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Abstract. Recently, infinite and finite dimensional generalized Hilbert

tensors have been introduced. In this paper, the authors further introduce

infinite and finite dimensional generalized Cesáro tensors as a generaliza-
tion of Cesáro matrices and discuss the properties of these structured

tensors. Next, some upper bounds of Z1-spectral radius of generalized
Cesáro tensors and generalized Hilbert tensors are given, which improves

the existing ones. Finally, we obtain conditions under which a generalized

Cesáro tensor is column sufficient tensor.
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1. Introduction

In linear algebra, an n-dimensional generalized Cesáro matrix Cnα = (Ci,j)
is a square matrix with entries being the unit fractions, i.e.,

Ci,j =

{ 1

i+ α− 1
i ≥ j

0 i < j,
i, j = 1, 2, . . . , n,(1)

where α ≥ 1, is a real number. When α = 1, an n-dimensional Cesáro matrix is
bounded linear operator on `p for 1 < p <∞ (here, `p(0 < p <∞) is the space
consisting of all real number sequences x = (xk)∞k=0 such that

∑∞
k=0 |xk|p <∞).

The well-known inequality

∞∑
n=0

( ∞∑
k=0

|xk|
n+ 1

)p
≤
(

p

p− 1

)p ∞∑
k=0

|xk|p,

which is also known as Hardy’s inequality, and its result is boundedness of the
Cesáro operator. The infinite Cesáro operator C∞α has the form as in (1) or
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the matrix presentation

Ci,j =


1 0 0 · · ·
1
2

1
2 0 · · ·

1
3

1
3

1
3 · · ·

...
...

...
...

 .

This operator has the `p-norm ||C||p = p∗, where p∗ is the conjugate of p,
i.e., 1

p + 1
p∗ = 1. Some properties and applications of finite and infinite Cesáro

matrices have been investigated in [1, 8, 18].
In recent years, problems related to tensors have drawn much people’s atten-

tion. As a generalization of matrix theory, fruitful research achievements have
been made in topics such as structured tensors [14,19]. Structured tensors mean
tensors with special structure. In recent years, several kinds of structured ten-
sors have been studied such as Hilbert tensors [12, 13, 17], Hankel tensors [15],
Cauchy tensors [3], and so on [14]. Furthermore, researchers established some
results on spectral theory, positive semi-definiteness and other properties of
structured tensors.

Denote [n] := {1, 2, . . . , n}.A realm-order , n-dimensional tensor(hypermatrix)
A = (ai1...im) is a multi-array of real entries ai1...im , where ij ∈ [n] for j ∈ [m].
As a natural extension of a generalized Cesáro matrix, the entries of an m-order
infinite dimensional generalized Cesáro tensor (hypermatrix) C∞α = (Ci1,...,im)
are defined by

Ci1,i2,...,im =


1

i1 + i3 + i4 + . . .+ im −m+ 2α
i1 ≥ i2

0 i1 < i2,
(2)

where α ≥ 1, is a real number and i1, i2, . . . , im = 1, 2, . . . , n, . . . . An m-order,
n-dimensional generalized Cesáro tensor is showed by Cnα = (Ci1,i2,...,im), where
ij ∈ [n] for j ∈ [m]. When α = 1, generalized Cesáro tensor is called Cesáro
tensor C.

For a real vector x = (x1, x2, . . . , xn)T ∈ Rn, Cnαxm−1 is a vector whose ith

component is

(Cnαxm−1)i =

i∑
i2=1

n∑
i3,...,im=1

xi2xi3 . . . xim
i+ i3 + i4 + . . .+ im −m+ 2α

, α ≥ 1 and i ∈ [n].

Then xT
(
Cnαxm−1

)
is a homogeneous polynomial, denoted Cnαxm, i.e., Cαnxm

is a homogeneous polynomial which is given by

Cnαxm = xT
(
Cnαxm−1

)
=

n∑
i1=1

i1∑
i2=1

n∑
i3,...,im=1

xi1xi2xi3 . . . xim
i1 + i3 + i4 + . . .+ im −m+ 2α

, α ≥ 1,

where xT is the transposition of x.
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For a real vector x = (x1, x2, . . . , xn, . . .) ∈ `1, C∞α xm−1 is an infinite di-
mensional vector whose ith component is

(C∞α xm−1)i =

i∑
i2=1

∞∑
i3,...,im=1

xi2xi3 . . . xim
i+ i3 + i4 + . . .+ im −m+ 2α

,

where α ≥ 1 and i = 1, 2, .... Accordingly, C∞α xm is a homogeneous polynomial
which is given by

C∞α xm =

∞∑
i1=1

i1∑
i2=1

∞∑
i3,...,im=1

xi1xi2xi3 . . . xim
i1 + i3 + i4 + . . .+ im −m+ 2α

, α ≥ 1.

In Section 2, the authors prove that C∞α xm and C∞α xm−1 are well-defined.
In 2005, Qi [16] and Lim [11] proposed the concepts of eigenvalue and Z2-

eigenvalue of tensors, independently. Since then, the spectral theory of tensors
has attracted much attention. In a series of recent works, researchers pointed
out that Z1-eigenvalues have significant applications in many fields. Li et al.
showed that the Z1-eigenvalue and its eigenvector are useful for computing the
limiting probability distribution in high order Markov chain [10]. Some bounds
of Z1-spectral radius of tensors can be found in [9, 13].

In the following, the notion of Z1-eigenvalue was introduced by Chang and
Zhang [2].

Definition 1.1. [2] Let A be an m-order, n-dimensional tensor. A pair
(λ, x) ∈ R×(Rn \ {0}) is called an Z1-eigenvalue and Z1-eigenvector (or simply
Z1-eigenpair) of A if they satisfy the equation:

Axm−1 = λx, ‖x‖1 =

n∑
i=1

|xi| = 1.(3)

Let A be an m-order, n-dimensional tensor. By σZ1
(A), we denote the Z1-

spectrum of A, i.e., the set of all Z1-eigenvalues of A. Assume σZ1 (A) 6= ∅,
then the Z1-spectral radius of A, denoted ρ (A) is defined as

ρ (A) = max {|λ| : λ ∈ σZ1
(A)} .

In Section 3, with the help of the Hilbert type inequality [7] , the authors show
that the upper bound of Z1-spectral radius of an m-order, n-dimensional gen-
eralized Cesáro tensor Cnα with α ≥ 1 is not larger than n sin

(
π
n

)
. Furthermore,

they show that
n∑
i=1

Ci 1···1 is an upper bound for all Z1-eigenvalues of Cnα, that is

independent of any choice of α. Similarly, the authors obtain an optimal bound
for Z1-eigenvalues of finite dimensional generalized Hilbert tensors. By running
examples for some m and n, they showed that the obtained results are sharper
than existing results.

The class of column sufficient tensors has recently arisen in connection with
the tensor complementarity problem (TCP) [4]. Column sufficient tensors are
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linked to the existence and the convexity of the solutions set. Also, they contain
many important special tensors, such as positive semi-definite tensors, Hilbert
tensors, diagonally dominated tensors with nonnegative diagonal entries, dou-
ble B-tensors, quasi-double B-tensors, H-tensors with nonnegative diagonal
entries, P -tensors, strong Hankel tensors, M -tensors, and positive Cauchy ten-
sors. for details, see [4]. In Section 4, we give conditions that a Cesáro tensor
is column sufficient tensor.

2. Infinite dimensional generalized Cesáro tensors

In this section, firstly, the authors discuss the properties of infinite and
finite dimensional generalized Cesáro tensor. Secondly, they prove that C∞α xm
and C∞α xm−1 are well-defined. Furthermore, the authors define two operators
B∞, F∞ and show that these are the bounded operators.

Remark 2.1. Clearly, both C∞α and Cnα are nonnegative (Ci1,i2,...,im ≥ 0) but
are not symmetric tensor(Ci1,...,im are not invariant for any permutation of the
indices). Generalized Cesaro tensor is not positive definite, since for all nonzero
vector x ∈ Rn need to show that Cnαxm > 0. But by setting

x = (−1, 4, 6, . . . , 2(n− 1), 2n)T ∈ Rn (n ≥ 2),

with α = 1, we have

Cnαxm < 0.

Proposition 2.2. Suppose that C∞α is an m-order infinite dimensional gener-
alized Cesáro tensor. Then both C∞α xm and C∞α xm−1 are well defined for all
x ∈ `1.

Proof. For all non-negative integer i1, i3, i4, . . . , im, we have

min
i1,i3,i4,...,im

|i1 + i3 + i4 + . . .+ im −m+ 2α| = 2α− 1, α ≥ 1.(4)

Now, let x = (x1, x2, . . . , xn, . . .) ∈ `1. Then, we have

|C∞α xm| =

∣∣∣∣∣∣
∞∑
i1=1

i1∑
i2=1

∞∑
i3,...,im=1

xi1xi2xi3 . . . xim
i1 + i3 + i4 + . . .+ im −m+ 2α

∣∣∣∣∣∣
≤ 1

2α− 1

∞∑
i1,i2...,im=1

|xi1xi2 ...xim |

=
1

2α− 1

( ∞∑
i=0

|xi|

)m
=

1

2α− 1
(‖x‖1)

m
<∞,

which shows that C∞α xm is well defined for all x ∈ `1. Similarly for all x ∈ `1,
we have C∞α xm−1 <∞, and the proof is complete. �
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For all real vector x ∈ `1, we define

F∞x = (C∞α xm−1)[
1

m−1 ] and B∞x =

{
‖x‖2−m1 C∞α xm−1 x 6= θ

θ x = θ,

(5)

where θ = (0, 0, . . . , 0)T . Recently, Mei and Song [12] introduced these concepts
for the generalized Hilbert tensor. It is easy to see that both operators B∞
and F∞ are continuous and positively homogeneous. Inspired by the work of
Mei and Song [12], the authors show that B∞ and F∞ are bounded operators.

Theorem 2.3. Let B∞ and F∞ be defined by Eq. (5). Assume that α ≥ 1.
Then

(i) B∞ is a bounded operator from `1 into `p (1 < p <∞);
(ii) F∞ is a bounded operator from `1 into `p (m− 1 < p <∞).

Proof. (i) For x ∈ `1, we have

∣∣(C∞α xm−1)i
∣∣ =

∣∣∣∣∣∣ lim
n→∞

i∑
i2=1

n∑
i3,i4,...,im=1

xi2 ...xim
i+ i3 + ...+ im −m+ 2α

∣∣∣∣∣∣
≤ lim
n→∞

n∑
i3,i4,...,im=1

n∑
i2=1

|xi2 . . . xim |
|i+ 1 + . . .+ 1−m+ 2α|

≤ 1

i+ 2α− 2
lim
n→∞

n∑
i2,...,im=1

|xi2 ||xi3 | . . . |xim |

=
1

i+ 2α− 2
lim
n→∞

(
n∑
k=1

|xk|

)m−1

=
1

i+ 2α− 2

( ∞∑
k=1

|xk|

)m−1
=

1

i+ 2α− 2
‖x‖m−11 .
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Therefore

‖B∞x‖pp =

∞∑
i=1

|(B∞x)i|p

=

∞∑
i=1

∣∣(‖x‖2−m1 C∞α xm−1
)
i

∣∣p
= ‖x‖(2−m)p

1

∞∑
i=1

∣∣(C∞α xm−1)i
∣∣p

≤ ‖x‖(2−m)p
1

∞∑
i=1

(
1

i+ 2α− 2
‖x‖m−11

)p
= ‖x‖p1

∞∑
i=1

(
1

i+ 2α− 2

)p
.

Since α ≥ 1, then for all positive integer i > 1, the series
∑∞
i=1

1

(i+ 2α− 2)p

converges for p > 1. Hence B∞x ∈ `p for all x ∈ `1. In addition, setting

M :=

( ∞∑
i=1

1

(i+ 2α− 2)p

) 1
p

,

then ‖B∞x‖p ≤ M‖x‖1, i.e., B∞ is a bounded operator from `1 into `p(1 <
p <∞).
(ii) For m− 1 < p <∞, it follows that

‖F∞x‖pp =

∞∑
i=1

|(F∞x)i|p

=

∞∑
i=1

∣∣∣∣(C∞α xm−1)
1

m−1

i

∣∣∣∣p
≤
∞∑
i=1

∣∣∣∣( 1

i+ 2α− 2

)
‖x‖m−11

∣∣∣∣
p

m−1

= ‖x‖p1
∞∑
i=1

1

(i+ 2α− 2)
p

m−1

.

Since p > m−1, then for all positive integer i > 1, the series
∑∞
i=1

1

(i+ 2α− 2)
p

m−1

converges. Hence, F∞ is a bounded operator from `1 into `p (m − 1 < p <
∞). �
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3. Some bounds for Z1-eigenvalues of finite dimensional gen-
eralized Cesáro tensors

In this section, the authors first establish the upper bound for Z1-eigenvalues
of finite dimensional generalized Cesáro tensor. Subsequently, an optimal up-
per bound for Z1-eigenvalues of finite dimensional generalized Cesáro(Hilbert)
tensors is given. Finally, some examples are presented to show the efficiency of
our proposed bound.

The following Hilbert type inequality need to establish Theorem 3.2.

Lemma 3.1. [6] Let x = (x1, x2, . . . , xn)T ∈ Rn. Then
n∑
i=1

n∑
j=1

|xixj |
i+ j − 1

≤ (n sin
π

n
)

n∑
k=1

x2k.(6)

Theorem 3.2. Let Cnα be an m-order, n-dimensional generalized Cesáro tensor
with α ≥ 1. Then n sin

(
π
n

)
is an upper bound for all Z1-eigenvalues of Cnα.

Proof. For α ≥ 1 and all non-zero vector x ∈ Rn, we have

|Cnαxm| =

∣∣∣∣∣∣
n∑

i1=1

i1∑
i2=1

n∑
i3,...,im=1

xi1xi2xi3 . . . xim
i1 + i3 + i4 + . . .+ im −m+ 2α

∣∣∣∣∣∣
≤

n∑
i2=1

|xi2 |
n∑

i1,i3,i4,...,im=1

|xi1xi3 . . . xim |
i1 + i3 + 1 + . . .+ 1−m+ 2α

=

n∑
i2=1

|xi2 |
n∑

i1,i3,...,im=1

|xi1 ||xi3 | . . . |xim |
i1 + i3 + 2α− 3

=

n∑
i1=1

n∑
i3=1

|xi1 ||xi3 |
i1 + i3 + 2α− 3

n∑
i2,i4,i5,...,im=1

|xi2 ||xi4 ||xi5 | . . . |xim |

≤
n∑

i1=1

n∑
i3=1

|xi1xi3 |
i1 + i3 − 1

(
n∑
i=1

|xi|

)m−2
.

Then, using Lemma 3.1 for all α ≥ 1

|Cnαxm| ≤
(
‖x‖22 n sin

(π
n

))
‖x‖m−21 .(7)

On the other hand, let (λ, x) be a Z1-eigenpair of Cnα, i.e.,

Cnαxm−1 = λx, ‖x‖1 =

n∑
i=1

|xi| = 1.

Then using (7), we have

|λ|‖x‖22 = |λxTx| = |xT (λx)| =
∣∣xT (Cnαxm−1)

∣∣ = |Cnαxm| ≤ ‖x‖22‖x‖m−21 n sin
(π
n

)
.

Thus |λ| ≤ n sin
(
π
n

)
, and the proof is complete. �
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Theorem 3.3. Let Cnα be an m-order n-dimensional generalized Cesáro tensor.

Then
n∑
i=1

Ci 1···1 is an upper bound for all Z1-eigenvalues of Cnα.

Proof. Let (λ, x) be a Z1-eigenpair of Cnα . Then (3) holds. Hence

Cnαxm−1 = λx, ‖x‖1 =

n∑
i=1

|xi| = 1.(8)

From (8), we can get

λxi =

n∑
i2,...,im=1

Ci i2,...,im xi2 . . . xim i = 1, . . . , n.(9)

Taking modulus in (9) and using the triangle inequality give

|λ| = |λ|
n∑
i=1

|xi| ≤
n∑

i,i2,...,im=1

Ci i2···im |xi2 | . . . |xim |

=

n∑
i2,...,im=1

(
|xi2 | . . . |xim |

n∑
i=1

Ci i2···im

)

≤

 n∑
i2,...,im=1

|xi2 | . . . |xim |

 max
i2,...,im∈[n]

n∑
i=1

Ci i2···im

=

n∑
i=1

Ci 1···1,

where the last equality holds because
n∑

i2,...,im=1

|xi2 | . . . |xim | =
∏

s=2,3,...,m

(
n∑

is=1

|xis |

)
= 1,

and

max
i2,...,im∈[n]

n∑
i=1

Ci i2···im =

n∑
i=1

Ci 1···1.

Therefore the proof is complete. �

In Table (1), we show the efficiency of our results for some finite generalized
Cesáro tensors.

Ming and Song [13] introduced the generalized Hilbert tensor as follows:
For each λ ∈ R\Z−, the entries of an m-order infinite dimensional generalized
Hilbert tensor H∞λ = (Hi1i2...im) are defined by

Hi1i2...im =
1

i1 + i2 + . . .+ im + λ
, i1, i2, . . . , im = 0, 1, . . . , n, . . . .(10)

In the finite case, an m-order, n-dimensional generalized Hilbert tensor is rep-
resented by Hnλ. They obtained some upper bound of Z1–spectral radius of
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Table 1. Upper bounds of Z1-spectral radius of Cnα for some
m-order with α = 1

Theorem 2.1 of [9] Theorem 3.2 Theorem 3.3

m = 3, n = 2 ρ(C2α) ≤ 1.66 ρ(C2α) ≤ 2 ρ(C2α) ≤ 1.5

m = 4, n = 2 ρ(C2α) ≤ 2.83 ρ(C2α) ≤ 2 ρ(C2α) ≤ 1.5

m = 5, n = 2 ρ(C2α) ≤ 4.9 ρ(C2α) ≤ 2 ρ(C2α) ≤ 1.5

m = 3, n = 3 ρ(C3α) ≤ 2.35 ρ(C3α) ≤ 2.59 ρ(C3α) ≤ 1.83

m = 4, n = 3 ρ(C3α) ≤ 5.72 ρ(C3α) ≤ 2.59 ρ(C3α) ≤ 1.83

m = 3, n = 4 ρ(C4α) ≤ 3.03 ρ(C4α) ≤ 2.82 ρ(C4α) ≤ 2.08

finite dimensional generalized Hilbert tensor( [13, Theorem 3.1]). Similar to
the proof of Theorem 3.3, we get the following theorem which is an improve-
ment of Theorem 3.1 of [13]:

Theorem 3.4. Let Hnλ be an m-order, n-dimensional generalized Hilbert ten-

sor. Then
n∑
i=1

|Hi 1···1| is an upper bound for all Z1-eigenvalue of Hnλ.

In Table (2), we show the efficiency of our results for some finite generalized
Hilbert tensors.

4. Column sufficient tensors

To have a better understanding of Cesáro tensors, we show that Cnα is column
adequate in Rn+ and there is no odd-order column sufficient Cesáro tensors.

Definition 4.1. [4] An m-order, n-dimensional tensor A is called a column
sufficient tensor (or A is column sufficient in simple), if x ∈ Rn satisfies

xi
(
Axm−1

)
i
≤ 0,∀i ∈ [n] =⇒ xi

(
Axm−1

)
i

= 0,∀i ∈ [n].(11)

For X ⊆ Rn, if x ∈ X and (11) holds, then A is called column sufficient in X.

Definition 4.2. [5] A tensor A ∈ Tm,n is said to be column adequate tensor,
if x ∈ Rn satisfies

xi
(
Axm−1

)
i
≤ 0,∀i ∈ [n] =⇒ Axm−1 = 0,∀i ∈ [n].(12)

For X ⊆ Rn, if x ∈ X and (12) holds, then A is called column adequate in X.
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Table 2. Upper bounds of Z1-spectral radius of Hnλ for some
m-order

m = 3, n = 2

Methods (λ ≥ 1) (0 < λ < 1) (−mn < λ < 0) (λ < −mn)

λ = 1 λ = 1
2 λ = −3

2 λ = −15
2

Theorem 3.1 of [13] ρ(H2
λ) ≤ 2 ρ(H2

λ) ≤ 4 ρ(H2
λ) ≤ 4 ρ(H2

λ) ≤ 1.33

Theorem 3.4 ρ(H2
λ) ≤ 1.5 ρ(H2

λ) ≤ 2.66 ρ(H2
λ) ≤ 2.66 ρ(H2

λ) ≤ 0.287

m = 3, n = 3

λ = 1 λ = 1
2 λ = −3

2 λ = −21
2

Theorem 3.1 of [13] ρ(H3
λ) ≤ 2.59 ρ(H3

λ) ≤ 6 ρ(H3
λ) ≤ 6 ρ(H3

λ) ≤ 2

Theorem 3.4 ρ(H3
λ) ≤ 1.833 ρ(H3

λ) ≤ 3.06 ρ(H3
λ) ≤ 4.66 ρ(H3

λ) ≤ 0.31

m = 4, n = 4

λ = 1 λ = 1
2 λ = −3

2 λ = −33
2

Theorem 3.1 of [13] ρ(H4
λ) ≤ 2.82 ρ(H4

λ) ≤ 8 ρ(H4
λ) ≤ 8 ρ(H4

λ) ≤ 8

Theorem 3.4 ρ(H4
λ) ≤ 2.08 ρ(H4

λ) ≤ 3.35 ρ(H4
λ) ≤ 5.33 ρ(H4

λ) ≤ 0.26

m = 4, n = 5

λ = 1 λ = 1
2 λ = −3

2 λ = −45
2

Theorem 3.1 of [13] ρ(H5
λ) ≤ 2.93 ρ(H5

λ) ≤ 10 ρ(H5
λ) ≤ 10 ρ(H5

λ) ≤ 2

Theorem 3.4 ρ(H5
λ) ≤ 2.28 ρ(H5

λ) ≤ 3.57 ρ(H5
λ) ≤ 5.73 ρ(H5

λ) ≤ 0.24

Theorem 4.3. Suppose that Cnα is an m-order, n-dimensional Cesáro tensor.
Then, the following results hold:
(i) Cnα is column adequate in Rn+.
(ii) When m is odd, Cnα is not column adequate.
(iii) When m is even, Cnα is column adequate.
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Proof. For any x ∈ Rn+ and i ∈ [n], we have

xi
(
Cnαxm−1

)
i

= xi

i∑
i2=1

n∑
i3,i4,...,im=1

xi2xi3 · · ·xim
i+ i3 + i4 + · · ·+ im + α

= xi

i∑
i2=1

xi2

n∑
i3,i4,...,im=1

xi3xi4 · · ·xim
i+ i3 + i4 + · · ·+ im + α

= xi

i∑
i2=1

xi2

n∑
i3,i4,...,im=1

∫ 1

0

ti+i3+i4+···+im+α−1xi3xi4 · · ·xim dt

= xi

i∑
i2=1

xi2

∫ 1

0

 n∑
j=1

tj+
i+α−1
m−2 xj

m−2

dt.

That means for any x ∈ Rn+ and i ∈ [n], we have

xi
(
Cnαxm−1

)
i
≤ 0⇐⇒ xi

i∑
i2=1

xi2

∫ 1

0

 n∑
j=1

tj+
i+α−1
m−2 xj

m−2

dt ≤ 0.

If x = 0, then Cnαxm−1 = 0. If xi > 0, then xi
(
Cnαxm−1

)
i
≤ 0 means that

(
Cnαxm−1

)
i

=

i∑
i2=1

xi2

∫ 1

0

 n∑
j=1

tj+
i+α−1
m−2 xj

m−2

dt ≤ 0.

Since x ≥ 0,

∫ 1

0

 n∑
j=1

tj+
i+α−1
m−2 xj

m−2

dt ≤ 0.(13)

On the other hand, n∑
j=1

tj+
i+α−1
m−2 xj

m−2

dt ≥ 0, ∀t ∈ [0, 1].

Therefore

∫ 1

0

 n∑
j=1

tj+
i+α−1
m−2 xj

m−2

dt ≥ 0.

Combining this with (13), we have
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(
Cnαxm−1

)
i

=

i∑
i2=1

xi2

∫ 1

0

 n∑
j=1

tj+
i+α−1
m−2 xj

m−2

dt = 0, ∀i ∈ [n],

which implies that Cnα is column adequate in Rn+.
(ii) When m is oded for all x ∈ Rn and x < 0, we have

xi
(
Cnαxm−1

)
i

= xi

i∑
i2=1

n∑
i3,i4,...,im=1

xi2xi3 · · ·xim
i+ i3 + i4 + · · ·+ im + α

< 0.

It shows that (
Cnαxm−1

)
i
> 0, ∀i ∈ [n],

which implies that Cnα is not a column adequate tensor.
(iii) For even m, if x ∈ Rn, we have

xi
(
Cnαxm−1

)
i

= xi

i∑
i2=1

xi2

∫ 1

0

 n∑
j=1

tj+
i+α−1
m−2 xj

m−2

dt ≤ 0, ∀i ∈ [n].

It can be easily checked that

xi

i∑
i2=1

xi2 ≤ 0, ∀i ∈ [n].

It follows that x = 0 and the desired results holds. �

Theorem 4.4. [5, Theorem 3.1] A column adequate tensor is a column suf-
ficient tensor.

Theorem 4.5. Suppose that Cnα is an m-order, n-dimensional Cesáro tensor.
Then, the following results hold:
(i) Cnα is column sufficient in Rn+;
(ii) when m is odd, Cnα is not column sufficient;
(iii) when m is even, Cnα is column sufficient.

Proof. (i) and (iii) follow from Theorem 3.4.
(ii) When m is odd for x = (−1,−1, . . . ,−1) ∈ Rn, we have

xi
(
Cnαxm−1

)
i

= xi

i∑
i2=1

n∑
i3,i4,...,im=1

xi2xi3 · · ·xim
i+ i3 + i4 + · · ·+ im + α

< 0.

This implies that Cnα is not a column sufficient tensor.
�
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Conclusion

In this paper, we defined a new class of tensors, called generalized Cesáro
tensors, and studied their properties. Also, we discussed Z1-eigenpairs of a
finite dimensional generalized Cesáro tensor. Furthermore, we presented a
sharper bound for any Z1-eigenvalue of finite dimensional generalized Cesáro
tensors and also Hilbert tensor. This bound is always sharper than the bounds
in [9, 13].
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