean copula which is a very convenient sub-

class of copulas and has a close connection to Laplace transforms. For a thorough

discussion on Archimedean copulas, one may refer to Joe [5] and Nelsen [7]. If the

active components of a system or standby redundancies are independent their life-

times have a joint distribution function that is the product of marginal distribution

functions. Some copulas belonging to the class of Archimedean copulas reduce to a

multivariate distribution function with product of marginal distribution functions

for certain values of dependent parameter. Therefore, the results of this paper re-

duce to corresponding results of [3] and [2] in special cases and hence may be used

for a system with dependent as well as independent components.

To be specific, we assume that the n underlying variables are jointly distributed

according to an Archimedean copula. If a copula Cψ has the form

Cψ(u1, ..., un) = ψ

(
n∑
i=1

ψ−1(ui)

)
,(1)

where ψ : <+ 7→ [0, 1] is a completely monotone generator function, i.e. (−1)nψ(n) ≥
0, n ≥ 2, such that ψ(0) = 1 and limx→∞ ψ(x) = 0, then it is called an Archimedean

copula (see e.g. McNeil and Nèslehovà [6]). ψ is said to be the generator function
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of this Archimedean copula. Let Gψ(u) = exp{−ψ−1(u)} and Mψ be the distri-

bution function with Laplace Transform ψ. Then, we can obtain an equivalent

representation of (1) as

Cψ(u1, . . . , un) =

∫ ∞
0

n∏
j=1

Gαψ(ui)dMψ(α).(2)

This representation is the key to all subsequent developments.

Now, consider a random vector X = (X1, . . . , Xn) with joint distribution function

ψ

(
n∑
i=1

ψ−1(Fi(xi))

)
=

∫ ∞
0

n∏
i=1

Gαψ(Fi(xi))dMψ(α) ,(3)

where Fi is the marginal distribution functions, i = 1, . . . , n. Let us further assume

that the function Gψ and Fi have the first derivative gψ and fi, i = 1, . . . , n,

respectively. Then, the joint density function of X equals∫ ∞
0

n∏
i=1

αgψ(Fi(xi))fi(xi)G
α−1
ψ (Fi(xi))dMψ(α) ,(4)

which yields

Pr
(
X1 < x1, . . . , Xk < xk, Xk+1 > xk+1, . . . , Xn > Xn

)
=

∫ ∞
0

∫ x1

−∞
. . .

∫ xk

−∞

k∏
s=1

αgψ(Fs(ws))G
α−1
ψ (sF (ws))fs(ws)dws

×
∫ ∞
xk+1

. . .

∫ ∞
xn

n∏
s=k+1

αgψ(Fs(vs))G
α−1
ψ (Fs(vs))fs(vs)dvsdMψ(α)

=

∫ ∞
0

k∏
s=1

Gαψ(Fs(xs))

n∏
s=k+1

{1−Gαψ(Fs(xs))}dMψ(α),(5)

for k = 1, 2, . . . , n. For more details, one may refer to Joe [5] or Nelsen [7].

We use an Archimedean copula for considering the dependency of components

because of its feasibility and also because the reliability of the system with standby

redundancies with the mentioned setup has a closed form. This class was used by

Rezapour et. al. [9] and Rezapour and Alamatsaz [10] to study a (n − k + 1)-

out-of-n system with dependent components. Rezapour et. al. [8] also considered

reliability properties of a system whose components are distributed according to an

Archimedean copula.

We investigate the distribution and the expected value of the number of surviving

standby components at the moment that the system fails. More explicitly, let
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X1, . . . , Xn be random lifetimes of the active components with joint distribution

function (3) and Y1, . . . , Ym be those of the standby components with joint density

function ∫ ∞
0

m∏
i=1

αgφ(Hi(xi))hi(xi)G
α−1
φ (Hi(xi))dMφ(α) ,(6)

where φ is a completely monotone generator of an Archimedean copula and Hi

is the distribution function with corresponding density function hi, i = 1, . . . , n,

Gφ(u) = exp{−φ−1(u)} and gφ(u) = G′φ(u).

We also assume that the random vectors X = (X1, . . . , Xn) and Y = (Y1, . . . , Ym)

has joint survival functions

ψ

(
n∑
i=1

ψ−1(F̄i(xi))

)
=

∫ ∞
0

n∏
i=1

Gαψ(F̄i(xi))dMψ(α) ,(7)

and

φ

(
m∑
i=1

φ−1(H̄i(yi))

)
=

∫ ∞
0

m∏
i=1

Gαφ(H̄i(xi))dMφ(α) ,(8)

respectively, where H̄i (F̄i) is marginal survival function of Yi (Xi) with derivative

−hi, i = 1, . . . ,m (−fi, i = 1, . . . , n).

Now, suppose that the system has an arbitrary coherent structure ϕ. Thus the

lifetime of the system is represented by T = ϕ(X1, . . . , Xn) and the number of warm

standby components that are alive at the time of system failure is Sm = #{j ≤ m :

Yj > T}. This random quantity is potentially useful for understanding the behavior

of warm standby components with respect to a coherent system and can be used to

determine the optimal number of standby components.

The following notation, will be used throughout this paper. The set N−im:s , s > i ,

consists of all permutations (j1, . . . , js−i, js+1, . . . , jm) of {1, . . . ,m} for which j1 <

· · · < js−i and js+1 < · · · < jm, N−im:s(l) , s > i , contains all permutations (j1, . . . , jl)

of j1, . . . , js−i, N
−i
m\s(l) contains all permutations (j1, . . . , jl) of js+1, . . . , jm , and

Ns(l) contains all permutations (j1, . . . , jl) of 1, . . . , s. In the case of i = 0, we will

denote N−im:s, N
−i
m:s(l), and N−im\s(l) by Nm:s, Nm:s(l), and Nm:s\(l), respectively.

In Section 2, we derive the distribution function and the expected value of Sm

for both dependent non-identically distributed and exchangeable components.
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2. The number of surviving standby components at failure time of

the system

Let T be the lifetime of a coherent system consisting of n components whose

lifetimes are X1, . . . , Xn with joint density function (4). The representation of the

density function fX1,...,Xn given in (4) can be written as

(9) fX(x1, . . . xn) =

∫ ∞
0

fXα
(x1, . . . xm)dMψ(α),

where X = (X1, . . . , Xn) and fXα
(x1, . . . xm) is defined as the integrand in (4).

Notice that fXα
is the joint density function of independent random variables Xi,α

with distributions Gαψ(Fi(·)), i = 1, . . . , n, α ≥ 0. Hence, the density function fX

can be seen as a Mψ-mixture of the distributions of indepdnet random variables.

Now, if if Xi:n (Xi:n;α), i = 1, . . . , n are the ith order statistics of the random vector

X (Xα), with similar arguments as in the proof of Theorem 1 in [4] we have

P (T < t) =

n∑
i=1

P (T = Xi:n, T < t)

=

∫ ∞
0

n∑
i=1

P (T = Xi:n;α, T < t)dMψ(α)

=

∫ ∞
0

n∑
i=1

P (T = Xi:n;α)P (Xi:n;α < t|T = Xi:n;α)dMψ(α)

=

∫ ∞
0

n∑
i=1

P (T = Xi:n;α)P (Xi:n;α < t)dMψ(α)

=

n∑
i=1

P (T = Xi:n)P (Xi:n < t) =

n∑
i=1

piFi:n(t) , t > 0 ,(10)

where pi = P (T = Xi:n) and Fi:n is the distribution function of Xi:n, i = 1, . . . , n..

The vector p = (p1, . . . , pn) is called the system signature. If the random vari-

ables X1, . . . , Xn are exchangeable, i.e. P (X1 < x1, . . . , Xn < xn) = P (Xπ(1) <

x1, . . . , Xπ(n) < xn) holds for any permutation π = (π(1), . . . , π(n)), the signature

of the system does not depend on the distribution of X1, . . . , Xn. Thus the system

with exchangeable components has the same signature vector as the system with

independent and identically distributed (i.i.d.) components. See Eryilmaz [2] for

more details. If Fi = F for i = 1, . . . , n in (4), the random variables X1, . . . , Xn are

exchangeable and therefore, the ith signature of a coherent system such the lifetime
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of its components has density function (4) is given by

pi =
rn−i+1(n)(

n
i

) −
rn−i(n)(

n
i

) , i = 1, . . . , n ,(11)

where ri(n) is the number of path sets of the structure with exactly i working

components (Boland [1]).

Example 2.1. Consider the three component coherent system with i.i.d. compo-

nents pictured in Figure 1 below. The failure times X1, X2 and X3 of the three

components of this system can be ordered in 3! = 6 ways, and these six possible per-

mutations are equally likely due to the i.i.d. assumption. It is easy to show that the

signature of this system is p = (1/3, 2/3, 0) and that that the five distinct coherent

systems of order 3 have the signatures (1, 0, 0), (0, 1, 0), (0, 0, 1), (1/3, 2/3, 0) and

(0, 2/3, 1/3).

Figure 1. A 3-component system with structure function ϕ(x) =

x1(x2 + x3x2x3).

In the following we obtain the distribution function of the random variable Sm

in terms of signature for both dependent and non-identical and exchangeable com-

ponent lifetimes.

Theorem 2.2. Let X1, . . . , Xn and Y1, . . . , Ym be lifetimes having joint density

functions (4) and (6), respectively. If the system with lifetime T = ϕ(X1, . . . , Xn)

has signature p = (p1, . . . , pn), then

P (Sm = s) =
∑
Nm:s

s∑
l=0

∑
Nm:s(l)

(−1)l
∫ ∞
0

φ

( ∑
k∈Nm:s(l)

φ−1(Hjk (t))

+

m∑
k=s+1

φ−1(Hjk (t))

)
dFT (t) ,(12)
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where fT (t) =
∑n
i=1 pifi:n(t) and

fi:n(t) =
∑
N−1
n:i

fji(t)

ψ′(ψ−1(Fji(t)))

n−i∑
l=0

(−1)l
∑

N−1
n\i(l)

ψ′
( i−1∑
k=1

ψ−1(Fjk (t))

+ψ−1(Fji(t)) +
∑

k∈N−1
n\i(l)

ψ−1(Fjk (t))

)
,(13)

Proof. By the definition of Sm and the conditions of the theorem, one may write

P (Sm = s) =
∑
Nm:s

P (Yj1 > T, . . . , Yjs > T, Yjs+1
< T, . . . , Yjm < T ) ,

By conditioning on T and an arguments similar to those in Section 1, we have

P (Sm = s)

=
∑
Nm:s

∫ ∞
0

∫ ∞
0

s∏
k=1

{1−Gαφ(Hjk (t))}
m∏

k=s+1

Gαφ(Hjk (t))dMφ(α)dFT (t)

=
∑
Nm:s

s∑
l=0

(−1)l
∑

Nm:l(s)

∫ ∞
0

∫ ∞
0

∏
k∈Nl(s)

Gαφ(Hjk (t))

×
m∏

k=s+1

Gαφ(Hjk (t))dMφ(α)dFT (t) ,(14)

where the second equality follows by

s∏
k=1

{1−Gαφ(Hjk(t))} =
s∑
l=0

(−1)l
∏

k∈Nl(s)

Gαφ(Hjk(t))

By definition, Gφ(u) = exp(−φ−1(u)) and (14) reduces to

∑
Nm:s

s∑
l=0

(−1)l
∑

Nm:s(l)

∫ ∞
0

∫ ∞
0

exp

(
− α

( ∑
k∈Nl(s)

φ−1(Hjk(t))

+

n∑
k=s+1

φ−1(Hjk(t))
))

dMφ(α)dFT (t) .(15)
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Now, (12) follows by the identity φ(x) =
∫∞
0
e−αudMφ(α) and (15). Moreover,

fT (t) =
∑n
i=1 pifi:n(t) follows by (10) and the density function of Xi:n equals

fi:n(t)

=
∑
N−1
n:i

Pr
(
Xj1 < t, . . . ,Xji−1 < t,Xji+1 > t, . . . ,Xjn > t|Xji = t

)
fji(t),

=
∑
N−1
n:i

∫ ∞
0

i−1∏
k=1

Gαψ(Fjk (t))αgψ(Fji(t))fji(t)G
α−1
ψ (Fji(t))

×
n∏

k=i+1

{1−Gαψ(Fjk (t))}dMψ(α)

=
∑
N−1
n:i

∫ ∞
0

i−1∏
k=1

Gαψ(Fjk (t))αgψ(Fji(t))fji(t)G
α−1
ψ (Fji(t))

×
n−i∑
l=0

(−1)l
∑

N−1
n\i(l)

∏
k∈N−1

n\i(l)

Gαψ(Fjk (t))dMψ(α)

=
∑
N−1
n:i

fji(t)

ψ′(ψ−1(Fji(t)))

n−i∑
l=0

(−1)l
∑

N−1
n\i(l)

∫ ∞
0

(−α) exp

(
− α

( i−1∑
k=1

ψ−1(Fjk (t))

+ψ−1(Fji(t)) +
∑

k∈Nn\i(l)

ψ−1(Fjk (t))
))

dMψ(α) ,(16)

where the last equality follows by gψ(u) = − Gψ(u)
ψ′(ψ−1(u)) and Gψ(u) = exp(−ψ−1(u)).

Therefore, (13) follows by ψ′(u) =
∫∞
0

(−α)e−αudMψ(α) and (16) and this com-

pletes the proof. �

Corollary 2.3. Under assumption of Theorem 2.2, if Fi = F for i = 1, . . . , n and

Hj = H for j = 1, . . . ,m, then

P (Sm = s) =

s∑
l=0

(−1)l
(
m

s

)(
s

l

)∫ ∞
0

φ
(

(m− s+ l)φ−1(H(t))
)
dFT (t) ,

(17)

where fT (t) =
∑n
i=1 pifi:n(t) and

fi:n(t) = i

(
n

i

)
f(t)

ψ′(ψ−1(F (t)))

n−i∑
l=0

(−1)l
(
n− i
l

)
ψ′
(

(i+ l)ψ−1(F (t))

)
,(18)

Remark 2.4. Under assumption of Corollary 2.3, if the underling Archimedean

copula is generated by ψ(x) = e−x, we have independence copula and ψ′(t)
∣∣∣
t=zψ−1(x)

=
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−xz, which yields the probability mass function of Sm as obtained in Theorem 1. of

Eryilmaz [2].

In the following, we obtain the mean value of the number of surviving standby

components at the moment that the system fails.

Corollary 2.5. Under assumption of Theorem 2.2, we have

E(Sm) =

m∑
i=1

m∑
j=1

∫ ∞
0

H̄i(t)fi:n(t)dt .(19)

Proof. By definition of Sm, we have

E(Sm) = E
( m∑
j=1

I(Yj > T )
)

=

m∑
j=1

P (Yj > T ) =

m∑
j=1

∫ ∞
0

P (Yj > t)dFT (t) ,

where I(A) is the indicator function of A. Therefore, the results follows by (10). �

Example 2.6. If the assumption of Corollary 2.3 holds and copulas belong to the

Ali-Mikhail-Haq family with generators ψ(u) = 1−θ1
et−θ1 and φ(u) = 1−θ2

et−θ2 for θ1, θ2 ∈
[0, 1), and H(x) = F (x) = 1−e−λ, then the probability mass function of Sm reduces

to

s∑
l=0

(−1)l
(
m

s

)(
s

l

)∫ ∞
0

(1− θ2)(1− e−λt)m−s+l(
1− θ2e−λt

)m−s+l
− θ2(1− e−λt)m−s+l

dFT (t) ,

where fT (t) =
∑n
i=1 pifi:n(t) and

fi:n(t) = i

(
n

i

)
λe−λt

1−e−λt
1−θ1

(
1− θ1e−λt

) n−i∑
p=0

(−1)p
(
n− i
p

)

× (1− θ1)(1− e−λt)p+i(
1− θ1e−λt

)i+p
− θ1(1− e−λt)i+p

Therefore, we have

P (Sm = s) =

s∑
l=0

n−i∑
p=0

(−1)l+p
∫ 1

0

(
m
s

)(
s
l

)
(1− θ2)i

(
n
i

)(
n−i
p

)(
1− θ2u

)m−s+l
− θ2(1− u)m−s+l

× (1− u)m−s+l+p+i−1(
1− θ1u

)i+p+1

− θ1(1− u)i+p(1− θ1u)
du ,

The last integral may be evaluated using a mathematical software.
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In the following results, we consider the mass function of Sm when the random

vectors X and Y have joint survival functions (7) and (8), respectively. The proof

is similar to those above.

Corollary 2.7. If the system with lifetime T = ϕ(X1, . . . , Xn) has signature p =

(p1, . . . , pn), then

P (Sm = s) =
∑
Nm:s

m−s∑
l=0

∑
Nm\s(l)

(−1)l
∫ ∞
0

φ

(
s∑

k=0

φ−1(H̄jk (t))

+
∑

k∈Nm\s(l)

φ−1(H̄jk (t))

)
dFT (t) ,(20)

where fT (t) =
∑n
i=1 pifi:n(t) and

fi:n(t) =
∑
N−1
n:i

fji(t)

ψ′(ψ−1(F̄ji(t)))

i∑
l=0

(−1)l
∑

N−1
n:i(l)

ψ′
( ∑
k∈N−1

n:i

ψ−1(F̄jk (t))

+ψ−1(F̄ji(t)) +

n∑
k=i+1

ψ−1(F̄jk (t))

)
,(21)

Corollary 2.8. Under assumption of Corollary 2.7, if F̄i = F̄ for i = 1, . . . , n and

H̄j = H̄ for j = 1, . . . ,m, then

P (Sm = s) =

m−s∑
l=0

(−1)l
(
m

s

)(
m− s
l

)∫ ∞
0

φ
(

(s+ l)φ−1(H̄(t))
)
dFT (t) ,

(22)

where fT (t) =
∑n
i=1 pifi:n(t) and

fi:n(t) = i

(
n

i

)
f(t)

ψ′(ψ−1(F̄ (t)))

i∑
l=0

(−1)l
(
i

l

)
ψ′
(

(n− i+ l + 1)ψ−1(F̄ (t))

)
,(23)

Example 2.9. If the assumption of Corollary 2.8 holds and the copulas belong

to the Gumbel family with generators ψ(t) = exp(−t1/θ1), φ(t) = exp(−t1/θ2) for

θ1, θ2 ≥ 1, f(x) = λ1e
−λ1x and h(x) = λ2e

−λ2x, λ1, λ2 > 0, then the probability

mass function of Sm reduces to

P (Sm = s) =

m−s∑
l=0

(−1)l
(
m

s

)(
m− s
l

)∫ ∞
0

exp
(
− (s+ l)1/θ2λ2t

)
dFT (t) ,
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where fT (t) =
∑n
i=1 pifi:n(t) and

fi:n(t) = i

(
n

i

)
λ1e
−λ1t

(λ1t)θ1(1/θ1−1)e−λ1t

i∑
l=0

(−1)l
(
i

l

)(
(n− i+ l + 1)(λ1t)

θ1
)1/θ1−1

× exp
(
− (n− i+ l + 1)1/θ1λ1t

))

= i

(
n

i

)
λ1

i∑
l=0

(−1)l
(
i

l

)
(n− i+ l + 1)1/θ1−1 exp

(
− (n− i+ l + 1)1/θ1λ1t

))
.

Hence, the probability mass function of Sm is

m−s∑
l=0

(−1)l
(
m

s

)(
m− s
l

)
i

(
n

i

)
λ1

i∑
q=0

(−1)q
(
i

q

)
(n− i+ q + 1)1/θ1−1

×
∫ ∞
0

exp

(
−
(

(s+ l)1/θ2λ2 + (n− i+ q + 1)1/θ1λ1

)
t

)
dt

=

m−s∑
l=0

i∑
q=0

(−1)l+q
(
m
s

)(
m−s
l

)
i
(
n
i

)
λ1
(
i
q

)
(n− i+ q + 1)1/θ1−1

(s+ l)1/θ2λ2 + (n− i+ q + 1)1/θ1λ1
.

In Table 1 we calculate the value of E(Sm) for a system p = (1/3, 2/3, 0) for different

value of λ1 , λ2 , θ1 and θ2 . Since the cases θ1 = θ2 = 1 considers a systems with

independent components we can infer that the dependency between the components

of a system is a crucial object that should be considered. For example when λ1 =

λ2 = θ1 = 1 , and m = 5 by increasing θ2 , to 2 , which reduce dependency between

standby components, E(Sm) is decreases. But, when we increase it to 3 , E(Sm) is

increase, but it is steel less than its value for independent case. When we increase

the value of θ1 , to 2 which decreases the dependency between the components of the

system, E(Sm) is increase. By changing θ1 to 3 , E(Sm) is decreases but steel it is

greater than its value for independent case.
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