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Abstract. In this paper, an operational matrix method based on the

Bell polynomials has been presented to find approximate solutions of high-

order Volterra integro-differential equations. This method uses a simple
computational manner to obtain a quite acceptable approximate solution.

The main characteristic behind this method lies in the fact that on the

one hand, the problem will be reduced to a system of algebraic equations
and on the other hand, the efficiency and accuracy of the Bell polynomi-

als for solving these equations are acceptable. The convergence analysis
of this method will be shown by preparing some theorems. Moreover, we

will obtain an estimation of the error bound for this algorithm. Finally,

some examples are presented to illustrate the applicability, efficiency and
accuracy of this scheme in comparison with some other well-known meth-

ods such as Legendre, Bernoulli, Taylor and Bessel polynomial algorithms.
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1. Introduction

Integro-differential equations appeared in many physical applications such
as glassforming process, nanohydrodinamics, heat transfer, diffusion process
in general, neutron diffusion and biological species coexisting together with
increasing and decreasing rates of generating, and wind ripple in the desert
[21]. Many numerical methods have been used for solving these equations
such as the Bernestein polynomials method [9], Bernoulli polynomials scheme
[1, 3, 13], Legendre method [17, 20], Bernoulli matrix method [2], collocation
methods [4,33], meshless methods [5], spectral methods [6], Taylor polynomial
method [11,23], He’s homotopy perturbation [19] and so on.

Also, in [29], the authors utilized Muntz-Legendre polynomials to solve linear
delay Fredholm integro-differential equations. In [27], the Laguerre approach
was employed to solve pantograph-type Volterra integro-differential equation.
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In [31], the Galerkin-type method was used to solve high-order linear delay
Volterra integro-differential equations. In [30], the Taylor operational matrix
method was used to solve linear Fredholm-Volterra integro-differential equa-
tions. In [34], the authors applied the Pell-Lucass collocation method to solve
high order linear Fredholm-Volterra integro-differential equations. In [18], Saa-
datmandi and Dehghan used Legendre polynomials in order to solve the linear
Fredholm integro-differential-difference equation of high order. In [15], the
Taylor method was employed to solve nonlinear Fredholm integro-differential
equations with time delay. In [32], the authors proposed an algorithm by us-
ing the Bessel polynomial for the high order linear Volterra integro-differential
equations. In [10], Maleknejad et al. used a Bernstein operational matrix ap-
proach for solving a system of high order linear Volterra-Fredholm integro dif-
ferential equations. In [28], the Legendre method was employed to solve delay
linear Fredholm integro-differential equations. Moreover, in [8], Hesameddini
and Shahbazi used the Bernstein polynomials for solving Fredholm integro-
differential-difference equations.

In recent years, the Bell polynomials have been extensively used for solv-
ing problems formulated by mixed Fredholm-Volterra integral equations [14],
Fredholm integro-differential equations [24], fractional integro-differential equa-
tion [26], differential equations [16] and fractional differential equation [25].
The Bell polynomials were given by Eric Temple Bell in 1934 [22]. These
polynomials naturally occur from differentiating a composite function several
times. The Bell polynomials have many applications in number theory, classical
analysis, combinatorial analysis and statistics [14].

This article concerns the following high-order Volterra integro-differential
equation in the form of

(1)

m∑
j=0

cjy
(j)(x) = f(x) +

∫ x

0

k(x, s)y(s)ds, 0 ≤ x ≤ 1,

with initial conditions

(2) y(j)(0) = αj , j = 0, 1, ...,m− 1,

where y(x) andf(x) are continuous differentiable functions of desired order,

k(x, s) is a separable kernel, c′js are constant coefficients and y(j)(x) = dj

dxj y(x).
In this paper, we suggest an efficient method based on the Bell polynomials for
solving high-order Volterra integro-differential equations. The basic idea is to
approximate the solution of Eq. (1) via the Bell polynomials. The properties of
the Bell polynomials are used to convert the equation into a system of algebraic
equations. This makes the problem easy for programming software. Further-
more, the coefficients matrix of the Bell polynomials are always nonsingular
and this allows us to search for the solution in polynomial form. Moreover, the
operational matrix of integration is sparse and this is another advantage of the
Bell polynomials for solving these equations.
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This article is classified as follows: in Section 2, we have presented a matrix
representation of the Bell polynomials. Section 3 is related to the approxi-
mation of a function by the Bell polynomials. In Section 4, the operational
matrix of integration is presented. The analysis of this method is explained in
Section 5 and Section 6 is devoted to the study of the convergence and error
estimation of this scheme. In Section 7, some numerical examples to illustrate
the efficiency of this algorithm are given. Also, the comparison of the method
with some other well-known methods is shown. A brief conclusion is given in
Section 8.

2. Bell polynomials

In mathematics, the Bell polynomials are used in the study of set partitions.
Also, they occur in many applications such as the Blissard problem, the rep-
resentation of Lucas polynomials of the first and second kinds, the recurrence
relations for a class of Freud-type polynomials, the representation of symmetric
functions of a countable set of numbers and in generalization of the classical
algebraic Newton-Girard formulas [14].
These polynomials can be expressed in some ways. It can be written as a series
expansion of generating exponential function and may be given by the second
kind of Stirling numbers.

Definition 2.1. The Bell polynomials can be computed as

Bn(x) =

n∑
k=0

s(n, k)xk,

where s(n, k) for k = 0, 1, ..., n are the Stirling numbers of the second kind
which are

(3) s(n, k) =
1

k!

k∑
i=0

(−1)
i

(
k

i

)
(k − i)n.

Therefore, the Bell polynomials can be approximated as

(4) B(x) = SX(x),

where

B(x) = [B0(x), B1(x), ..., BN (x)]T ,

and

X(x) = [1, x, x2, ..., xN ]T ,
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also,

(5) S =


s(0, 0) 0 · · · 0
s(1, 0) s(1, 1) · · · 0

...
. . .

...
s(N, 0) s(N, 1) · · · s(N,N)

 .

One can obtain the entries of this matrix by using equation (3). For example,
in the case of N = 3, we get

S =


1 0 0 0
0 1 0 0
0 1 1 0
0 1 3 1

 .

So, the first few Bell polynomials are

B0(x) = 1, B1(x) = x, B2(x) = x+ x2, B3(x) = x+ 3x2 + x3.

Since matrix S is a lower triangular matrix with nonzero diagonal elements, so
this matrix is nonsingular and hence S−1 exists. Now, using (4), we have

(6) X(x) = S−1B(x).

3. Function approximation

Suppose H = L2[0, 1], {B0(x), B1(x), ..., BN (x)} ⊂ H be the set of Bell
polynomials and

S = span{B0(x), B1(x), ..., BN (x)}.
If f is any member in H, since S is a finite dimensional vector space, so f has

the best approximation out of S such as f̂ ∈ S. This means that [33]

∀g ∈ S ‖f − f̂‖ ≤ ‖f − g‖.

Since f̂ ∈ S, there exist unique coefficients f0, f1, ..., fN such that

(7) f(x) ' f̂(x) =

N∑
i=0

fiBi(x) = FTB(x),

in which

BT (x) = [B0(x), B1(x), ..., BN (x)],

and

(8) FT = [f0, f1, ..., fN ].

For computing the coefficients fi, we let

hj =

∫ 1

0

f(x)Bj(x)dx, j = 0, 1, . . . , N.
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So, we have

hj =

∫ 1

0

N∑
i=0

fiBi(x)Bj(x)dx

=

N∑
i=0

fi

∫ 1

0

Bi(x)Bj(x)dx =

N∑
i=0

fiqij , j = 0, 1, . . . , N,(9)

where

(10) qij =

∫ 1

0

Bi(x)Bj(x)dx.

Also, let
Q = [qij ](N+1)×(N+1), and H = [h0, h1, . . . , hN ]T .

From relation (9), we have

(11) HT = FTQ⇒ FT = HTQ−1.

Also, the kernel k(x, s) is separable bivariable function. Therefore, it can be
written as

k(x, s) = fT (x)g(s).

Doing the same procedure as (7) up to (11) for the one variable function f(x)
and g(s), one obtains

(12) k(x, s) ' kN (x, s) = BT (x)KB(s),

where K = [kij ] is an (N + 1)× (N + 1) matrix in which kij can be obtained as

(13) K = Q−1
[∫ 1

0

∫ 1

0

k(x, s)B(x)B(s)dxds

]
Q−1.

4. Operational matrix

Using the definition of standard basis, we have

∫ x

0

X(y)dy =



0 1 0 · · · 0

0 0
1

2
· · · 0

...
...

...
. . .

...

0 0 0 · · · 1

N
0 0 0 · · · 0




1
x
...

xN−1

xN

+


0
0
...
0
1


xN+1

N + 1

= MX(x) +
xN+1

N + 1
IN+1.(14)

Omitting the second term of (14), one can approximate the integration of the
vector X(x) as follows

(15)

∫ x

0

X(y)dy 'MX(x).
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By using (4), (6) and (15), the operational matrix of integration based on the
Bell polynomials will be obtained as

(16)

∫ x

0

B(y)dy = S

∫ x

0

X(y)dy = SMX(x) = SMS−1B(x) = PB(x).

The matrix P in (16), is called (N + 1) × (N + 1) operational matrix of inte-
gration.
The operational matrix of integration, P , is a sparse matrix, which is one of
the advantages of using the Bell polynomials for solving equations under study.
As an example, for N = 3, P is

P = SMS−1 =



1 0 0 0

0 1 0 0

0 1 1 0

0 1 3 1





0 1 0 0

0 0 1
2 0

0 0 0
1

3

0 0 0 0





1 0 0 0

0 1 0 0

0 −1 1 0

0 2 −3 1



=



0 1 0 0

0
−1

2

1

2
0

0
1

6

−1

2

1

3

0
3

2

−5

2
1


.

Also, by computing the operational matrix for higher degrees, it can be seen
that as N increases, the matrix becomes more sparse.

5. Method of solution

For solving the Volterra integro-differential equation (1), we can approximate
the unknown function y(m)(x) by the Bell matrix as

(17) y(m)(x) = AT
mB(x),

where

AT
m = [a0, a1, ..., aN ],

is an unknown vector. Integrating (17), one obtains
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∫ x

0

ym(t)dt =

∫ x

0

AT
mB(t)dt,

ym−1(x)− ym−1(0) = AT
m

∫ x

0

B(t)dt,

ym−1(x) = αm−1 +AT
mPB(x),

ym−2(x) = αm−2 + αm−1x+AT
mP

2B(x),

ym−3(x) = αm−3 + αm−2x+
1

2
αm−1x

2 +AT
mP

3B(x),

...

ym−k(x) = αm−k + αm−k+1x+
1

2!
αm−k+2x

2 +
1

3!
αm−k+3x

3 + ...+

1

(k − 1)!
αm−k+(k−1)x

k−1 +AT
mP

kB(x),(18)

Integrating m times of (17), results in

y(x) = α0 + α1x+
1

2!
α2x

2 +
1

3!
α3x

3 + ...+
1

(m− 1)!
αm−1x

m−1

+AT
mP

mB(x).(19)

As an example, for m = 3 we have

y(3)(x) = AT
3 B(x),

and by integrating 3 times, one obtains

y(x) = α0 + α1x+
1

2
α2x

2 +AT
3 P

3B(x).

Suppose that
AT

i = [αi, 0, 0, 0], i = 0, 1, 2,

P =



0 1 0 0

0
−1

2

1

2
0

0
1

6

−1

2

1

3

0
3

2

−5

2
1


, P 2 =



0
−1

2

1

2
0

0
1

3

−1

2

1

6

0
1

3

−1

2

1

6

0
1

3

−1

2

1

6


,

BT (x) = [1, x, x+ x2, x+ 3x2 + x3].

Then,

AT
0 B(x) = α0, AT

1 PB(x) = α1x, AT
2 P

2B(x) =
1

2
α2x

2.
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So, (18) implies that

(20) y(i)(x) =

m∑
j=i

AT
j P

j−iB(x),

in which

(21) AT
j = [αj , 0, 0, ..., 0], j = 0, 1, ...,m− 1.

Using relations (7), (12) and (20), we approximate f(x), K(x, s) and y(i)(x)
by the Bell polynomials. Replacing the results and relations (17) and (20) in
equation (1), we get

m∑
i=0

ci

m∑
j=i

AT
j P

j−iB(x) = FTB(x)

+B(x)K

(∫ x

0

BT (s)B(s)ds

) m∑
j=0

(P j)TAj .(22)

Now, we collocate equation (22) in N + 1 following nodes

(23) xi =
2i− 1

2(N + 1)
, i = 1, 2, ..., N + 1.

Therefore, we obtain a system of linear algebraic equations of (N+1)×(N+1)
degree, with an unknown vector Am. By solving this linear system, one can
approximate the solution of equation (1) as follows

(24) y(x) =

m∑
j=0

AT
j P

jB(x).

6. Convergence and error estimation

In this section, we prove the convergence of the proposed method and then
an approximation for the error bound of our numerical method is presented.
To do this, at first we recall the following theorem.

Theorem 6.1. Suppose that y(x) is sufficiently smooth function on [0, 1] and
PN (x) is the interpolating polynomials of y(x) at points xi, i = 0, 1, . . . , N , in
which for i = 0, 1, . . . , N , the points xi are the roots of the shifted Chebyshev
polynomial of order N + 1 on interval [0, 1]. Then we have [7]

y(x)− PN (x) =
∂N+1y(ϑ)

∂xN+1(N + 1)!

N∏
i=0

(x− xi),

where ϑ ∈ [0, 1].

According to this theorem, we have

(25) |y(x)− PN (x)| ≤ max
x∈[0,1]

∣∣∣∣∂N+1y(x)

∂xN+1

∣∣∣∣ ∏N
i=0 |x− xi|
(N + 1)!

.
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Suppose that there is the following upper bound error

(26) max
x∈[0,1]

∣∣∣∣∂N+1y(x)

∂xN+1

∣∣∣∣ ≤ µ,
By replacing (26) into (25) and taking into account the estimates of Chebyshev
interpolation nodes [12], one can conclude that

(27) |y(x)− PN (x)| ≤ µ
(
1

2
)N+1

(N + 1)!2N
.

Theorem 6.2. Let yN (x) be the best approximation of real sufficiently smooth
function y(x) by using Bell polynomials. Then, there is a real constant µ such
that

(28) ‖y(x)− yN (x)‖2 ≤ µ
(
1

2
)N+1

(N + 1)!2N
.

Proof. Suppose that ΠN is the space of Bell polynomials with order N . Ac-
cording to the definition of yN (x) which is the best approximation of y(x), we
have

∀g(x) ∈ ΠN ; ‖y(x)− yN (x)‖2 ≤ ‖y(x)− g(x)‖2.
In particular, by considering g(x) = PN (x) and using (27), results in

‖y(x)− yN (x)‖22 ≤ ‖y(x)− PN (x)‖22 =

∫ 1

0

|y(x)− PN (x)|2dx

≤
∫ 1

0

µ (
1

2
)N+1

(N + 1)!2N


2

dx =

µ (
1

2
)N+1

(N + 1)!2N


2

,

and the proof is completed.
�

Remark 6.3. From (28), one can obtain

‖y(x)− yN (x)‖2 = O
(

1

(N + 1)!22N+1

)
.

So, if N → ∞ then
1

(N + 1)!22N+1
→ 0, which means that the approximate

solution yN (x) will be converged to the exact solution y(x).

Theorem 6.4. Consider m = 0 and c0 = 1 in equation (1). Let y(x) be the
exact solution and yN (x) be the approximated solution of (1) with the given
assumption. Also, suppose that

(29) 1− γ − θ > 0.
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Then, the upper bound error for the presented algorithm will be obtained as

‖y(x)− yN (x)‖ ≤ ϕ+ θβ

1− (γ + θ)
,

with the following assumption:

max |y(x)| = β, ∀x ∈ I = [0, 1],

max |k(x, s)| = γ, ∀(x, s) ∈ I × I,
max |f(x)− fN (x)| = ϕ,

max |k(x, s)− kN (x, s)| = θ, ∀(x, s) ∈ I × I,

Proof. Our purpose is to determine an upper bound for the associated error
between the exact solution y(x) and the approximated solution yN (x) for the
equation (1) through the presented scheme. According to the equation (1), we
have

‖y(x)− yN (x)‖ =

∥∥∥∥f(x) +

∫ x

0

k(x, s)y(s)ds− fN (x)−
∫ x

0

kN (x, s)yN (s)ds

∥∥∥∥
≤ ‖f(x)− fN (x)‖+ ‖k(x, s)y(s)− kN (x, s)yN (s)‖ ,(30)

on the other hand

‖k(x, s)y(s)− kN (x, s)yN (s)‖
= ‖k(x, s)y(s)− k(x, s)yN (s) + k(x, s)yN (s)− kN (x, s)yN (s)‖
≤ ‖k(x, s)‖‖y(s)− yN (s)‖+ ‖k(x, s)− kN (x, s)‖‖yN (s)‖
≤ ‖k(x, s)‖‖y(s)− yN (s)‖+ ‖k(x, s)− kN (x, s)‖(‖y(s)‖+ ‖y(s)− yN (s)‖
≤ (γ + θ)‖y(s)− yN (s)‖+ θβ.

(31)

Using relations (30) and (31), we get

(32) ‖y(x)− yN (x)‖ ≤ ϕ+ (γ + θ)‖y(x)− yN (x)‖+ θβ.

Therefore, by this relation and (29), one obtains

(33) ‖y(x)− yN (x)‖≤
ϕ+ θβ

1− (γ + θ)
,

and this completes the proof. �

7. Numerical examples

In this section, we will apply the Bell polynomials method to some examples
of Volterra integro-differential equations with the initial conditions and com-
pare the quality of the computed solutions with those obtained by some other
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efficient methods such as Legendre, Bernoulli, Taylor and Bessel schemes. To
do this, the error function e(x) is defined as follows

e(x) = |y(x)− yN (x)|,
and the root mean square (RMS) error will be obtained as

E =

√√√√ 1

k + 1

k∑
i=0

(y(xi)− yN (xi))
2
,

where y(x) is the exact solution and yN (x) is the approximate solution of the
equation by our scheme. Numerical examples are implemented by the Matlab
R2015a software.

Example 7.1. Consider the following Volterra integro-differential equation of
the fourth order

(34) y(4)(x)− y(x) = x(1 + ex) + 3ex −
∫ x

0

y(s)ds, 0 ≤ x ≤ 1,

with the initial conditions

y(0) = 1, y
′
(0) = 1, y

′′
(0) = 2, y

′′′
(0) = 3.

The exact solution of this equation is y(x) = 1 + xex [20]. We approximate
y(4)(x) by the Bell polynomials of order N as

(35) y(4)(x) = AT
4 B(x).

Also, by using the initial conditions and the operational matrix of integration
(16), one obtains

(36) y(x) = AT
4 P

4B(x) +AT
3 P

3B(x) +AT
2 P

2B(x) +AT
1 PB(x) +AT

0 B(x),

where

Table 1. Numerical results of Example 1.

xi Exact solution Our method, Our method,
N = 4 N=8

0.0 1.0 1.0 1.0
0.1 1.1105170 1.1105166 1.1105170
0.2 1.2442805 1.2442666 1.2442805
0.3 1.4049576 1.4048501 1.4049576
0.4 1.5967298 1.5962671 1.5967298
0.5 1.8243606 1.8229178 1.8243607
0.6 2.0932712 2.0896034 2.0932718
0.7 2.4096268 2.4015211 2.4096290
0.8 2.7804327 2.7642742 2.7804395
0.9 3.2136428 3.1838623 3.2136620
1.0 3.7182818 3.6666852 3.7183302
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Table 2. Comparison of the absolute errors and RMS error of
the presented method with Legendre and Bernoulli collocation
methods for Example 1.

xi Our Method, Legendre method, Our Method, Bernoulli method,
N = 4 N = 4 N = 8 N = 8

0.0 0 0 0 0
0.2 1.3855e− 005 2.8055e− 004 1.8035e− 009 7.7721e− 005
0.4 4.6273e− 004 4.7299e− 004 1.4577e− 008 3.0926e− 005
0.6 3.6688e− 003 2.5270e− 002 5.3616e− 007 6.0544e− 004
0.8 1.6158e− 002 8.4330e− 002 6.8545e− 006 4.1000e− 003
1.0 5.1596e− 002 2.1828e− 001 4.8384e− 005 1.7700e− 003

RMS 2.2100e− 002 2.1828e− 001 1.9951e− 005 1.7700e− 003
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Figure 1. The graph of the exact solution and approximate
solutions for N = 4 and 8 in Example 1.

AT
3 = [3, 0, 0, 0, 0], AT

2 = [2, 0, 0, 0, 0], AT
1 = [1, 0, 0, 0, 0], AT

0 = [1, 0, 0, 0, 0].

Now, we approximate f(x) and k(x, s) by the Bell polynomials as stated in
section 3. Also, we substitute these approximate functions and relations (35)
and (36) in equation (34). Using the collocation points (23), one obtains a
system of linear algebraic equations to get an A4 vector.
We implement the suggested method with different values of N to approximate
the solution of (34). Tables 1, 2 and Figure 1 show the numerical results for
this example. Table 1 shows approximate solutions for N = 4 and 8. Table
2 compares the absolute errors and RMS of the Bell polynomials method with
the Legendre method [20] and the Bernoulli method [13]. The outcomes reveal
that the results of our method are very promising and superior to the Legendre
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method and the Bernoulli method. It is seen that as N is increased, the error is
decreased and the accuracy increases as well. Figure 1 depicts the approximate
solutions for N = 4 and 8.

Example 7.2. Consider the following Volterra integro-differential equation of
the first order

(37) y
′
(x) = 1−

∫ x

0

y(s)ds, 0 ≤ x ≤ 1,

with initial condition
y(0) = 0.

The exact solution of this equation is y(x) = sin(x) [23]. We approximate y
′
(x)

by the Bell polynomials of order N as

y
′
(x) = AT

1 B(x).

Using the given initial condition and the operational matrix of integration (16),
results in

y(x) = AT
1 PB(x).

Then, equation (37) can be written as

Table 3. Numerical results of Example2.

xi Exact solution Our method, Our method, Our method,
N = 4 N = 5 N = 6

0.0 0 0 0 0
0.1 0.0998334 0.0998333 0.0998334 0.0998334
0.2 0.1986693 0.1986666 0.1986693 0.1986693
0.3 0.2955202 0.2954999 0.2955202 0.2955202
0.4 0.3894183 0.3893333 0.3894186 0.3894186
0.5 0.4794255 0.4791666 0.4794270 0.4794270
0.6 0.5646424 0.5639999 0.5646479 0.5646479
0.7 0.6442176 0.6428333 0.6442338 0.6442338
0.8 0.7173560 0.7146666 0.7173971 0.7173972
0.9 0.7833269 0.7784999 0.7834205 0.7834206
1.0 0.8414798 0.8333333 0.8416663 0.8416664

AT
1 B(x) = FTB(x)−BT (x)K

(∫ x

0

B(s)BT (s)ds

)
PTA1.

Using the collocation points (23), one obtains a system of linear algebraic equa-
tions to get an A1 vector.
The numerical results for this example are displayed in Tables 3, 4 and Figure
2. Table 3 exhibits the approximate solutions by the Bell polynomial method.
The absolute errors and the RMS errors of this method, Taylor method [23] and
Bessel method [33] are shown in Table 4. From these results, it is evident that
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Table 4. Comparison of the absolute errors and RMS error
of the presented method with Taylor and Bessel collocation
methods for Example 2.

xi Our method, Taylor method, Our method, Bessel method
N = 5 N = 5 N = 7

0.0 0 0 0 0
0.2 3.7760e− 009 2.500e− 009 1.9534e− 010 4.0240e− 007
0.4 2.9382e− 007 3.2440e− 007 3.6070e− 011 2.0574e− 007
0.6 5.4466e− 006 5.5266e− 005 2.3569e− 008 3.7576e− 007
0.8 4.1079e− 005 4.1242e− 005 3.5299e− 007 1.8172e− 007
1.0 1.9539e− 003 1.9568e− 004 2.6911e− 006 9.6665e− 006

RMS 8.1543e− 005 8.4701e− 005 9.4350e− 007 3.9543e− 006

the presented method provided a good approximate solution. Figure 2 depicts
the approximate solutions for N = 4 and 6. It is seen that as N is increased,
the error is decreased and the accuracy increases as well.
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Figure 2. The graph of the exact solution and approximate
solutions for N = 4 and 6 in Example 2.

Example 7.3. Consider the following Volterra integro-differential equation

(38) y
′
(x) + y(x) =

∫ x

0

es−xy(s)ds, 0 ≤ x ≤ 1,

with initial condition

y(0) = 1.
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The exact solution of this equation is y(x) = e−xcoshx [13]. We approximate

y
′
(x) by the Bell polynomials of order N as

y
′
(x) = AT

1 B(x),

Table 5. Numerical results of Example3.

xi Exact solution Our method, Our method,
N = 4 N = 6

0.0 1.0 1.0 1.0
0.1 0.9093653 0.9093934 0.9093651
0.2 0.8351600 0.8351749 0.8351491
0.3 0.7744058 0.7745891 0.7744073
0.4 0.7246644 0.7254755 0.7246687
0.5 0.6839397 0.6860852 0.6839958
0.6 0.6505971 0.6566208 0.6508095
0.7 0.6232984 0.6344677 0.6238789
0.8 0.6009482 0.6257380 0.6025596
0.9 0.5826494 0.6209277 0.5859553
1.0 0.5676676 0.6224829 0.5752348

Table 6. Comparison of the absolute errors and RMS error
of the presented method with Bernoulli collocation method for
Example 3.

xi Our method, Bernoulli method, Our method, Bernoulli method,
N = 4 N = 4 N = 6 N = 6

0.0 0 0 0 0
0.1 2.8122e− 005 7.8212e− 003 2.4676e− 007 3.2108e− 004
0.2 1.7918e− 004 1.1000e− 003 1.0876e− 005 2.4000− 004
0.3 1.8335e− 004 8.4639e− 004 1.1495e− 006 7.9000e− 004
0.4 7.3223e− 004 8.5470e− 003 4.2351e− 006 1.8000e− 004
0.5 2.1455e− 003 3.4000e− 003 5.6093e− 005 3.3800e− 003

RMS 9.3147e− 004 4.9000e− 003 2.2395e− 005 1.4000e− 003

where, A1 is the unknown vector. Also, by using the initial condition and
the operational matrix of integration (16), we have

y(x) = AT
1 PB(x) +AT

0 B(x),

where AT
0 = [1, 0, 0, 0, 0]. Then, equation (38) can be written as

AT
1 B(x) +AT

1 PB(x) +AT
0 B(x) = BT (x)K

(∫ x

0

B(s)BT (s)ds

)
(A0 + PTA1).
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Figure 3. The graph of the exact solution and approximate
solutions for N = 6 and 8 in Example 3.

Now, by using collocating points (23) and solving the resulting linear algebraic
system, the A1 vector will be determined.
The numerical results of this example are displayed in Tables 5, 6 and Figures
3. Table 5 exhibits the exact solution and the approximate solutions with N = 4
and 6. Table 6 exhibits the values of the absolute errors and RMS error for the
proposed method and the Bernoulli method with different values of N . This
table reveals that our method can provide more accurate results in comparison
with the Bernoulli method. From Table 6, we conclude that as N is increased,
the error is decreased. Figure 3 displays the exact solution and the approximate
solutions with N = 6 and 8.

8. Conclusion

In this paper, the Bell polynomials method was applied to obtain a numeri-
cal solution of high order Volterra integro-differential equations with the given
initial conditions. The properties of the Bell polynomials were used to convert
the equation into a system of algebraic equations which could be solved very
easily. Some theorems were performed to show the convergence and error esti-
mation of this method. The obtained results showed that the Bell polynomials
method for solving Volterra integro-differential equations of high order with ini-
tial conditions was very effective and capable with a high accuracy compared
with some other well-known methods such as Legendre, Bernoulli, Taylor and
Bessel polynomials algorithms.
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[3] Bicer, GG, Öztürk, Y., & Gülsu, M. (2018). Numerical approach for solving linear Fred-

holm integro-differential equation with piecewise intervals by Bernoulli polynomials. Int.

J. Comput. Math., 95(10), 2100-2111. https://doi.org/10.1080/00207160.2017.1366458
[4] Brunner, H. (1990). On the numerical solution of nonlinear Volterra-Fredholm in-

tegral equations by collocation methods. SIAM J. Numer. Anal., 27(4), 987-1000.

https://doi.org/10.1137/0727057
[5] Dehghan, M., & Salehi, R. (2012). The numerical solution of the nonlinear integro-

differential equations based on the meshless method. J. Comput. Appl. Math., 236(9),
2367-2377. https://doi.org/10.1016/j.cam.2011.11.022

[6] Fakhar-Izadi, F., & Dehghan, M. (2011). The spectral methods for parabolic

Volterra integro-differential equations. J. Comput. Appl. Math., 235(14), 4032-4046.
https://doi.org/10.1016/j.cam.2011.02.030

[7] Gasca, M., & Sauer, T. (2001). On the history of multivariate polynomial interpo-

lation. Numerical Analysis: Historical Developments in the 20th Century. 135-147.
https://doi.org/10.1016/B978-0-444-50617-7.50007-0

[8] Hesameddini, E., & Shahbazi, M. (2022). Application of Bernstein polynomials for solv-

ing Fredholm integro-differential-difference equations. Appl. Math. J. Chin. Univ., 37(4),
475-493. https://doi.org/10.1007/s11766-022-3620-9

[9] Hesameddini, E., & Shahbazi, M. (2017). Solving system of Volterra-Fredholm integral

equations with Bernstein polynomials and hybrid Bernstein Block-Pulse functions. J.
Comput. Appl. Math., 315, 182-194. https://doi.org/10.1016/j.cam.2016.11.004

[10] Maleknejad, K., Basirat, B., & Hashemizadeh, E. (2012). A Bernstein oper-
ational matrix approach for solving a system of high order linear Volterra-

Fredholm integro-differential equations. Math. Comput. Model., 55(3-4), 1363-1372.

https://doi.org/10.1016/j.mcm.2011.10.015
[11] Maleknejad, K., & Mahmoudi, Y. (2003). Taylor polynomial solution of high-order non-

linear Volterra-Fredholm integro-differential equations. Appl. Math. Comput., 145(2-3),

641-653. https://doi.org/10.1016/S0096-3003(03)00152-8
[12] Mason, JC, & Handscomb, DC (2002). Chebyshev Polynomials. CRC Press LLC.

https://doi.org/10.1201/9781420036114

[13] Matinfar, M., Abdollahi Lashaki, H., & Akbari, M. (2017). Numerical approximation
based on the Bernoulli polynomials for solving Volterra integro-differential equations of

a high order. Math. Rese., 2(3), 19-32. https://doi.org/10.29252/mmr.2.3.19

[14] Mirzaee, F. (2017). Numerical solution of nonlinear Fredholm-Volterra integral
equations via Bell polynomials. Comput. Methods Differ. Equ., 5(2), 88-102.

https://dorl.net/dor/20.1001.1.23453982.2017.5.2.1.1

[15] Ordokhani, Y., & Mohtashami, MJ (2010). Approximate solution of nonlinear Fredholm
integro-differential equations with time delay by using Taylor method. J. Sci. TMU.,
9(1), 73-84.

[16] Rebenda, J. (2019). An application of Bell polynomials in numerical solv-
ing of nonlinear differential equations. arXiv preprint arXiv:1901.10418, 1-10.

https://doi.org/10.48550/arXiv.1901.10418



138 N. Kasaei, E. Hesameddini, M. Nabati

[17] Rohaninasab, N., Maleknejad, K., & Ezzati, R. (2018). Numerical solution of high-order
Volterra-Fredholm integro-differential equations by using Legendre collocation method.

Appl. Math. Comput., 328, 171-188. https://doi.org/10.1016/j.amc.2018.01.032

[18] Saadatmandi, A., & Dehghan, M. (2010). Numerical solution of the higher-order lin-
ear Fredholm integro-differential-difference equation with variable coefficients. Comput.

Math. with Appl., 59(8), 2996-3004. https://doi.org/10.1016/j.camwa.2010.02.018

[19] Saberi-Nadjafi, J., & Ghorbani, A. (2009). He’s homotopy perturbation method: an
effective tool for solving nonlinear integral and integro-differential equations. Comput.

Math. with Appl., 58(11-12), 2379-2390. https://doi.org/10.1016/j.camwa.2009.03.032

[20] Venkatesh, SG, Ayyaswamy, SK, & Raja Balachander, S. (2012). Legendre approxima-
tion solution for a class of high-order Volterra integro-differential equations. Ain Shams

Eng. J., 3(4), 417-422. https://doi.org/10.1016/j.asej.2012.04.007
[21] Wazwaz, AM (2011). Linear and Nonlinear Integral Equations. Berlin: Springer.

https://doi.org/10.1007/978-3-642-21449-3-14

[22] Wheeler, FS (1987). Bell polynomials. Acm Sigsam Bulletin, 21(3), 44-53.
https://doi.org/10.1145/29309.29317

[23] Yalcınbas, S., & Sezer, M. (2000). The approximate solution of high-order linear Volterra-

Fredholm integro-differential equations in terms of Taylor polynomials. Appl. Math.
Comput., 112(2-3), 291-308. https://doi.org/10.1016/s0096-3003(99)00059-4

[24] Yıldız, G., Tınaztepe, G., & Sezer, M. (2020). Bell polynomial approach for the solutions

of Fredholm integro-differential equations with variable coefficients. Comp. Model. Eng.
Sci., 123(3), 973-993. https://doi.org/10.32604/cmes.2020.09329
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