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Abstract. In this paper, we focus on the study of shearlet transform which is

defined by using the hyperbolic functions. As a result we check an admissibility

condition such that implies the reconstruction formula. To this end, we will use

the concept of the classical shearlet, which indicates the position and direction

of a singularity.
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1. Introduction

In recent years, much effort has been spent to design directional representation

systems for images such as curvelets [2], ridgelets [3] and shearlets [7] and cor-

responding transforms (this list is not complete). Among these transforms, the

shearlet transform stands out since it steams from a square-integrable group repre-

sentation [4] and has the corresponding useful mathematical properties. Moreover,

similarly as wavelets are related to Besov spaces via atomic decomposition, shearlets

correspond to certain function spaces, the so-called shearlet coorbit spaces [5]. In
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addition, shearlets provide an optimally sparse approximation in the class of piece-

wise smooth functions with C2 singularity curves, i.e.,

∥f − fN∥2L2 ≤ CN−2(logN)3 as N −→ ∞,

where fN is the non-linear shearlet approximation of function f from this class,

obtained by taking N the largest shearlet coefficients in absolute value.

Shearlets have been applied to a wide field of image processing takes, see, e.g.,

[7, 9, 10, 11]. In [8] the authors showed how the directional information encoded by

the shearlet transform can be used in image segmentation.

The shearlets, provide an alternative approach to the curvelets, and exhibit some

very distinctive features. In fact, similarly to the curvelets, the shearlets are a multi-

scale directional system and are also optimal in approximating 2-D smooth functions

with discontinuities along C2-Curves.

However unlike the curvelets, the shearlets form an affine system. That is, they

are generated by dilating and translating one single generating function, where the

dilation matrix is the product of a parabolic scaling matrix and a shear matrix. In

particular, the shearlets can be regarded as coherent states arising from a unitary

representation of a particular locally compact group, called the shearlet group.

Recently in [1] the authors characterize irreducible as well as square-integrable

sub-representations of the shearlet group representation in 2-D. This allows one

to employ the theory of uncertainty principles to study the accuracy of the shearlet

parameters. Another consequence of the group structure of the shearlets is that

they are associated with a generalized Multiresolution Analysis, and this is partic-

ularly useful in both their theoretical and numerical applications.

This article is organized as follows: section 2 is devoted to some preliminaries

and notations contains the definitions of the parabolic shearlet transform. In section

3 we introduce some special hyperbolic functions and show the special properties.

The continuous shearlet transform via hyperbolic functions and its properties are

investigated in section 4.
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2. Preliminaries and notations

In this section we will review briefly some preliminaries about shearlet transform

which is introduce in [6] by Kutyniok and et all.

Let S = R+×R×R2 be the shearlet group, equipped with the group multiplication

(a, s, t)(a′, s′, t′) = (aa′, s′ + s
√
a′, t′ + Ss′Aa′t),

where Aa =

(
a 0

0
√
a

)
is an isotropic dilation matrix and Ss =

(
1 s

0 1

)
is

the shear matrix, for a ∈ R+ and s ∈ R. For ψ ∈ L2(R2) the continuous shearlet

transform generated by ψ is the map

SHψ : L2(R2) → L2(S),

defined by

f 7→ SHψf(a, s, t) = ⟨f, ψa,s,t⟩, f ∈ L2(R2), (a, s, t) ∈ S.

The shearlet transform SHψ is invertible if the function ψ fulfils the admissibility

condition

∫
R2

|ψ̂(ξ1, ξ2)|2

|ξ1|2
dξ1dξ2 <∞.

Let ψ1 ∈ L2(R) be a function satisfying the discrete Caldern condition, i.e.,∑
j∈Z |ψ̂1(2

−jξ)|2 = 1, ξ ∈ R̂,∑
k∈Z |ψ̂2(ξ + k)|2 = 1, ξ ∈ R̂.

One typically chooses ψ̂2 to be a smooth bump function. Then ψ ∈ L2(R2) given

by

ψ̂(ξ) = ψ̂1(ξ1)ψ̂2

(
ξ2
ξ1

)
, ξ = (ξ1, ξ2) ∈ R̂2.(1)

It is shown that the shearlet of the form defined as in (1), fulfils the admissibility

condition [6].
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3. Hyperbolic functions with special properties

In this section we define some special hyperbolic functions with some special

properties, which will be needed in the sequel.

We start by defining a function F : R → R such that

(2) F (x) :=


0 x < 0

f(x) 0 ≤ x ≤ 1

1 x > 1

,

where f is a continuous function on [0, 1] such that f(0) = 0, f(1) = 1 and is

symmetry around the point ( 12 ,
1
2 ).

Recall that (the graph of) a function f : R → R is point symmetric with respect

to (a, b), if and only if f(a+x)−b = −f(a−x)+b, for all x ∈ R, which is equivalent

to f(x) + f(2a − x) = 2b, for all x ∈ R. Thus, for a symmetric function around

( 12 ,
1
2 ), we have f(x) + f(1− x) = 1. therefore f is increasing function on [0, 1]. We

will see that it is a useful property for f to be symmetry around (12 ,
1
2 ).

Now we define the function h : R → R by

(3) h(w) :=


sinh(F (|w| − 1)) 1 ≤ |w| < 2

cosh(F ( |w|
2 − 1)) 2 ≤ |w| ≤ 4

0 otherwise

.

Then h is a piecewise smooth function, that is a continuous functions which is sym-

metric, positive and real function. Also supph = [−4,−1] ∪ [1, 4] and furthermore

h(±2) = 1. Because of the symmetry of h, we restrict ourselves in the following

analysis to the case that w > 0.

Let hj(·) := h(2−j ·) for j ∈ N0. Thus supphj = 2j [1, 4] = [2j , 2j+2] and hj(2
j+1) =

1. Obviously all these properties are satisfied for h2j . For j1 ̸= j2 the overlap between

the support of h2j1 and h2j2 is empty except for |j1 − j2| = 1. Thus, for h2j and h2j+1,

the supp(h2j )∩supp(h2j+1) = [2j+1, 2j+2]. In this interval h2j = cosh2(F ( 2
−j

2 |w|−1))

and h2j+1 = sinh2(F (2−(j+1)|w| − 1)). Therefore in this interval we have

h2j (w)− h2j+1 = cosh2(F (2−j−1|w| − 1))− sinh2(F (2−j−1|w| − 1)) = 1.
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As a summarize of all these results we have

(h2j − h2j+1)(w) =


h2j 2j ≤ w < 2j+1

1 2j+1 ≤ w ≤ 2j+2

h2j+1 2j+2 ≤ w ≤ 2j+3

0 o.w

.(4)

Consequently, we have the following lemma.

Lemma 3.1. For each hj defined as above, the relations∑∞
j=−1(−1)j+1h2j (w) =

∑∞
j=−1(−1)j+1h2(2−jw) = 1 |w| ≥ 1

and

(5)
∞∑

j=−1

(−1)j+1h2j (w) =


0 |w| ≤ 1

2

sinh2(F (2|w| − 1)) 1
2 < |w| < 1

1 |w| ≥ 1

,

hold true.

Proof. Since hj and hj+1 are not equal to zero in each interval [2j+1, 2j+2] for

j ≥ −1, so it is sufficient to prove that h2j − h2j+1 ≡ 1 in this interval. Since

w ∈ [2j+1, 2j+2], so 2−jw ∈ [2, 4] and also 2−j−1w ∈ [1, 2]. Hence we get that

(h2j − h2j+1)(w) = h2(2−jw)− h2(2−j−1w)

= cosh2(F (
1

2
· 2−jw − 1))− sinh2(F (2−j−1w − 1))

= cosh2(F (2−j−1w − 1))− sinh2(F (2−j−1w − 1))

= 1.

The second relation follows by straightforward computation.

□

Now we define the function ψ1 : R → R via its Fourier transform such that

(6) ψ̂1(w) :=
√
h2(2w) + h2(w),
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where h is defined as in (3).

The following theorem states an important property of ψ1.

Theorem 3.1. Let ψ̂1 be the function defined as in (6). Then suppψ̂1 = [−4,− 1
2 ]∪

[ 12 , 4] and fulfils the following equality∑
j≥0

(−1)j(ψ̂1(2
−2jw))2 = 1 |w| > 1.

Proof. By using the definition of h, it is easy to show that suppψ̂1 = [−4,− 1
2 ]∪[

1
2 , 4].

Also by means of the property of h, we have

∑
j≥0

(−1)j(ψ̂1(2
−2jw))2 =

∞∑
j=0

(−1)j(h2(2.2−2jw) + h2(2−2jw))

=
∞∑
j=0

(−1)j(h2(2−2j+1w) + h2(2−2jw)).(7)

So by Lemma 3.1, we have∑
j≥0

(−1)j(ψ̂1(2
−2jw))2 =

∞∑
j=−1

(−1)j+1h2(2−jw)

= 1.(8)

□

As a result of Theorem 3.1 and By (2) we have

(9)
∑
j≥0

(−1)j(ψ̂1(2
−2jw))2 =


0 |w| ≤ 1

2

sinh2(F (2|w| − 1)) 1
2 < |w| < 1

1 |w| ≥ 1

.

Now we define the function ψ2 : R → R, in the Fourier domain, by

(10) ψ̂2 :=

{ √
F (1 + w) w ≤ 0√
F (1− w) w > 0

.

To investigate some properties of ψ2, we need the following two lemmas.
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Lemma 3.2. The function F , which is defined in (2) is point symmetric with

respect to ( 12 ,
1
2 ), i.e., F (x) + F (1− x) = 1 for all x ∈ R.

Proof. The proof is clear from the definition of F .

□

Note that ψ̂2 is symmetric with respect the points (0, y) for all y ∈ R.

Lemma 3.3. The function ψ̂2 fulfils the following condition

ψ̂2
2(w − 1) + ψ̂2

2(w) + ψ̂2
2(w + 1) = 1 for|w| ≤ 1.

Proof. By the definition of ψ2, we have

ψ̂2
2(w) =

{
F (1 + w) w ≤ 0

F (1− w) w > 0
.

So by the fact that for 0 ≤ w ≤ 1, F (−w) = 0, we have

ψ̂2
2(w − 1) + ψ̂2

2(w) + ψ̂2
2(w + 1) = F (1 + w − 1) + F (1− w) + F (1− w − 1)

= F (w) + F (1− w) + F (−w)

= 1,

and similarly we obtain for −1 ≤ w < 0 that

ψ̂2
2(w − 1) + ψ̂2

2(w) + ψ̂2
2(w + 1) = F (1 + w − 1) + F (1 + w) + F (1− w − 1)

= F (−|w|) + F (1− |w|) + F (|w|)

= 1.

□

One can see in the proof of Lemma 3.3, that the sum in both cases has two

(different) summands, in particular

1 = ψ̂2
2(w − 1) + ψ̂2

2(w) + ψ̂2
2(w + 1) =

{
ψ̂2
2(w − 1) + ψ̂2

2(w) 0 ≤ w ≤ 1

ψ̂2
2(w) + ψ̂2

2(w + 1) −1 ≤ w < 0
.

Now we can state a property of ψ2 in the following theorem, By means of the

two previous lemmas.



26 M. ZARE, M. SADEGHINEZHAD, R. A. KAMYABI-GOL

Theorem 3.2. The function ψ̂2, which is defined in (10), fulfils the following equal-

ity

(11)

2j∑
k=−2j

|ψ̂2(k + 2jw)|2 = 1 for|w| ≤ 1, j ≥ 0.

Proof. With w̃ := 2jw the formula in (11) becomes

2j∑
k=−2j

|ψ̂2(k + w̃)|2 = 1 for|w̃| ≤ 2j , j ≥ 0.

For a fixed (but arbitrary) w∗ ∈ [−2j , 2j ] ⊂ R, since suppψ̂2 = [−1, 1], so ψ̂2(w
∗ +

k) ̸= 0 for −1 ≤ w∗ + k ≤ 1. Thus, for w∗ ∈ Z, just the summands for k ∈
{−w∗ − 1,−w∗,−w∗ + 1} do not vanish. But for k = −w∗ ± 1, we have that

w∗ + k = ±1 and ψ̂2(±1) = 0. In this case the entire sum reduces to one summand

k = −w∗ such that

2j∑
k=−2j

|ψ̂2(k + w∗)|2 = |ψ̂2(−w∗ + w∗)|2 = |ψ̂2(0)|2 = 1.

If w∗ /∈ Z and w∗ > 0, the only non-zero summand appears for k ∈ {[w∗], [w∗]− 1}.
Thus, for 0 < r+ := w∗ − [w∗] < 1,

2j∑
k=−2j

|ψ̂2(k + w∗)|2 = |ψ̂2(−[w∗] + w∗)|2 + |ψ̂2(−[w∗]− 1 + w∗)|2

= |ψ̂2(r
+)|2 + |ψ̂2(1− r+)|2,

which is equal to 1 by Lemma 3.3. Analogously, we obtain for w∗ /∈ Z such that

w∗ < 0, the remaining non-zero summands are those for k ∈ {[w∗], [w∗] + 1}. For

−1 < r− := [w∗] + w∗ < 0 we have

2j∑
k=−2j

|ψ̂2(k + w∗)|2 = |ψ̂2([w
∗] + w∗)|2 + |ψ̂2([w

∗] + 1 + w∗)|2

= |ψ̂2(r
−)|2 + |ψ̂2(1 + r−)|2.

So ψ̂2(x) = ψ̂2(−x), Lemma 3.3 lead one obtains

|ψ̂2(r
−)|2 + |ψ̂2(1 + r−)|2 = |ψ̂2(|r−|)|2 + |ψ̂2(1− |r−|)|2 = 1.

□
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4. The continuous shearlet transform associated with hyperbolic

functions

To define a usable shearlet transform, we need functions with special properties.

In this section, we define shearlet transform via hyperbolic functions, which are

introduced in section 3.

Recall that the shearlet transform ψa,s,t emerges by dilation, shearing and trans-

lation of a function ψ ∈ L2(R2) as follows

ψa,s,t(x) := a−
3
4ψ(A−1

a S−1
s (x− t))

= a−
3
4ψ(

(
1
a − s

a

0 1√
a

)
(x− t)).(12)

We assume that ψ̂ can be written as

ψ̂(w1, w2) = ψ̂1(w1)ψ̂2(
w2

w1
),(13)

where ψ1, ψ2 are defined in (6) and (10) respectively. Consequently, we obtain for

the Fourier transform,

ψ̂a,s,t(w) = a−
3
4ψ(

(
1
a − s

a

0 1√
a

)
(.− t)) ˆ (w)

= a−
3
4 e−2πi<w,t>ψ(

(
1
a − s

a

0 1√
a

)
.) ˆ (w)

= a−
3
4 e−2πi<w,t>(a−

3
2 )

−1
ψ̂(

(
a 0

s
√
a

√
a

)
w)

= a
3
4 e−2πi<w,t>ψ̂(aw1,

√
a(sw1 + w2))

= a
3
4 e−2πi<w,t>ψ̂1(aw1)ψ̂2(a

− 1
2 (
w2

w1
+ s)).
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The shearlet transform SHψ(f) of a function f ∈ L2(R) can now be defined as

follows

SHψ(f) :=< f, ψa,s,t >

=< f̂, ψ̂a,s,t >

=

∫
R2

f̂(w)ψ̂a,s,t(w)dw

= a
3
4

∫
R2

f̂(w)ψ̂1(aw1)ψ̂2(a
− 1

2 (
w2

w1
+ s))e−2πi<w,t>dw

= a
3
4F−1(f̂(w)ψ̂1(aw1)ψ̂2(a

− 1
2 (
w2

w1
+ s)))(t).

In the next theorem we will show that the shearlet ψ, fulfils the admissibility

condition which means that we have the reconstruction formula for every function

in L2(R2).

Theorem 4.1. The shearlet transform, which is defined by using hyperbolic func-

tions in (13), is invertible, i.e the function ψ fulfils the following admissibility prop-

erty: ∫
R2

|ψ̂(w1, w2)|2

|w1|2
dw1dw2 <∞.

Proof. Easy calculations show that any shearlet function of the form ψ̂(w1, w2) =

ψ̂1(w1)ψ̂2(
w2

w1
) , in which ψ̂1 and ψ̂2 are continuous and suppψ̂1 ⊂ [−b,−a] ∪ [a, b]

and suppψ̂2 ⊂ [−c, c] is admissible. On the other hand ψ̂1, ψ̂2 are continuous and

as it is shown in section 3, suppψ̂1 ⊂ [−4,− 1
2 ] ∪ [ 12 , 4] and suppψ̂2 ⊂ [−1, 1]; so the

function ψ fulfils the admissibility condition. □
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