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Abstract. In this paper, we delve into frame theory to create an in-

novative iterative method for resolving the operator equation Lu = f .

In this case, L : H → H, a bounded, invertible, and self-adjoint lin-
ear operator, operates within a separable Hilbert space denoted by H.

Our methodology, which is based on the GMRES projective method, in-

troduces an alternate search space, which brings another dimension to
the problem-solving process. Our investigation continues with the assess-

ment of convergence, where we look at the corresponding convergence

rate. This rate is intricately influenced by the frame bounds, shedding
light on the effectiveness of our approach. Furthermore, we investigate

the ideal scenario in which the equation finds an exact solution, providing

useful insights into the practical implications of our work.
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1. Introduction

Projection methods are the most recently practical iterative techniques for
solving large linear systems of equations

(1) Lu = f,

where L : H → H is a bounded, invertible, and self-adjoint linear operator on
a separable Hilbert space H. By using this approach, we can extract canoni-
cally an approximation un to the exact solution u of the linear system from a
subspace K ⊆ H, called search subspace, provided that

f − Lun ⊥ L,
where L ⊆ H is another (probably the same) subspace called the subspace
of constraints, of the equal dimension. L can be equal to K or it can be
equal to LK. For more details, we refer the interested reader to the book by
Saad [14]. In the meantime, GMRES (Generalized Minimum Residual Method)
is of great importance in projection methods that utilizes Krylov subspaces
K = Km(L, r0) with Arnoldi orthonormal basis.
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The goal of this paper is to study the application of frames in the GMRES
method for solving operator equation (1). In [4, 8–10, 12] some numerical al-
gorithms for solving this system have been developed by using wavelets and
frames.
The great advantage of converting the GMRES method into FGMRES (Frame
Generalized Minimum Residual Method) version is that we can see the con-
vergence rate in this approach is formed by the upper and lower bounds of
the frame, so we can control the convergence rate by choosing an appropriate
frame with desired values of bounds. Furthermore in this setting, by employing
a tight frame for designing iteration, even the exact solution of (1) is obtained
in the first step of the iteration. These properties turn FGMRES into an ap-
plicable tool for approximating solutions of operator equations with prescribed
accuracy or even finding the exact solution.
The method is designed on the basis of preconditioning the operator equation
Lu = f , using frames and then applying the GMRES iteration method but
with an orthonormal basis other than Arnoldi type.
We will now give a brief history about the Arnoldi method and GMRES iter-
ative method, in the following subsection and definitions plus basic properties
of frames in the next section. For more information about frames and GM-
RES method we refer the reader to the books by Christensen [7] and Saad [14]
respectively.

1.1. History. The Arnoldi method is a technique for constructing an orthog-
onal basis of a Krylov subspace, which is a subspace spanned by successive
powers of a matrix applied to a vector. The Arnoldi method was introduced
by W. E. Arnoldi in 1951 [1] as a generalization of the Lanczos method(see [14]
section 6.6), which is restricted to symmetric matrices. The Arnoldi method
can be used for various purposes, such as solving linear systems, computing
eigenvalues and eigenvectors, and performing matrix factorizations.
One of the most important applications of the Arnoldi method is the gener-
alized minimal residual method (GMRES), which is an iterative method for
solving nonsymmetric linear systems. GMRES was developed by Yousef Saad
and Martin H. Schultz in 1986 [15] as an extension and improvement of the
minimal residual method (MINRES), which was proposed by Christopher C.
Paige and Michael A. Saunders in 1975 [13]. MINRES requires that the matrix
is symmetric, but has the advantage of low memory and computational cost.
GMRES relaxes the symmetry assumption, but requires more storage and op-
erations as the iteration progresses. GMRES approximates the solution of a
linear system by finding the vector in the Krylov subspace that minimizes the
residual norm. To construct the Krylov subspace, GMRES uses the Arnoldi
method to generate an orthonormal basis and an upper Hessenberg matrix that
satisfies a matrix equation involving the original matrix. The solution is then
obtained by solving a smaller least squares problem involving the Hessenberg
matrix and the right-hand side vector.
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GMRES is one of the most widely used iterative methods for solving nonsym-
metric linear systems, especially when the matrix is large and sparse. It has
many variants and enhancements, such as restarted GMRES, preconditioned
GMRES, flexible GMRES, and deflated GMRES, that aim to improve its con-
vergence, robustness, and efficiency. GMRES is also related to other iterative
methods based on Krylov subspaces, such as FOM, QMR, BiCG, and CGS( [14]
chapters 6 and 7).
Authors in [3] proposed a new iterative method based on frames to solve the
operator equation (1). In another article by these authors [2], frames are used
instead of wavelet basis in the Galerkin adaptive method to solve the equation
Lu = f .
The Galerkin methods deal with variational principles and orthogonality con-
ditions to derive approximate solutions for boundary value problems. The
generalization of this approach to partial differential equations was done by
Galerkin, who introduced the concept of weak formulation and used test func-
tions from the same space as the trial functions. The Galerkin methods can
also be combined with adaptive strategies, such as mesh refinement, error esti-
mation, and goal-oriented optimization, to improve the accuracy and efficiency
of the solution. We used the idea in [3] for the GMRES iterative method to
solve operator equation(1) and achieving a new method called FGMRES with
the help of frames. As mentioned above, the GMRES method is an iterative
method for solving nonsymmetric linear systems that approximates the solu-
tion by the vector in a Krylov subspace with minimal residual norm. Studies
in references [11] and [12] are related to the applications of frames in Cheby-
shev and conjugate gradient methods, as well as Richardson and Chebyshev
methods for solving operator equations, respectively. These methods are simi-
lar to the GMRES-based iteration method presented in this paper in that they
are all iterative methods for solving linear systems of equations. However, the
specific techniques and algorithms used in each method differ. In particular,
the GMRES method is a Krylov subspace method that seeks to minimize the
residual of the linear system over a subspace of increasing dimension. The
Chebyshev and conjugate gradient methods, on the other hand, are iterative
methods that seek to minimize the error of the linear system over a subspace
of fixed dimension. The Richardson method is a simple iterative method that
involves multiplying the residual by a scalar factor and adding it to the cur-
rent approximation. Overall, while FGMRES presented in this paper and these
methods share some similarities in their iterative nature and use of subspaces,
they differ in their specific techniques and algorithms.

2. Preliminaries

Throughout this paper, H will be a separable Hilbert space and Λ denotes a
countable index set. In the next subsection afterward, we introduce the notion
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of preconditioning of an operator equation and we describe how a frame is used
to precondition an operator equation.

2.1. Frames. We begin by defining the concept of the frame.

Definition 2.1. Let (ψλ)λ∈Λ ⊂ H. Then (ψλ)λ∈Λ is a frame for H, if there
exist constants 0 < A ≤ B <∞ such that

A ‖ f ‖2H≤
∑
λ∈Λ

|< f,ψλ >|2≤ B ‖ f ‖2H , ∀f ∈ H.

The constants A and B are called the lower and upper frame bounds, re-
spectively. If A = B, we call (ψλ)λ∈Λ an A-tight frame, and if A = B = 1, it is
a Parseval frame.

We associate to a frame (ψλ)λ∈Λ, the synthesis operator

T : `2(Λ)→ H, T ((cλ)λ∈Λ) =
∑
λ∈Λ

cλψλ,

and the analysis operator

T ∗ : H → `2(Λ), T ∗(f) = (< f,ψλ >)λ∈Λ .

For a frame Ψ = (ψλ)λ∈Λ, the operator

S = TT ∗ : H → H, S(f) =
∑
λ∈Λ

< f,ψλ > ψλ,

is called frame operator which is positive, self-adjoint and invertible, which
satisfies

(2) AIH ≤ S ≤ BIH .
Also, it has been shown that if (ψλ)λ∈Λ is a frame for H and if L is bounded
onto operator on H, then the sequence (L (ψλ))λ∈Λ would be a frame for H
too. Moreover, if L is also a self-adjoint operator and S is the frame operator
of (ψλ)λ∈Λ, then LSL is the frame operator of (L (ψλ))λ∈Λ. For more details
we refer the reader to [7], [6].

2.2. Preconditioning. Preconditioning is any form of implicit or explicit mod-
ification of an original linear system that yields easier solving or faster conver-
gence by a given iterative method. This is an effective technique for solving
differential equations, integral equations, and related problems [7], [5]. The
abstract approach is to multiply both sides of (1) by an operator M , and then
apply a suitable iterative method. We choose M here to be formed by using a
given frame. To gain an insight, we write Lu = f as

u = (I − L)u+ f ,

then for given u0 ∈ H, define for k ≥ 0,

(3) uk+1 = (I − L)uk + f.

Since Lu− f = 0, we can write
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uk+1 − u = (I − L)uk + f − u− (f − Lu)
= (I − L)uk − u+ Lu

= (I − L)(uk − u).

Hence

‖ uk+1 − u ‖H≤‖ I − L ‖H→H‖ uk − u ‖H ,

so that the sequence (3) converges if

(4) ‖ I − L ‖H→H< 1.

Let us take M an operator which approximates L−1 i.e. M ≈ L−1 or ML ≈
I. Then, the last term implies ‖ I −ML ‖H→H� 1, so in view of (4) the
convergence of iterative sequence (3) associated to preconditioned operator
equation

(5) MLu = Mf,

is much faster than the original one.
One way to obtain M is using frames. For this concern, we note to the

following lemma.

Lemma 2.2. Let Ψ = (ψλ)λ∈Λ be a frame for H with frame operator S, and
L be as in (1). Suppose that A and B are the frame bounds of the frame
LΨ = (L (ψλ))λ∈Λ. Then

(6)

∥∥∥∥I − 2

A+B
LSL

∥∥∥∥
H→H

≤ B −A
A+B

.

Proof. See [11]. �

Since B−A
A+B < 1, we can thus take M := 2

A+BLS for preconditioning (1), and
thus in the remainder of the discussion we consider alternatively the following
operator equation

(7) MLu = Mf.

3. GMRES Method by Using Frames

First of all, for any given frame Ψ = (ψλ)λ∈Λ with frame bounds A and B
and frame operator S, we note that since LSL is a positive definite operator,
we can thus define the following LSL-norm

‖f‖LSL = 〈LSLf, f〉
1
2 =

∥∥∥(LSL)
1
2 f
∥∥∥ , ∀f ∈ H,

with corresponding inner product

〈f, g〉LSL = 〈LSLf, g〉 , ∀f, g ∈ H.
To continue, we define the recurrence sequence

vn+1 := LSLvn −
〈LSLvn, LSLvn〉
〈vn, LSLvn〉

vn
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(8) − 〈LSLvn, LSLvn−1〉
〈vn−1, LSLvn−1〉

vn−1, n ≥ 0,

with v−1 = 0, v0 = 2
A+BLSLu. For this sequence, we have some pleasant

properties exhibited in the two following lemmas.

Lemma 3.1. Let u be the exact solution of (7) and let us define the space

Kn := span

{(
2

A+B
LSL

)i
u : 1 ≤ i ≤ n

}
= span

{
(LSL)

i
u : 1 ≤ i ≤ n

}
,

then for vectors vi defined by (8), we have

(9) {v0, v1, . . . , vn−1} ⊂ Kn.

Proof. We verify the claim by induction. It is obvious for n = 1. Assume that
the theorem holds true for all k ≤ n. For k = n+ 1, by (8) and the definition
of Kn we get
(10)

vn = LSLvn−1 −
〈LSLvn−1, LSLvn−1〉
〈vn−1, LSLvn−1〉

vn−1 −
〈LSLvn−1, LSLvn−2〉
〈vn−2, LSLvn−2〉

vn−2,

where the right-hand side of (10) belongs to LSLKn +Kn ⊂ Kn+1. From here,
the result follows as desired. �

The following theory further elucidates the properties of the set introduced
in equation (9).

Lemma 3.2. The system {v0, v1, . . . , vn−1}, forms an orthogonal basis for Kn
with respect to the inner product 〈·, ·〉LSL.

Proof. By virtue of (8), the theorem follows obviously for n = 1, 2. Now,
we assume that the theorem holds for k = n, namely, 〈vn, LSLvi〉 = 0 for
all i = 0, . . . , n − 1, and that {v0, v1, . . . , vn} is an LSL-orthogonal basis for
Kn+1. The step of k = n + 1 can be followed immediately for i = n − 1, n
via (8). For i < n − 1, since LSLvi ∈ LSLKn−1, induction hypothesis yields

LSLvi =
∑n−1
j=0 cjvj for some coefficients cj ∈ C. Therefore, using the LSL-

orthogonality of vi for i ≤ n, we obtain for i < n− 1,

〈vn+1, LSLvi〉 =
〈
LSLvn − 〈LSLvn,LSLvn〉〈vn,LSLvn〉 vn − 〈LSLvn,LSLvn−1〉

〈vn−1,LSLvn−1〉 vn−1, LSLvi

〉
=〈LSLvn, LSLvi〉 =

〈
LSLvn,

∑n−1
j=0 cjvj

〉
= 0.

For the remainder, it turns out that {v0, v1, . . . , vn−1} is indeed a basis for Kn
since

n = dim {v0, v1, . . . , vn−1} ≤ dimKn = n.

As we desired. �
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To continue, for each m, we define the tridiagonal matrix Hm = [hij ]m+1×m
such that, 

hij = 0, i 6= j − 1, j, j + 1,

hj−1,j =
〈LSLvj ,LSLvj−1〉
〈vj−1,LSLvj−1〉 ,

hjj =
〈LSLvj ,LSLvj〉
〈vj ,LSLvj〉 ,

hj+1,j = 1.

We can therefore easily see that

vj+1 = (LSL) vj −
j∑
i=1

hijvi, 1 ≤ j ≤ m.

From this, we can follow

(LSL) vj =

j+1∑
i=1

hijvi, j = 1, . . . ,m,

and consequently

(11) (LSL)Vm = VTm+1Hm,

where Vm denotes the n×m matrix with column vectors v1, . . . , vm.
Here, we intend to compute an approximate solution as

(12) uk+1
m = uk0 + δm ∈ uk0 +Km,

for some m, such that

(13)

(
2

A+B
LS

)
f −

(
2

A+B
LSL

)
uk+1
m ⊥LSL

(
2

A+B
LSL

)
Km,

or equivalently

(14) rk+1
m := (LS) f − (LSL)uk+1

m ⊥LSL (LSL)Km.
From (12) we see that

uK+1
m = uk0 + δm = uk0 + Vmxm,

where xm ∈ Rn. Accordingly, by (12) and by putting rk0 = (Ls)f − (LSL)uk0 ,
we can write

(LS) f − (LSL)uk+1
m = rk0 − (LSL)Vmxm,

which in view of (14) yields

(15) (LSLVm)
T

(LSLVm)xm = (LSLVm)
T
rk0 .

On the other hand, by virtue of (11), we can derive the following relations

(16) (LSLVm)
T

(LSLVm) =
(
VTm+1Hm

)T (VTm+1Hm

)
= HT

mHm,

and
(17)

(LSLPm)
T
rk0 =

(
VTm+1Hm

)T
rk0 = HT

mVm+1r
k
0 = HT

mVm+1 (LSL) (u− uk0),
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which in case of uk0 = 0, the relation (17) turns into

(18) (LSLVm)
T
rk0 =

A+B

2
HT
mVm+1v0 =

A+B

2
HT
me1.

By substituting expressions (16) and (18) into (15) we obtain

HT
mHmxm =

A+B

2
HT
me1,

which is actually equivalent to

xm = arg min
x∈Rm

∥∥∥∥Hmx−
A+B

2
e1

∥∥∥∥
LSL

.

To solve the above norm minimization problem, following Saad [14], we use
Givens rotations

Ωj := J

(
j + 1, j, cj :=

hjj√
(hjj)2 + 1

, sj :=
1√

(hjj)2 + 1

)
, 1 ≤ j ≤ m.

For these rotations, we can see the following expressions

(19) ΩmΩm−1 · · ·Ω1Hm =

(
Rm
0

)
where Rm = [rij ]m×m is an upper triangular matrix with the entries

rij =


cjhjj + sj , i = j,
cjhj,j+1 + sjhj+1,j+1, i = j − 1,
sjhj+1,j+2, i = j − 2,
0, o.w.

and also

(20) ΩmΩm−1 · · ·Ω1

(
A+B

2
e1

)
=


γ1

γ2

...
γm
γm+1

 =

(
gm
γm+1

)
,

where for 1 ≤ i ≤ m, we have γi = A+B
2 (−1)i+1ci

∏i
j=0 sj with s0 = 1, and

γm+1 =
∏m
i=1 si.

Finally, it could be seen that xm = R−1
m gm, and consequently∥∥∥∥Hmxm −

A+B

2
e1

∥∥∥∥
LSL

= |γm+1| .

Concerning to above discussion, if Ψ = (ψλ)λ∈Λ is a frame for H with frame
operator S, and L be as in (1) and if A, B are the frame bounds of the frame
LΨ = (L (ψλ))λ∈Λ, FGMRES can be defined algorithmically as follows:

FGMRES [L, S, ε, A,B]→ uε [1]
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i ← 0, ui0 ← 0, v0 ← 2
A+BLSf , v1 ← 〈LSLv0,LSLv0〉

〈v0,LSLv0〉 v0 compute ri0 ←

(LS)f − (LSL)ui0

(
B4−A4

B4

)i/2 ∥∥ri0∥∥LSL ≥ ε i ← i + 2, i ≤ m hi−1,i ←
〈LSLvi,LSLvi−1〉
〈vi−1,LSLvi−1〉 hii ← 〈LSLvi,LSLvi〉

〈vi,LSLvi〉 hi+1,i ← 1 i ≥ 2

vi := (LSL)vi−1 − hi−1,i−1vi−1 − hi−2,i−1vi−2 Put tridiagonal matrix Hi ←
{hji}i−1≤j≤i+1,1≤i≤m xi ← argmin

∥∥Hix− A+B
2 e1

∥∥
LSL

, ui ← Vixi ui0 ← ui
uε := ui0 As one can clearly see, we need only compute (hij) for i = j−1, j, j+1
to obtain the matrix Hm. This makes it worthwhile using FGMRES rather than
GMRES.
In the following example, H is considered to be a finite-dimensional subspace
of L

¯
2(−1, 1). Since the sequence {xi}∞i=0 of functions is a linearly independent

set in L
¯

2(−1, 1), it follows that H = span{1, x, x2, x3, . . . , xn−1} is a subspace
of L

¯
2(−1, 1) of dimension n in which {xi}n−1

i=0 is a basis. Using the Gram-
Schmidt orthonormalization algorithm [14], we obtain the orthonormal basis
corresponding to this basis as {e1(x), e2(x), . . . , en(x)}. As shown in the fol-
lowing example, we employ the orthonormal property of the basis to create a
frame. Let

(21) {fi}2
n+2−2
i=1 = {e1(x), e1(x), e2(x), e2(x), e2(x), e2(x), en(x), ..., en(x)},

so that each ei(x) is repeated 2i times. It is easy to show that {fi}2
n+2−2
i=1 is a

frame for H with lower bound A = 2 and upper bound B = 2n.

Example 3.3. According to the previous statements, if we let n = 7, then
H = span{1, x, x2, x3, . . . , x6} and {e1(x), e2(x), ..., e7(x)} is the corresponding
orthonormal basis obtained from applying the Gram-Schmidt algorithm to the

basis {xi}6i=0. As mentioned earlier, {fi}2
9−2
i=1 is a frame for H, and it is easy to

show that the frame operator S of this frame is Sf(x) =
∑7
i=1 2i 〈f(x), ei(x)〉 ei(x).

Now, let L =



2 1 0 3 0 5 4
1 6 3 0 −4 7 1
0 3 5 2 4 1 8
3 0 2 8 0 0 3
0 −4 4 0 5 1 0
5 7 1 0 1 4 5
4 1 8 3 0 5 1


and m = 5, then by using FGMRES

algorithm and help of MATLAB coding with f =
[
−3 2 3 5 7 0 1

]T
and ε = 0.001 we obtain,

Hm =


6085.6 3011500 0 0 0

1 2168.8 13144 0 0
0 1 713.7 187140 0
0 0 1 568.01 7567
0 0 0 1 95.23
0 0 0 0 1

 and
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Rm =


6085.6 3011500 2.16 0 0

0 1668 13145 112.19 0
0 0 705.83 187140 10.72
0 0 0 302.88 7567.3
0 0 0 0 70.26

.

In this case, we can conclude uε =
[
−2.3 3.2 −0.5 3.1 4 0.75 −3.46

]T
that is very close to the exact solution of Lu = f .

In the sequel, we study the convergent of FGMRES algorithm.

3.1. Convergence Analysis. Here, we study the convergence of FGMRES
under the already known assumption that LSL is a positive definite operator,
where L is as in (4) and S is the frame operator of a frame (ψλ)λ∈Λ. As one
may expect, the convergence rate obtained via FGMRES is directly computed
by using frame bounds of (L (ψλ))λ∈Λ.

First of all, we present here an auxiliary lemma.

Lemma 3.4. [14] Let A be a positive definite operator and assume that L =
AK. Then a vector um is the result of an (oblique) projection method onto K
LSL-orthogonally to L with the starting vector uk0 if and only if it minimizes
the LSL-norm of the residual vector b− Au over u ∈ uk0 +K, i.e., if and only
if ∥∥b−Auk+1

m

∥∥
LSL

= min
u∈uk

0+K
‖b−Au‖LSL .

Theorem 3.5. Let LSL be as mentioned, then for each m the residual vector

rk+1
m = (LS)f − (LSL)uk+1

m ,

of FGMRES method satisfies

(22)
∥∥rk+1
m

∥∥
LSL
≤
(
B4 −A4

B4

)1/2 ∥∥rk0∥∥LSL .
Proof. We first give the proof for the case m = 1. In this case, if uk0 = 0, then
K1 = 〈(LSL)u〉 = 〈(LSf)〉 =

〈
rk0
〉
. We first note that by taking uk0 = 0 and by

considering (14) we can see〈
rk+1
m , (LSL)rk0

〉
LSL

=
〈
(LSf)− (LSL)uk+1

m , (LSL)(LSf)− (LSL)(LSL)uk0
〉
LSL

=
〈
(LSf)− (LSL)uk+1

m , (LSL)(LSf)
〉
LSL

=
〈
(LSf)− (LSL)uk+1

m , (LSL)(LSLu)
〉
LSL

= 0

Therefore again by (14), we have∥∥rk+1
m

∥∥2

LSL
=
〈
rk+1
m , rk+1

〉
LSL

=

〈
rk+1
m , rk0 −

〈
(LSL)rk0 , r

k
0

〉
LSL〈

(LSL)rk0 , (LSL)rk0
〉
LSL

(LSL)(LSLu)

〉
LSL
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=

〈
rk+1
m , rk0 −

〈
(LSL)rk0 , r

k
0

〉
LSL〈

(LSL)rk0 , (LSL)rk0
〉
LSL

(LSL)rk0

〉
LSL

=
〈
rk+1
m , rk0

〉
LSL

=

〈
rk0 −

〈
(LSL)rk0 , r

k
0

〉
LSL〈

(LSL)rk0 , (LSL)rk0
〉
LSL

(LSL)rk0 , r
k
0

〉
LSL

=
〈
rk0 , r

k
0

〉
LSL
−

〈
(LSL)rk0 , r

k
0

〉
LSL〈

(LSL)rk0 , (LSL)rk0
〉
LSL

〈
(LSL)rk0 , r

k
0

〉
LSL

=
∥∥rk0∥∥2

LSL

(
1−

〈
(LSL)rk0 , r

k
0

〉
LSL〈

(LSL)rk0 , (LSL)rk0
〉
LSL

〈
(LSL)rk0 , r

k
0

〉
LSL〈

rk0 , r
k
0

〉
LSL

)

(23) =
∥∥rk0∥∥2

LSL

(
1−

〈
(LSL)rk0 , r

k
0

〉2
LSL〈

rk0 , r
k
0

〉2
LSL

∥∥rk0∥∥2

LSL∥∥(LSL)rk0
∥∥2

LSL

)
.

On one hand, we can deduce the following

(24)

∥∥rk0∥∥2

LSL∥∥(LSL)rk0
∥∥2

LSL

≥
∥∥rk0∥∥2

LSL

‖LSL‖2LSL→LSL
∥∥rk0∥∥2

LSL

≥ 1

B2
.

On the other hand, since (LSL) is a self-adjoint operator, it could be seen that

〈
(LSL)rk0 , r

k
0

〉
LSL〈

rk0 , r
k
0

〉
LSL

=

∥∥LSLrk0∥∥2〈
LSLrk0 , r

k
0

〉 ≥ A2
∥∥rk0∥∥2〈

LSLrk0 , r
k
0

〉
(25) =

A2

〈LSLrk0 ,rk0 〉
〈rk0 ,rk0 〉

≥ A2

‖LSL‖LSL→LSL
≥ A2

B
.

Now by substituting (24) and (25) into (23), we arrive at the result.
For m > 1, we can deduce (22) because the subspace Km contains the initial

residual vector rk0 at each restart. Since by Lemma 25 the algorithm FGMRES
minimizes the residual LSL-norm in the subspace Km, at each outer iteration,
the residual LSL-norm will be reduced by as much as the result of one step of
the case m = 1. Therefore, the inequality (22) is satisfied by residual vectors
produced after each outer iteration and the FGMRES method converges. �

Since
(
B4−A4

B4

)1/2

< 1, FGMRES converges to the exact solution of (1) for

any initial guess. This convergence rate suggests also that the more closely to
be to a tight frame, the faster convergence of {un} to the exact solution of (1)
is expected.
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4. Conclusion

In this paper, we explored within frame theory to devise a novel iterative
method for solving the operator equation Lu = f , where L is a bounded,
invertible, and self-adjoint linear operator employed in a separable Hilbert space
H. Our methodology, which was inspired by the GMRES projective method,
presented an alternate search space, broadening the boundaries of problem-
solving.
Our investigation was expanded to the assessment of convergence, where we
evaluated the corresponding convergence rate, which was deeply influenced by
the frame bounds. This provided important insights into the efficacy of our
method. We also looked at the ideal scenario, in which the equation finds an
exact solution, to shed light on the practical implications of our strategy.
The amalgamation of frame theory, iterative methods, and operator equations
has shown promise in enhancing our problem-solving capabilities within the
realm of bounded, invertible, and self-adjoint linear operators. This study
opens the door to further investigations and applications in diverse fields that
rely on these foundational mathematical concepts.
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