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Abstract. Suppose G is a finite non-abelian group and Γ(G) is a graph

with non-central conjugacy classes of G as its vertex set. Two vertices
L and K in Γ(G) are adjacent if there are a ∈ L and b ∈ K such that

ab = ba. This graph is called the commuting conjugacy class graph of G.

The purpose of this paper is to compute the commuting conjugacy class
graph of the finite 2−groups Gn(m) and G[n].

Keywords: Commuting conjugacy class graph, conjugacy class, center.

2020 MSC : 20D60, 20E45.

1. Preliminaries

All groups in this paper are finite and we will consider only simple undirected
graphs. Our graph theory notations are taken from [2] and we refer to [7] for
group theory notions. Choose the set X = {∆1, . . . ,∆s} of undirected graphs
with mutually disjoint vertex sets. The graph union ∆1 ∪ · · · ∪∆s is a graph
with vertex set V (∆1)∪ · · · ∪ V (∆s) and edge set E(∆1)∪ · · · ∪E(∆s). In the
case that all of these graphs are isomorphic together, we use the notation s∆1

to denote ∆1 ∪ · · · ∪∆s.
The commuting conjugacy class graph was first introduced by Herzog et

al. [3]. in which the authors considered all non-identity conjugacy classes of a
finite group G as the vertex set of the graph. But, in this paper we restricted
our attention to the set of all non-central conjugacy classes of a finite non-
abelian group G as the vertex set of this graph and two vertices K and L of
this graph are adjacent if there are a ∈ K and b ∈ L such that ab = ba. In [6],
the authors gave a classification of finite groups with triangle-free commuting
conjugacy class graphs.

Suppose m and n are two positive integers such that m ≥ 2 and n ≥ 3.
Suppose Gn(m) is the group with generators a1, . . . , an, b and the following

� ma.salahshour@iau.ac.ir, ORCID: 0000-0002-0816-4232

https://doi.org/10.22103/jmmr.2023.21431.1436 © the Author(s)
Publisher: Shahid Bahonar University of Kerman

How to cite: M.A. Salahshour, and A.R. Ashrafi, Commuting Conjugacy Class Graph of

The Finite 2−Groups Gn(m) and G[n], J. Mahani Math. Res. 2024; 13(2): 67 - 71.

67

https://orcid.org/0000-0002-0816-4232
mailto: MA.Salahshour@iau.ac.ir
https://orcid.org/0000-0002-2858-0663
https://doi.org/10.22103/jmmr.2023.21431.1436


68 M.A. Salahshour, and A.R. Ashrafi

relations:

a21 = 1, a2
m

2 = 1, a4i = 1 (3 ≤ i ≤ n),

a2n−1 = b2, [ai, aj ] = 1 (1 ≤ i < j ≤ n),

[a1, b] = 1, [an, b] = a1, [ai−1, b] = a2i (3 ≤ i ≤ n).

Theorem 1.1. ( [4, Proposition 2.1]) Suppose G = Gn(m), where m ≥ 2 and
n ≥ 3. Then the following conditions hold:

(1) |G| = 22n+m−2;
(2) Each element of G can be written uniquely in the form aα1

1 aα2
2 . . . aαn

n bβ

where α1, β ∈ {0, 1}, 0 ≤ α2 ≤ 2m − 1 and 0 ≤ αi ≤ 3 (3 ≤ i ≤ n);
(3) Z(G) = 〈a1〉×〈a22〉×· · ·×〈a2n〉 ∼= Zn−1

2 ×Z2m−1 and |Z(G)| = 2n+m−2;
(4) G/Z(G) ∼= Zn2 ;
(5) The subgroup 〈a1, a2, . . . , an〉 is the unique abelian subgroup of G of

index 2.

It is an old question that which non-abelian groups have an abelian au-
tomorphism group. The first such a group was introduced by Miller [5] as
T = 〈x, y, z, u〉 with defining relations x8 = y2 = z2 = u2 = [x, z] = [x, u] =
[z, u] = [z, y] = 1, yxy = x5 and yuy = uz. Miller proves that G is a non-
abelian group with G/Z(G) ∼= Z2

3 and Aut(G) ∼= Z2
7. Here, Zn denotes the

cyclic group of order n. Struik [8] generalized Miller’s example by assuming
that n ≥ 3, k = 2n−1, G[n] = 〈x, y, z, u〉 and defining relations x2

n

= y2 =
z2 = u2 = [x, z] = [x, u] = [z, u] = [y, z] = 1, yxy = xk+1 and yuy = zu.
Struik [8] proved that this group has order 2n+3 and its automorphism group
is isomorphic to Z2

6 × Z2n−2 .

2. Main Results

The purpose of this section is to obtain the structure of the commuting
conjugacy class graph of Gn(m) and G[n].

Lemma 2.1. Suppose G is a non-abelian finite group with center Z such that
the quotient group G/Z is abelian. Then for every x ∈ G \ Z, xG = xH for
some H ≤ Z and |xG| | |Z|.
Proof. Since G/Z is abelian, G is nilpotent of class 2. Thus [x,G] ≤ Z for any
element x ∈ G. Let H = [x,G], so that xG = xH and |xG| | |Z|. Hence, the
proof is complete. �

Theorem 2.2. Suppose m ≥ 2, n ≥ 3 and G = Gn(m). Then, Γ(G) =
2n−1K2m−1 ∪K(2n−1−1)2n+m−3 .

Proof. By Theorem 1.1(4), G/Z(G) is an abelian group. Then, by Lemma 2.1,
for every x ∈ G \ Z(G), xG = xH for some H ≤ Z(G). For simplicity of our
argument, we write Z = Z(G). By Theorem 1.1(2-4), we have

G

Z
∼= 〈a2Z〉 × 〈a3Z〉 × · · · × 〈anZ〉 × 〈bZ〉,
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in which for every 2 ≤ i ≤ n, o(aiZ) = o(bZ) = 2 and aiZbZ = bZaiZ. Thus,
there exists z ∈ Z which satisfies the following equation:

(1) aib = baiz, 2 ≤ i ≤ n.
Therefore, G = {bα1aα2

2 . . . aαn
n z | z ∈ Z,αi ∈ {0, 1}, 1 ≤ i ≤ n}. By

Equation 1, there exists z ∈ Z such that

(bα1aα2
2 . . . aαn

n )2 = b2α1a2α2
2 . . . a2αn

n z ∈ Z.
We now assume that xα2...αn = aα2

2 . . . aαn
n and yα2...αn = baα2

2 . . . aαn
n . By def-

inition of G and Theorem 1.1(5), C(xα2...αn) = 〈a1, a2, . . . , an〉 which implies
that |C(xα2...αn

)| = 22n+m−3. This shows that |(xα2...αn
)G| = 2. Further-

more, C(yα2...αn
) = Z × 〈yα2...αn

〉. This shows that |C(yα2...αn
)| = 2n+m−1 or

equivalently |(yα2...αn
)G| = 2n−1.

Since G/Z is an abelian group, by Lemma 2.1, we have |(xα2...αn)G| | |Z|
and the number of conjugacy classes in the form of (xα2...αnz)

G with z ∈ Z is
as follows:

s =
|Z|

|(xα2...αn
)G|

=
2n+m−2

2
= 2n+m−3.

In the same way, |(yα2...αn
)G| | |Z| and the number of conjugacy classes in the

form of (yα2...αn
z)G with z ∈ Z is as follows:

t =
|Z|

|(yα2...αn)G|
=

2n+m−2

2n−1
= 2m−1.

By the definition of G, we know that for every i and j, [ai, aj ] = 1. On
the other hand, xα2...αn

= aα2
2 . . . aαn

n in which αi ∈ {0, 1}. Therefore, all
of xα2...αn

’s commute pairwise and hence all conjugacy classes of the form
(xα2...αn

)G are adjacent in the commuting conjugacy class graph. It is easy
to show that the number of xα2...αn

= aα2
2 . . . aαn

n ’s are 2n−1 − 1. Thus, the
subgraph induced by these elements is isomorphic to K(2n−1−1)2n+m−3 .

We apply a similar argument to show that all of the elements of the form
yα2,...,αn

do not commute pairwise and so all conjugacy classes of the form
(yα2...αn

z)G are not adjacent in commuting conjugacy class graph. On the other
hand, the number of yα2...αn ’s are 2n−1 and the subgraph induced by these
elements is isomorphic to 2n−1K2m−1 . The above arguments show that the
commuting conjugacy class graph of G is Γ(G) = 2n−1K2m−1∪K(2n−1−1)2n+m−3

that completes the proof. �

Theorem 2.3. Suppose n ≥ 3 and G = G[n]. Then, Γ(G) = K3k ∪ 4K k
2

in

which k = 2n−1.

Proof. By the presentation of G, it is easy to see that yx = xk+1y and so

(2) yx2 = (yx)x = xk+1yx = x2k+2y = x2y.

Hence, 〈x2〉 ⊆ Z(G). Since z ∈ Z(G), Z(G) = 〈x2〉 × 〈z〉. See also [8, p. 300].
Then the elements of G can be written as follows:



70 M.A. Salahshour, and A.R. Ashrafi

1 x x2 x3 . . . xk−1 xk xk+1 . . . x2n−1

z xz x2z x3z . . . xk−1z xkz xk+1z . . . x2n−1z

u xu x2u x3u . . . xk−1u xku xk+1u . . . x2n−1u

uz xuz x2uz x3uz . . . xk−1uz xkuz xk+1uz . . . x2n−1uz

y xy x2y x3y . . . xk−1y xky xk+1y . . . x2n−1y

yz xyz x2yz x3yz . . . xk−1yz xkyz xk+1yz . . . x2n−1yz

yu xyu x2yu x3yu . . . xk−1yu xkyu xk+1yu . . . x2n−1yu

yuz xyuz x2yuz x3yuz . . . xk−1yuz xkyuz xk+1yuz . . . x2n−1yuz

We now compute the conjugacy classes of G. To do this, we consider the
following cases:

(1) Rows 1 and 2. Suppose i = 2t+ 1 is an odd integer. Since x2 ∈ Z(G),

(3) y−1xiy = yx2t+1y = x2tyxy = x2txk+1 = xk+2t+1 = xk+i.

Thus for every 0 ≤ t ≤ k
2 − 1, (x2t+1)G = {x2t+1, xk+2t+1}. By

this equality and the fact that z ∈ Z(G), (x2t+1z)G = (x2t+1)Gz =
{x2t+1z, xk+2t+1z}, for every 0 ≤ t ≤ k

2 − 1.
(2) Rows 3 and 4. Applying Equations 2 and 3, for every 0 ≤ i ≤ 2n − 1,

yields

(xiu)G =

{
{xiu, xiuz} 2 | i
{xiu, xk+iuz} 2 - i

.

(3) Rows 5 and 6. By Equations 2 and 3, for every 0 ≤ i ≤ k − 1, we get

(xiy)G = {xiy, xiyz, xk+iy, xk+iyz}.
(4) Rows 7 and 8. By Equations 2 and 3, for every 0 ≤ i ≤ k − 1, we get

(xiyu)G = {xiyu, xiyuz, xk+iyu, xk+iyuz}.
Since [x, u] = 1, all of the conjugacy classes in cases (1) and (2) are adjacent

in the commuting conjugacy class graph. On the other hand, the number of
the conjugacy classes contained in cases (1) and (2) is 2 × k

2 + 2n and so, the
restriction of the commuting conjugacy class graph to these conjugacy classes
is the complete graph K3k. Furthermore, by Equation 2, if i + j is even,
then (xiy)(xjy) = (xjy)(xiy) and (xiyu)(xjyu) = (xjyu)(xiyu) . Therefore,
the classes contained in case (3) and (4) can be partitioned into two parts
and the subgraph induced on each part is the complete graph K k

2
. Hence,

Γ(G)=K3k∪4K k
2

which completes the proof. �

Acknowledgment: We would like to thank the reviewers for their thoughtful
comments and efforts toward improving our manuscript. I also cherish the
memory of my late teacher, A. R. Ashrafi. His soul is happy.
Author Contributions: M.A.S. and A.R.A. contributed equally to this ar-
ticle. All authors have read and agreed to the published version of the manu-
script.



Commuting Conjugacy Class Graph ... – JMMR Vol. 13, No. 2 (2024) 71

Conflict of interest The authors declare no conflict of interest.

References

[1] A. R. Ashrafi and M. A. Salahshour, Counting Centralizers of a Finite Group with an

Application in Constructing the Commuting Conjugacy Class Graph, Communications
in Algebra, 51 (3) (2023), 1105–1116.

[2] F. Harary, Graph Theory, Addison-Wesley, Reading, MA, 1969.

[3] M. Herzog, P. Longobardi and M. Maj, On a commuting graph on conjugacy classes of
groups, Comm. Algebra, 37 (10) (2009) 3369–3387.

[4] A. R. Jamali, Some new non-abelian 2-groups with abelian automorphism groups, J.
Group Theory, 5 (2002) 53–57.

[5] G. A. Miller, A non-abelian group whose group of isomorphisms is abelian, Messenger

Math., 43 (1913) 124–125.
[6] A. Mohammadian, A. Erfanian, M. Farrokhi D. G. and B. Wilkens, Triangle-free com-

muting conjugacy class graphs, J. Group Theory, 19 (3) (2016) 1049–1061.

[7] D. J. S. Robinson, A Course in the Theory of Groups, 2nd ed., Springer, Berlin, 1982.
[8] R. R. Struik, Some non-abelian 2-groups with abelian automorphism groups, Arch.

Math., 39 (1982) 299–302.

Mohammad Ali Salahshour
Orcid number: 0000-0002-0816-4232

Department of Mathematics

Savadkooh Branch
Islamic Azad University

Savadkooh, Iran
Email address: ma.salahshour@iau.ac.ir

Ali Reza Ashrafi

Orcid number: 0000-0002-2858-0663
Department of Pure Mathematics

Faculty of Mathematical Sciences
University of Kashan

Kashan, Iran

Email address: ashrafi@kashanu.ac.ir


	1. Preliminaries
	2. Main Results
	References

