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Abstract. In this article, we define probabilistic normed quasi-linear

spaces and provide some introductions and examples to clarify the struc-
ture of these spaces. We then investigate the generalized Hyers-Ulam sta-

bility of the (additive) Cauchy functional equation in probabilistic normed
quasi-linear spaces by using a version of the fixed point theorem.
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1. Introduction

The problem of stability for functional equations is expressed in the way
that when the functional equation is replaced by an inequality, what is the
difference between the answers of the inequality and the answers of the given
functional equation?

In 1940, S.M. Ulam [28] stated the following question:
Let S1 be a group and S2 be a metric group with metric d. Given ε > 0, does

there exist a δ > 0 such that if a mapping L : S1 → S2 satisfies the following
condition

d(L(st), L(s)L(t)) < δ,

for all s, t ∈ S1, then there is a homomorphism T : S1 → S2 such that
d(L(s), T (s)) < ε for all s ∈ S1?

Hyers [14] answered the Ulam’s problem about Banach spaces:
Let X1 and X2 be Banach spaces and κ : X1 → X2 be a function that for

all ρ1, ρ2 ∈ X1 and some ε > 0,

‖κ(ρ1 + ρ2)− κ(ρ1)− κ(ρ2)‖ ≤ ε.

Then there exists a unique additive mapping K : X1 → X2 such that

‖κ(ρ1)−K(ρ1)‖ ≤ ε,
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for all ρ1 ∈ X1.
Rassias [23] and Gavruta [12] generalized this theorem, and other researchers

have presented approaches for the generalized Hyers-Ulam stability problem.
For example, see [22] for more information on this topic and its generalization.
The stability of the functional equations has been investigated by several re-
searchers directly or using the fixed point alternative, as seen in [11], [15]– [24].

We know that fixed point theory is one of the most useful parts of pure math-
ematics in other aspects of mathematics and science, especially in economics
and solving differential equations. One of the applications of fixed point the-
orems is to investigate the problem of various functional equation stabilities.
For example, in [4], Baker used the Banach fixed point theorem to give Hyers-
Ulam stability results for a nonlinear functional equation. In many physical
problems, we come across nonlinear integral equations. The fixed point theory
plays a significant role to obtain the solutions of such equations. In [13], the
existence of a solution for nonlinear functional integral equations is investigated
with the help of generalized Darbo’s fixed point theorem, and an example for
the application of the obtained results in the theory of integral equations is
presented. In [26] has been proved the existence of the solution of non-linear
functional integral equations in Banach algebra C([0, a] × [0, a]), a > 0 that is
used the measure of noncompactness on C([0, a]× [0, a]) and a fixed point theo-
rem, which is a generalization of Darbo’s fixed point theorem for the product of
operators and illustrates result with the help of an interesting example. In [27],
the Petryshyn’s fixed point theorem is used to prove the existence theorem for
functional-integral equations and several illustrative examples.

A suitable survey of stability results for the Cauchy equation can be found
in [6]. In 1987, Alsina [2] investigated the Ulam-type stability of functional
equations in probabilistic normed spaces. In 2008, Mihet and Radu [19] proved
the stability results for the Cauchy and Jensen functional equations in random
normed spaces using the fixed point method. The stability of various functional
equations was also investigated in random normed spaces, as seen in [5,8,19,20].

In this paper, we define probabilistic normed quasi-linear spaces and inves-
tigate the generalized Hyers-Ulam stability of the Cauchy functional equation
in probabilistic normed quasi-linear spaces using the fixed point method.

2. Preliminaries

The functional equation κ(ρ1 + ρ2) = κ(ρ1) + κ(ρ2) is called the Cauchy
functional equation and any function that satisfies it, is called an additive
mapping.

In 2003, Radu [22] used a version of the fixed point theorem to prove the
stability of the Cauchy functional equation. Here, we present a modified version
of the main result in [10], which is a fixed point theorem.

Theorem 2.1. [1] Let (F, d) be a complete generalized metric space and let
I : F → F be a contraction map with a Lipschitz constant 0 < µ < 1. Then
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for each given element a ∈ F , either d(Ina, In+1a) = ∞ for all nonnegative
integers n or there exists a positive integer n0 such that

(1) d(Ina, In+1a) <∞ for all n > n0;
(2) the sequence {Ina} converges to a fixed point a∗ of I;
(3) a∗ is the unique fixed point of I in the set F ∗ := {b ∈ F |d(In0a, b) <
∞};

(4) d(b, a∗) ≤ 1
1−µd(b, Ib) for all b ∈ F ∗.

Park [21] and Rassias [24] used this theorem for solving the Cauchy func-
tional equations. The problem of the stability of the additive Cauchy functional
equation in random normed spaces has been investigated, see [19, 20]. In this
paper by using Theorem 2.1, we prove the generalized Hyers-Ulam stability of
the Cauchy functional equation in probabilistic normed quasi-linear spaces.

Throughout this article, D is the space of all distribution functions; that
is, the space of all mappings F : R → [0, 1], such that F is left-continuous,
nondecreasing, with inf F = 0 and sup F = 1. For example, ε0 is the specific
distribution function defined by

ε0(u) =

{
0 u ≤ 0,

1 u > 0

In 1942, Menger proposed a generalization of metric spaces, which is called
a probabilistic metric space.

Definition 2.2. [7,25] A probabilistic metric space (briefly, a PM-space) is an
ordered pair (P, F), where P is an abstract set and F is a mapping from P ×P
into D. We denote the distribution function F(p1, p2) by Fp1,p2 . The functions
Fp1,p2 are assumed to satisfy the following conditions:

(1) Fp1,p2 = ε0 if and only if p1 = p2;
(2) Fp1,p2(0) = 0;
(3) Fp1,p2 = Fp2,p1 ;
(4) if Fp1,p2(υ) = 1 and Fp1,p2(ν) = 1, then Fp1,p2(υ + ν) = 1.

A function τ : [0, 1] × [0, 1] → [0, 1] is called a triangular norm (briefly, a
t-norm), if τ satisfies the following conditions:

(1) τ(ι1, ι2) = τ(ι2, ι1);
(2) τ(τ(ι1, ι2), ι3) = τ(ι1, τ(ι2, ι3));
(3) τ(ι1, 1) = ι1;
(4) τ(ι1, ι2) ≤ τ(ι3, ι4) whenever ι1 ≤ ι3 and ι2 ≤ ι4;

for all ι1, ι2, ι3, ι4 ∈ [0, 1].
For example, τm(ι1, ι2) = min{ι1, ι2} is a continuous t-norm.

Definition 2.3. A probabilistic normed space (briefly, a PN-space) is an or-
dered triple (P, F, τ), where P is a vector space, τ is a continuous t-norm and
F is a mapping from P into D (we shall denote F(p1) by Fp1) satisfying the
following conditions:



144 Z. Dehvari, M.S. Modarres Mosadegh

(1) Fp1(υ) = ε0(υ) for all υ > 0 if and only if p1 = 0;

(2) Fλp1(υ) = Fp1(
υ

|λ|
) for all p1 ∈ P, λ 6= 0;

(3) if Fp1(υ) = 1 and Fp2(ν) = 1, then Fp1+p2(υ+ ν) = 1 for all p1, p2 ∈ P
and υ, ν ≥ 0.

If for all p1, p2 ∈ P and υ, ν ≥ 0, Fp1+p2(υ + ν) ≥ τ(Fp1(υ), Fp2(ν)), then P
is called a Menger PN-space.

Various authors have generalized metric spaces, including Aseev [3], who in-
troduced quasi-linear spaces, and Dehghanizade and Modarres [9], who defined
quotient spaces. In the following, we will provide a reminder of the definition
of quasi-linear spaces.

Definition 2.4. [3, 30] A set Q is called a quasi-linear space (briefly, QLS)
if a partial order relation �, an algebraic addition operation and an operation
of multiplication by real numbers are defined in it, such that for any elements
ξ, ζ, α, γ ∈ Q and any λ, θ ∈ R the following conditions hold:

(1) ξ � ξ;
(2) if ξ � ζ and ζ � α, then ξ � α;
(3) if ξ � ζ and ζ � ξ. then ξ = ζ;
(4) ξ + ζ = ζ + ξ;
(5) ξ + (ζ + γ) = (ξ + ζ) + γ;
(6) for each ξ there exists an zero element η ∈ Q such that ξ + η = ξ;
(7) λ.(θ.ξ) = (λ.θ).ξ;
(8) λ.(ξ + ζ) = λ.ξ + λ.ζ;
(9) 1.ξ = ξ;

(10) 0.ξ = η;
(11) (λ+ θ).ξ � λ.ξ + θ.ξ;
(12) if ξ � ζ and α � γ, then ξ + α � ζ + γ;
(13) if ξ � ζ, then λ.ξ � λ.ζ.

A QLS Q with the partial order relation � is denoted by (Q,�) where η is
the zero element of Q.

An example of quasi-linear space, that is not a linear space is Ω(R), is the
set of all nonempty closed bounded subsets of real numbers. The algebraic
addition operation on Ω(R) is defined by the expression

A+B = {ι+ ς : ι ∈ A, ς ∈ B},

and multiplication by a real number λ ∈ R is defined by λ.A = {λ.ι : ι ∈ A}.
The partial order relation on Ω(R) is given by inclusion.

An element p
′ ∈ Q is called an additive inverse of p ∈ Q if p+ p

′
= η. The

additive inverse of an element is unique if it exists.
If any element in the quasi-linear space Q has an additive inverse element

in Q, then the partial order on Q is determined by equality and consequently,
Q is a linear space (see Lemma 2 in [3]).
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Definition 2.5. [3] Let (Q,�) be a QLS. A real function ‖ . ‖Q : Q → R is
called a QN -norm, if the following conditions hold:

(1) ‖ξ‖Q > 0 if ξ 6= η;
(2) ‖ξ + ζ‖Q ≤ ‖ξ‖Q + ‖ζ‖Q;
(3) ‖λ.ξ‖Q = |λ|.‖ξ‖Q;
(4) if ξ � ζ, then ‖ξ‖Q ≤ ‖ζ‖Q;
(5) if for any ε > 0 there exists an element ξε ∈ Q such that ξ � ζ+ ξε and
‖ξε‖Q ≤ ε, then ξ � ζ.

A QLS Q with a norm defined on it is called normed quasi-linear space.

For example, Ω(R) is a normed quasi-linear space. The norm on Ω(R) is
defined by

‖A‖Ω := sup
ι∈A
|ι|.

If Q is a normed quasi-linear space, the Hausdorff metric hQ on Q is defined
by

hQ(ξ, ζ) = inf{y ≥ 0 : ∃ayi ∈ Q, ξ � ζ + ay1, ζ � ξ + ay2, ‖a
y
i ‖ ≤ y, i = 1, 2}.

3. Probabilistic normed quasi-linear spaces

Definition 3.1. A probabilistic normed quasi-linear space (briefly, a PNQ-
space) is an ordered triple (P,�, F), where P is a quasi-linear space and F is
a mapping from P into D (we denote the distribution function F(p1) by Fp1)
satisfying the following conditions:

(1) Fp1(υ) = ε0(υ) for all υ > 0 if and only if p1 = η;

(2) Fλp1(υ) = Fp1(
υ

|λ|
) for all p1 ∈ P, λ 6= 0;

(3) if Fp1(υ) = 1 and Fp2(ν) = 1, then Fp1+p2(υ+ ν) = 1 for all p1, p2 ∈ P
and υ, ν ≥ 0;

(4) if p1 � p2, then Fp1(υ) ≥ Fp2(ν);
(5) if for any ε > 0 there exists an element pε ∈ P such that p1 � p2 + pε

and Fpε(ε) = 1, then p1 � p2.

A PNQ-space P is called a Menger PNQ-space, if for all p1, p2 ∈ P and υ, ν ≥ 0
the following holds:

Fp1+p2(υ + ν) ≥ τ(Fp1(υ), Fp2(ν)),

where τ is a t-norm.

It is clear that if any element p in a PNQ-space P has an additive inverse
p

′ ∈ P , then P is a PN-space.
An example of a PNQ-space is (Ω(R),⊆, F ) where F is defined by

FB(υ) :=
υ

υ + ‖B‖Ω
,
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for all B ∈ Ω(R) and υ > 0.

Theorem 3.2. Suppose (P,�, F) is a PNQ-space and F takes its values in
D0 = {F ∈ D : F−1{1} 6= ∅}. If we define the function ‖.‖q by

‖p‖q := inf{υ ≥ 0 : Fp(υ) = 1},
for all p ∈ P , then ‖.‖q is a QN-norm on P and (P, F, ‖.‖q) is a QN-space.

Proof. ‖.‖q satisfies the conditions (1), (2) and (3) of Definition 2.5, for details
of the proof see the proof of Theorem 2.8.1 of [7]. Now, we check conditions
(4) and (5):

Suppose that p1 � p2. Then Fp1(υ) ≥ Fp2(υ). Consequently,

{υ ≥ 0|Fp2(υ) = 1} ⊆ {υ ≥ 0|Fp1(υ) = 1},
and so ‖p1‖q ≤ ‖p2‖q.

Let ε > 0 be given and assume that there exists an element pε ∈ P such that
p1 � p2 + pε and ‖pε‖q ≤ ε. Then Fpε(ε) = 1 and so p1 � p2. �

Now, let P be a PNQ-space. We define a metric on P by

Gp1,p2(υ) := sup{r ∈ [0, 1] : ∃ari ∈ P, p1 � p2 + ar1, p2 � p1 + ar2, Fari
(υ) ≥ r, i = 1, 2}.

Since p1 � p2 + (p1 − p2) and p2 � p1 + (p2 − p1), the quantity Gp1,p2(υ) is
defined, for any elements p1, p2 ∈ P , and Gp1,p2(υ) ≥ Fp1−p2(υ) for all υ ≥ 0.
It is straightforward to see that the function Gp1,p2 is a distribution function
and satisfies all the axioms of a probabilistic metric.

To prove the main theorem, we need the following lemma.

Lemma 3.3. For all nonzero β ∈ R and p1, p2 ∈ P , Gβp1,βp2(υ) = Gp1,p2(
υ

|β|
).

Proof. Suppose ε > 0 is given. There exist ar1, a
r
2 ∈ P such that

βp1 � βp2 + ar1, βp2 � βp1 + ar2, Fari (υ) ≥ Gβp1,βp2(υ)− ε.
Therefore,

p1 � p2 +
ar1
β
, p2 � p1 +

ar2
β
, Fari

β

(υ) = Fari (|β|υ) ≥ Gβp1,βp2(|β|υ)− ε.

Thus, Gp1,p2(υ) ≥ Gβp1,βp2(|β|υ)− ε and by replacing u by
υ

|β|
, we have

Gp1,p2(
υ

|β|
) ≥ Gβp1,βp2(υ)− ε.(1)

Also, for each ε > 0, there exist br1, b
r
2 ∈ P such that

p1 � p2 + br1, p2 � p1 + br2, Fbri (
υ

|β|
) ≥ Gp1,p2(

υ

|β|
)− ε.

So

βp1 � βp2 + βbr1, βp2 � βp1 + βbr2, Fβbri (υ) = Fbri (
υ

|β|
) ≥ Gp1,p2(

υ

|β|
)− ε.
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Consequently,

Gβp1,βp2(υ) ≥ Gp1,p2(
υ

|β|
)− ε.(2)

Letting ε→ 0 in (1) and (2) we complete the proof. �

Definition 3.4. A sequence {pn} in a PNQ-space P is said to converge to a
p ∈ P (we write pn → p) if for every ε > 0 and λ > 0, there exists an integer
Mε,λ such that Gpn,p(ε) > 1− λ whenever n > Mε,λ.

Lemma 3.5. Let P be a PNQ-space.
a) The operation of multiplication by real numbers is continuous according

to the probabilistic metric.
b) Suppose that pn → p0 and rn → p0. If pn � qn � rn, for all n, then

qn → p0.

Proof. Suppose that pn → p and β ∈ R is given. Then, for every ε > 0 and

λ > 0, there exists an integer Mε,λ such that Gpn,p(
ε

|β|
) > 1 − λ whenever

n > Mε,λ. By Lemma 3.3, Gβpn,βp(ε) > 1 − λ. Hence, the operation of
multiplication by real numbers is continuous. The proof b) is analogous. �

Lemma 3.6. Let P be a PNQ-space such that for all p1, p2 ∈ P and λ, υ, ν > 0,
if Fp1(υ) > 1− λ and Fp2(ν) > 1− λ, then Fp1+p2(υ + ν) > 1− λ.
a) The operation of algebraic sum is continuous.
b) If pn + qn → p and qn → 0, then pn → p.

Proof. Suppose that pn → p and qn → q. Then for any ε > 0 and any λ > 0
there exists an integer Mε,λ such that the following conditions hold for n >
Mε,λ:

pn � p+ a1, p � pn + a2, Fai(
ε

2
) ≥ 1− λ,

qn � q + b1, q � qn + b2, Fbi(
ε

2
) ≥ 1− λ.

Consequently, Fai+bi(ε) ≥ 1 − λ and therefore the operation of algebraic sum
is continuous. The proof b) is analogous. �

4. Stability of the Cauchy functional equation

Throughout this section, Y is a linear space and P is a Menger complete
probabilistic normed quasi-linear space with t-norm τM .

Theorem 4.1. Assume that a mapping κ : Y → P with κ(0) = η and a
symetric mapping ψ : Y × Y → D satisfy the following conditions: For all
ρ1, ρ2 ∈ Y and υ > 0,

Gκ(2ρ1),2κ(ρ1)(υ) ≥ Gκ(2ρ1),κ(ρ1)+κ(ρ1)(υ),(3)

∃β ∈ (0, 2) : ψ(2ρ1, 2ρ2)(βυ) ≥ ψ(ρ1, ρ2)(υ),(4)
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Gκ(ρ1+ρ2),κ(ρ1)+κ(ρ2) ≥ ψ(ρ1, ρ2).(5)

Then there exists a unique additive mapping K : Y → P such that for all
ρ1 ∈ Y and all υ > 0,

Gκ(ρ1),K(ρ1)(υ) ≥ ψ(ρ1, ρ1)((2− β)υ).

Moreover,

K(ρ1) = lim
n→∞

κ(2nρ1)

2n
,

K(2ρ1) = 2K(ρ1).

Proof. Consider the set F = {K|K : Y → P,K(0) = η} and define the gener-
alized metric on F as follows:

dG(g1, g2) := inf{ρ ≥ 0|Gg1(ρ),g2(ρ)(ρυ) ≥ ψ(ρ, ρ)(2υ), for all ρ ∈ Y and υ > 0}.
It is easy to show that dG is a complete generalized metric on F (see [19]).

We consider the linear mapping I : F → F such that for all ρ ∈ Y ,

I(K(ρ)) :=
1

2
K(2ρ).

Let g1, g2 in F be given such that dG(g1, g2) < ε. Then for all ρ ∈ Y, υ > 0

Gg1(ρ),g2(ρ)(ευ) ≥ ψ(ρ, ρ)(2υ).

Now, if we replace ρ with 2ρ and υ with µυ, then we have

GIg1(ρ),Ig2(ρ)(
β

2
ευ) ≥ ψ(2ρ, 2ρ)(2βυ).

Hence by (4), GIg1(ρ),Ig2(ρ)(
µ

2
ευ) ≥ ψ(ρ, ρ)(2υ). Consequently, I is a strictly

contractive mapping with the Lipschitz constant µ =
β

2
.

By putting ρ2 = ρ1 in (5) and using condition (3), we obtain

Gκ(2ρ1),2κ(ρ1)(υ) ≥ ψ(ρ1, ρ1)(υ),

for all ρ1 ∈ Y, υ > 0. Therefore by Lemma 3.3,

Gκ(2ρ1)

2
,κ(ρ1)

(
υ

2
) ≥ ψ(ρ1, ρ1)(υ).

Replacing υ by 2υ, we obtain Gκ(ρ1),Iκ(ρ1)(υ) ≥ ψ(ρ1, ρ1)(2υ). It follows that
dG(κ, Iκ) ≤ 1 <∞.

By Theorem 2.1, there exists a mapping K : Y → P which is a fixed point
of I, i.e., K(2ρ1) = 2K(ρ1), such that Inκ→ K.

Moreover by Theorem 2.1, dG(κ,K) ≤ 1

1− β

2

d(κ, Iκ) and because dG(κ, Iκ) ≤

1, we obtain

Gκ(ρ1),K(ρ1)(
2

2− β
υ) ≥ ψ(ρ1, ρ1)(2υ).
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Hence for all ρ1 ∈ and υ > 0,

Gκ(ρ1),K(ρ1)(υ) ≥ ψ(ρ1, ρ1)((2− β)υ).

Since dG(Inκ,K) → 0, for every ε > 0, there exists N ∈ N such that for all

n ≥ N , dG(Inκ,K) < ε. Consequently, GInκ(ρ1),K(ρ1)(υ) ≥ ψ(ρ1, ρ1)(
2υ

ε
). By

letting ε→ 0, we get GInκ(ρ1),K(ρ1)(υ) = 1 for all n ≥ N and υ > 0. Therefore,

K(ρ1) = lim
n→∞

k(2nρ1)

2n
.

Since τM is continuous, the mapping z → Fz is continuous (see [25], Chapter
12). Therefore, it follows from conditions (4), (5) that

GK(ρ1+ρ2),K(ρ1)+K(ρ2)(υ) = lim
n→∞

Gκ(2n(ρ1 + ρ2))

2n
,
κ(2n(ρ1))

2n
+
κ(2n(ρ2))

2n

(υ)

= lim
n→∞

Gκ(2n(ρ1+)ρ2),k(2nρ1)+k(2nρ2)(2
nυ)

≥ lim
n→∞

ψ(2nρ1, 2
nρ2)(2nυ)

≥ lim
n→∞

ψ(ρ1, ρ2)((
2

β
)nυ) = 1.

This implies K is an additive mapping.
Finally, we prove that K is unique. Since the integer n0 in Theorem 2.1 is

0, K is the unique fixed point of I in the set F ∗ := {K ∈ F |d(κ,K) < ∞}.
Assume K1 : Y → P is an additive mapping such that

Gκ(ρ1),K1(ρ1)(υ) ≥ ψ(ρ1, ρ1)((2− β)υ),

K1(2ρ1) = 2K1(ρ1),

for all ρ1 ∈ Y, υ > 0. Then d(κ,K1) <∞. On the other hands,

J(K1(ρ1)) =
1

2
K1(2ρ1) = K1(ρ1).

This shows that K1 is a fixed point of I in F ∗ := {K ∈ F |d(ρ1,K) <∞} and
so K1 = K. �

Corollary 4.2. Let p < 1 and θ be nonnegative real numbers. Let Y be a
normed vector space with norm ‖.‖ and let κ : Y → P with κ(0) = η be a
mapping satisfying

Gκ(2ρ1),2κ(ρ1)(υ) ≥ Gκ(2ρ1),κ(ρ1)+κ(ρ1)(υ),

Gκ(ρ1+ρ2),κ(ρ1)+κ(ρ2) ≥
υ

υ + θ(‖ρ1‖p + ‖ρ2‖p)
,

for all ρ1, ρ2 ∈ Y and all υ > 0. Then there exists a unique additive mapping
K : Y → P such that,

Gκ(ρ1),K(ρ1)(υ) ≥ (2− 2p)υ

(2− 2p)υ + 2θ‖ρ1‖p
,

for all ρ1 ∈ Y and υ > 0.
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Proof. According to Theorem 4.1, for all ρ1, ρ2 ∈ X and υ > 0, by putting

β = 2p and ψ(ρ1, ρ2)(υ) =
υ

υ + θ(‖ρ1‖p + ‖ρ2‖p)
, the result is obtained. �

Theorem 4.3. Assume that a mapping κ : Y → P with κ(0) = η and symetric
mapping ψ : Y × Y → D satisfy the following conditions: For all ρ1, ρ2 ∈ Y
and υ > 0,

Gκ(2ρ1),2κ(ρ1)(υ) ≥ Gκ(2ρ1),κ(ρ1)+κ(ρ1)(υ),(6)

∃β > 2 : ψ(ρ1, ρ2)(υ) ≥ ψ(2ρ1, 2ρ2)(βυ),(7)

Gκ(ρ1+ρ2),κ(ρ1)+κ(ρ2) ≥ ψ(ρ1, ρ2).(8)

Then there is a unique additive mapping K : Y → P such that for all
ρ1 ∈ Y, υ > 0,

Gκ(ρ1),K(ρ1)(υ) ≥ ψ(ρ1, ρ1)((β − 2)υ).

Moreover,

K(ρ1) = lim
n→∞

2nκ(
ρ1

2n
),

K(2ρ1) = 2K(ρ1).

Proof. Consider the set F = {K|K : Y → P,K(0) = η} and introduce the
complete generalized metric dG on F by

dG(g1, g2) := inf{ρ1 ≥ 0|Gg1(a),g2(ρ1)(ρ1υ) ≥ ψ(ρ1, ρ1)(2υ), for all ρ1 ∈ Y and υ > 0}.

We consider the linear mapping I : F → F defined by

I(K(ρ1)) := 2K(
ρ1

2
),

for all ρ1 ∈ Y .
Let g1, g2 in F be given such that dG(g1, g2) < ε. Then for all ρ1 ∈ Y, υ > 0

Gg1(ρ1),g2(ρ1)(ευ) ≥ ψ(ρ1, ρ1)(2υ).

Now, if we replace ρ1 with
ρ1

2
and υ with

υ

β
, then by Lemma 3.3, we have

GIg1(ρ1),Ig2(ρ1)(
2ε

β
υ) ≥ ψ(

ρ1

2
,
ρ1

2
)(

2υ

β
).

Hence by (7), GIg1(a),Ig2(a)(
2ε

β
υ) ≥ ψ(ρ1, ρ1)(2υ) and I is a strictly contractive

mapping with the Lipschitz constant µ =
2

β
.

Putting ρ2 = ρ1 in (8) and by replacing υ with
2υ

β
in (6), we have

Gκ(2ρ1),2κ(ρ1)(
2υ

β
) ≥ ψ(ρ1, ρ1)(

2υ

β
).
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Now, by putting ρ2 = ρ1 and by replacing υ with
2υ

β
in (7), we get

Gκ(2ρ1),2κ(ρ1)(
2υ

β
) ≥ ψ(2ρ1, 2ρ1)(2υ).

Finally, by replacing ρ1 by
ρ1

2
, we obtain

Gκ(ρ1),I(κ(ρ1))(
2υ

β
) ≥ ψ(ρ1, ρ1)(2υ).

It follows that dG(κ, Iκ) ≤ 2

β
.

According to Theorem 2.1, there exists a mapping K : Y → P , which is
the unique fixed point of I in the set F ∗ := {K ∈ F |d(κ,K) < ∞}, such that
Inκ→ K and

dG(κ,K) ≤ 1

1− 2

β

d(κ, Iκ) ≤ 2

β − 2
.

Hence by replacing υ with
β − 2

2
υ, we get for all ρ1 ∈ Y, υ > 0,

Gκ(ρ1),K(ρ1)(υ) ≥ ψ(ρ1, ρ1)((β − 2)υ).

The rest of the proof is similar to the proof of Theorem 4.1. �

Corollary 4.4. Let p > 1 and θ be nonnegative real numbers. Let Y be a
normed vector space with norm ‖.‖ and let κ : Y → P with κ(0) = η be a
mapping satisfying

Gκ(2ρ1),2κ(ρ1)(υ) ≥ Gκ(2ρ1),κ(ρ1)+κ(ρ1)(υ),

Gκ(ρ1+ρ2),κ(ρ1)+κ(ρ2) ≥
υ

υ + θ(‖ρ1‖p + ‖ρ2‖p)
,

for all ρ1, ρ2 ∈ Y and all υ > 0. Then there exists a unique additive mapping

K : Y → P such that K(ρ1) = lim
n→∞

2nk(
ρ1

2n
) and

Gκ(ρ1),K(ρ1)(υ) ≥ (2p − 2)υ

(2p − 2)υ + 2θ‖ρ1‖p
,

for all ρ1 ∈ Y and all υ > 0.

Proof. According to Theorem 4.3, for all ρ1, ρ2 ∈ Y and all υ > 0, by putting

β = 2p and ψ(ρ1, ρ2)(υ) =
υ

υ + θ(‖ρ1‖p + ‖ρ2‖p)
, the result is obtained. �

The reader can show the corollaries corresponding to Corollaries 4.2 and 4.4
in [5].
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5. Conclusion

We have defined probabilistic normed quasi-linear spaces and we have proved
the generalized Hyers-Ulam stability of the Cauchy functional equation in prob-
abilistic normed quasi-linear spaces by using a version of the fixed point theo-
rem.
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