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Abstract. We apply the basic Lie symmetry method to investigate the

time-dependent negative-order Calogero-Bogoyavlenskii-Schiff (vnCBS)
equation. In this case, the symmetry classification problem is answered.

We obtain symmetry algebra and create the optimal system of Lie sub-

algebras. We obtain the symmetry reductions and invariant solutions of
the considered equation using these vector fields. Finally, we determine

the conservation laws of the vnCBS equation via the Bluman-Anco ho-

motopy formula.
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1. Introduction

In 2020, Wazwaz extended the Calogero Bogoyavlenskii Schiff (CBS) equa-
tion to three new completely integrable equations [16]:

• Extended CBS (eCBS);

uxt + uxxxy + 4uxuxy + 2uxxuy + uxy = 0.

• Time-dependent CBS (vCBS);

(1) f(t)uxt + αuxxxy + 2βuxuxy + βuxxuy = 0,

where f is a real function.
• Time-dependent negative-order CBS (vnCBS),

(2) g(t)uxy + αuxxxt + 2βuxuxt + βuxxt = 0,

where g is a real function.

In the previous work [5], conservation laws and invariant solutions of Eq. (1)
were investigated. But in this work, the same research is done regarding Eq.
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(2). The third-order linear partial differential equation called the integrable
Calogero–Bogoyavlenskii–Schiff equation was recently established [15]:

(3) ut + uxxy + 4uuy + 2ux∂
−1
x uy = 0,

which satisfies the Painlevé test for integrability. The nonlinear Eq. (3) is
arguably a major vehicle to explore several soliton solutions. An applied gen-
eralization of this equation is the new Painlevé-integrable negative-order time-
dependent Calogero–Bogoyavlenskii–Schiff equation (vnCBS). Nonlinear PDEs
are widely used in evaluating nonlinear wave phenomena. Therefore, such equa-
tions have interested scientists for many years and have made it possible to
carry out detailed studies. Korteweg-de Vries (KdV) equation is an equation
that is deeply analyzed. The development of a fully integrated model, which
describes the actual characteristics of the science and engineering domains, is
underway, and a wide range of valuable findings are being obtained.

Indeed, studies in nonlinear equations are growing exponentially because
such equations depict the modes and characteristics of nonlinear phenom-
ena [7, 11]. These equations expand the view of scientists in terms of physical
aspects, and in this regard, they find more usages in engineering and other
sciences. On the other hand, through the Lie process, the symmetry cate-
gorization problem is extensively considered for various equations in different
spaces [3, 4]. Recently, studies have been conducted regarding non-classical
Lie symmetry and conservation laws of the nonlinear time-fractional equa-
tions [8,9]. Special symmetry analysis and conservation laws were also studied
in several cases [6, 10, 14]. In the present work, we used Lie’s method to ob-
tain symmetries of Eq. (2). Next, an optimal subalgebras system is presented
associated with symmetries Lie algebra. Indeed, the Lie approach (symmetry
group approach), as a computational, algorithmic technique to obtain constant
group solutions, is widely utilized to solve differential equations. During the
mentioned process, suitable solutions are obtained through known solutions.
Also, its other applications are checking fixed solutions and reducing the order
of ODEs [12].
The paper is presented in several sections as follows. The infinitesimal gener-
ators of the symmetry algebra of the equation along with several results are
characterized in Section 2. The optimal ideal subalgebras systems were de-
veloped in Section 3. Following the third Section, the similarity solutions, Lie
variables, and similarity reduction based on infinitesimal symmetries of Eq. (2)
were discovered. In the last section, we obtain the conservation laws of Eq. (2)
using the direct method and provide some concluding remarks.

2. The symmetry computation of Eq.(2)

In this section, using the basic Lie symmetry method, we determine the
largest possible set of symmetries for Eq.(2) as follows [12,13]:
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Normally,

∆β((x1, ..., xm), (u1, ..., un)(p)) = 0, 1 ≤ β ≤ t,(4)

is a set of PDE of order p. (u1, ..., un)(i) represents the i-order derivative of
U = (u1, ..., un) regarding X = (x1, ..., xm), 0 ≤ i ≤ p. On both X and U ,
infinitesimal transformations Lie group acts as:

x̃i = xi + εξi((x1, ..., xm), (u1, ..., un)) + o(ε2), 1 ≤ i ≤ m,(5)

ũj = uj + εφj((x
1, ..., xm), (u1, ..., un)) + o(ε2), 1 ≤ j ≤ n,

in which the infinitesimal transformations for (x1, ..., xm) and (u1, ..., un) are
denoted by ξi and φj respectively. A given infinitesimal generator equivalent
to the transformations group (5) is

V =
p∑
i=1

ξi((x1, ..., xm), (u1, ..., un))∂xi

+
q∑
j=1

φj((x
1, ..., xm), (u1, ..., un))∂uj .

(6)

We apply x, y and t instead of x1, x2 and x3 respectively, and for simplicity
we suppose that

ξj := ξj(x, y, t, u), j = 1, . . . , 3,
φ := φ(x, y, t, u).

Here, an infinitesimal transformation’s one-parameter Lie group is taken to
apply the process for Eq.(2) as follows:

x̃ = x+ εξ1 + σ(ε2),

ỹ = y + εξ2 + σ(ε2),

t̃ = t+ εξ3 + σ(ε2),

ũ = u+ εφ+ σ(ε2).

If the invariant symmetry generator is

(7) V = ξ1∂x + ξ2∂y + ξ3∂t + φ∂u,

then the invariance condition for Eq. (2) is written as follows [13]:

Pr(4)V [g(t)uxy + αuxxxt + 2βuxuxt + βuxxt] = 0, whenever
g(t)uxy + αuxxxt + 2βuxuxt + βuxxt = 0.

Given that ξ1, ξ2, ξ3, and φ are only dependent on x,y, t, and u. By equating
the coefficients to zero, we will have:

g(t)ξ2uα = 0, −g(t)2ξ2x = 0,
−g(t)2ξ2u = 0, 3ξ2uuα

2 = 0,
6ξ2uuα

2 = 0, −g2(t)ξ2uu = 0,
3ξ3uuuα

2 = 0, 3ξ2utα
2 = 0.

There are 93 equations in total. Solving this set of PDEs, we earn the following
results:
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Table 1. Lie algebra for Eq.(2).

[ , ] ϑ1 ϑ2 ϑ3 ϑ4 ϑ5 ϑ6

ϑ1 0 −ϑ2 0 ϑ4 0 ϑ6

ϑ2 ϑ2 0 0 ϑ1 + 1
2ϑ

3 0 ϑ5

ϑ3 0 0 0 0 −ϑ5 −ϑ6
ϑ4 −ϑ4 −ϑ1 − 1

2ϑ
3 0 0 − 1

2ϑ
6 0

ϑ5 0 0 ϑ5 1
2ϑ

6 0 0
ϑ6 −ϑ6 −ϑ5 ϑ6 0 0 0

Table 2. Adjoint list of the Lie algebra.

Ad ϑ1 ϑ2 ϑ3 ϑ4 ϑ5 ϑ6

ϑ1 ϑ1e−s1 ϑ2 ϑ3es1 ϑ4 ϑ5es1 ϑ6

ϑ2 ϑ1 + s2ϑ
4 s2ϑ

1 + ϑ2 +
1

2
s22ϑ

4 ϑ3 +
1

2
s2ϑ

4 ϑ4 ϑ5 + s2ϑ
6 ϑ6

ϑ3 ϑ1 ϑ2 ϑ3 ϑ4 e−s3ϑ5 e−s3ϑ6

ϑ4 ϑ1 − s4ϑ2 ϑ2 −1

2
s4ϑ

2 + ϑ3 −s4ϑ1 +
1

2
s24ϑ

2 + ϑ4 ϑ5 −1

2
s4ϑ

5 + ϑ6

ϑ5 ϑ1 ϑ2 ϑ3 ϑ4 s5ϑ
3 + ϑ5

1

2
s5ϑ

4 + ϑ6

ϑ6 ϑ1 ϑ2 ϑ3 ϑ4 s5ϑ
3 + ϑ5

1

2
s5ϑ

4 + ϑ6

Theorem 2.1. There is a Lie algebra made by (7) in the point symmetries
Lie group of Eq. (2), with coefficients as follows:

g(t) = g(t),

φ = −1

4
(C1y − 2C4 + 2C2)u+

∫
1

4

(
4
(
d
dyF1(y)

)
+ C1x

)
g(t)

β
dt

+
1

2

C6x

β
+ F2(y),

ξ1 = F1(y) +
1

4
(C1y − 2C4 + 2C2)x,

ξ2 =
1

2
C1y

2 + C2y + C3,

ξ3 =
y
(∫

1
2g(t)c1dt

)
+ yC6 + C4

(∫
g(t)dt

)
+ C5

g(t)

where Ci ∈ R, i = 1, ..., 6, and F2 is a real function.
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Corollary 2.2. One-parameter Lie group of Eq.(2) for every point symmetry
contains the infinitesimal generators as:

ϑ1 =
1

2
x∂x + y∂y −

1

2
u∂u,

ϑ2 =∂y,

ϑ3 =− 1

2
x∂x + ∂t +

1

2
u∂u,

ϑ4 =
1

4
yx∂x +

1

2
y2∂y +

1

2
y∂t +

(−yuβ + xet∂u)

4β
,

ϑ5 =e−t∂t,

ϑ6 =ye−t∂t +
1

2

x∂u
β
.

(8)

Lie algebra is provided for Eq. (2) according to Table (1). The value column
jth and row ith, i, j = 1, ..., 6 is determined by [ϑi, ϑj ] = ϑiϑj−ϑjϑi expression.

3. Classification of 1D subalgebras

The one parameter optimal system of Eq. (2) can be determined utilizing
the symmetry group. Therefore, we need to search for invariant solutions that
are not linked by a transformation in the full symmetry group. An optimal
set of subalgebras is obtained. The subject of classification of 1D algebras is
similar to the subject of classification of adjoint representation orbits. One
representative of each group of similar subalgebras is considered to solve an
optimal set of subalgebra problems [12]. The adjoint representation of each ϑt,
t = 1, ..., 6 is defined as:

(9) Ad(exp(s.ϑt).ϑr) = ϑr − s.[ϑt, ϑr] +
s2

2
.[ϑt, [ϑt, ϑr]]− · · · ,

where [ϑt, ϑr] is presented in Table (1) for t, r = 1, . . . , 6 and s represents the
parameter ( see [12], page 199). Let g is the Lie algebra generated by (8). The
adjoint action for g is based on Table (2).

Theorem 3.1. The 1D subalgebras of Eq.(2) are as follows:

1)ϑ6 + c1ϑ
1 + c2ϑ

2 + c3ϑ
3 + c4ϑ

4,

2)ϑ5 + c1ϑ
1 + c2ϑ

2 + c3ϑ
3 + c4ϑ

4,

3)ϑ4 + c1ϑ
1 + c2ϑ

2,

4)ϑ4 + c1ϑ
2 + c2ϑ

3,

5)ϑ3 + c1ϑ
1 + c2ϑ

2,

6)ϑ2,

7)ϑ1,
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where ci ∈ R represent arbitrary numbers for i = 1, . . . , 6.

Proof. Given Table (1), the center of Lie algebra is empty. Therefore, all we
need is to obtain the sub-algebras of the form

〈ϑ1, ϑ2, ϑ3, ϑ4, ϑ5, ϑ6〉.
For t = 1, . . . , 6, the map:{

Ad(exp(sϑt).X) : g→ g

X 7→ Ad(exp(sϑt).X),

represents a linear function. Given the basis {ϑ1, . . . , ϑ6} and a vector field

X =
∑6
i=1 aiϑ

i, the functions Ad(exp(sϑi).X), 1 ≤ i ≤ 6 are reported as
follows:

Ad(exp(siϑ
i).X) = [a1 a2 a3 a4 a5 a6] M i

6×6


ϑ1

ϑ2

ϑ3

ϑ4

ϑ5

ϑ6

 ,
where

M1 =


1 0 0 0 0 0
0 e−s1 0 0 0 0
0 0 1 0 0 0
0 0 0 es1 0 0
0 0 0 0 1 0
0 0 0 0 0 es1

 , M2 =



1 0 0 s2 0 0

s2 1 0
s22
2 0 0

0 0 1 s2
2 0 0

0 0 0 1 0 0
0 0 0 0 1 s2
0 0 0 0 0 1

 ,

M3 =


1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 e−s3 0
0 0 0 0 0 e−s3

 ,M
4 =



1 −s4 0 0 0 0
0 1 0 0 0 0
0 −s4

2 1 0 0 0

−s4 s24
2 0 1 0 0

0 0 0 0 1 0
0 0 0 0 −s4

2 1

 ,

M5 =


1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 s5 0 1 0
0 0 0 1

2s5 0 1

 , M6 =


1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 s5 0 1 0
0 0 0 1

2s5 0 1

 .

From Ad(exp(s1ϑ
1)) ◦ Ad(exp(s2ϑ

2)) ◦ · · · ◦ Ad(exp(s6ϑ
6)), we can simplified

X as follows:
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For a6 6= 0, the coefficient a5 is vanished by setting s2 =
−a5
a6

. If needed, by

scaling, we assume a6 = 1. Hence, X gives rise to case (1).

For a6 = 0 and a5 6= 0, if needed, by scaling, we assume a5 = 1. Hence, X
gives rise to case (2).

For a6 = a5 = 0 and a4 6= 0, the coefficients a1 or a3 are vanished by setting

s1 = −a1
a4

or S2 =
−2a3
a4

. If needed by scaling, we assume a4 = 1. Hence, X

gives rise to case (4) or (3).

For a6 = a5 = a4 = 0 and a3 6= 0, if needed by scaling, we assume a3 = 1.
Hence, X gives rise to case (5).

For a6 = a5 = a4 = a3 = 0 and a2 6= 0, the coefficient a1 is vanished by

setting s4 =
a1
a2

. If required by scaling, we assume a2 = 1. Hence, X gives rise

to case (6).

For a6 = a5 = a4 = a3 = a2 = 0, if needed by scaling, we assume a1 = 1.
Hence, X gives rise to case (7).

�

4. Reduction of similarity in Eq. (2)

Here, the symmetry reduction of Eq. (2) is classified by considering the
subalgebras of Theorem (3.1). It is necessary to find a new equation with
specific coordinates and reduce the equation. The independent variables p, q, r
and h must be found in the infinitesimal generator to create these coordinates.
Therefore, a new coordinate is used to express Eq. (2) through the chain law,
which reduces the system.

Theorem 4.1. The similarity variables and the reduced equations for 1D sub-
algebras in Theorem (3.1) are listed in Tables (3) and (4).

Proof. We present the proof with a case-by-case study. Namely, we explain
the details for subalgebra H7 := ϑ1 + ϑ3. The invariants related to subalgebra
H7 := ϑ1 + ϑ3 through characteristic equation integration are as follows:

dx

0
=
dy

y
=
dt

1
=
du

0
.

Thus, the similarity variables are:

p = x, q = t− Ln(y), h = u,

where h(p, q) meets a reduced PDE with three variables:

−h2qp + αh4qp3 + 2βhph
2
qp(10)

+βh2p2hq2 = 0.
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Tables (3) and (4) represent the similarity variables and the reduced equation
for the subalgebra ϑ1 + ϑ3 by the case (7). �

In the following, we can provide the invariant solutions for some of the
obtained reduced equations in Table (4). For example, the invariant solution
of Eq.(10) becomes:

h(p, q) = u(x, y, t) = C1x+ F3(− ln(y) + t),

where C1 ∈ R. Using a similar argument, for the vector ϑ3, the Eq. (2) is
reduced as:

2h2qp − hp + 8αh4q4 − 24αhq3 + 22αhq2 − 6αhq + 12βhqh
2
q2(11)

−10βh2q2 − 4βhpqh
2
q2 + 4βhq = 0,

where the independent variables are as p = y, q = 2Ln(x)+t and the dependent
function is as u = h(p, q)/x. The invariant solution of Eq. (11) becomes:

xh(p, q) = u(x, y, t) = F2(y)e
1
2 t,

where F2 represents an arbitrary function. Also, for the vector ϑ5, Eq. (2) is
reduced as:

(12) h2qp = 0,

where the independent variables are as p = x, q = y, and the dependent function
is as u = h(p, q). The equivalent solution of Eq. (12) is derived as:

h(p, q) = u(x, y, t) = F3(x) + F2(y),

where F2 and F3 are arbitrary functions. For case (8) in Tables (3) and (4),
the corresponding solution is derived as:

x2 + 2βh(p, q)

2xβ
= u(x, y, t) =

1

2

x
√
y + 2F2

(
1
2et − 1

2y
)
β

√
yβ

,

where F2 represents an arbitrary function. For case (9) in Tables (3) and (4),
the corresponding solution is derived as:

h(p, q)

x
= u(x, y, t) = F2(y)

√
et + 1,

again, where F2 represents an arbitrary function. For case (10) in Tables (3)
and (4), the corresponding solution is derived as:

−x2 + 2βh(p, q)

2xβ
= u(x, y, t) =

1

2

−x2 + 2C1β

xβ
,

where C1 ∈ R.
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Table 3. Similarity solution and Lie invariants.

i Hi pi qi wi ui

1 ϑ1
y

x2
t xu

h(p, q)

x
2 ϑ2 x t u h(p, q)

3 ϑ3 y 2 ln(x) + t xu
h(p, q)

x

4 ϑ4
y

x2
−2 ln(x) + t

2yβxu− x2et

2yβ

1

2

x2et + 2h(p, q)yβ

yβx
5 ϑ5 x y u h(p, q)

6 ϑ6 x y
2yβu− xet

2yβ

1

2

xet + 2h(p, q)β

xβ
7 ϑ1 + ϑ3 x − ln(y) + t u h(p, q)

8 ϑ1 + ϑ6
y

x2
1

2

(et − y)x2

y

2βx− x2

2β

1

2

x2 + 2h)p, q)β

xβ

9 ϑ3 + ϑ5 y −1

2
ln(et + 1)− ln(x) xu

h(p, q)

x

10 ϑ3 + ϑ6 y −1

2
ln(y + ey)− ln(x)

2βx− x2

2β
h(p, q)

...
...

...
...

...
...

Table 4. Reduced equations in terms of infinitesimal symme-
tries.

i

1
−2hph

2
qp − 2hphq − 8αh4q3pq

3 − 48αh3qpq
2 − 54αh2qpq − 6αhp + 8βhqq

2h2qp + 14βhqqhp
+ 4βh2qpq + 4βhp + 4βhph

2
qq

2 = 0,
2 αh4q3p + betahqhqp + βh2q2hp = 0,

3 2h2qp − hp + 8αh4q4 − 24αhq3 + 22αhq2 − 6αhq + 12βhqh
2
q2 − 10βh2q2 − 4βhpqh

2
q2 + 4βhq = 0,

4 −6hpp
2β − 4h2qpp

2β − 4p3β = 0,
5 h2qp = 0,
6 −1 + 1 + 2h2qpq

2β + 2hpqβ + h2p2pqβ = 0,

1 + 3 −h2qp + αh4qp3 + 2βhph
2
qp + βh2p2hq2 = 0,

1 + 6 −2h2qpp
2 + hqp+ 2h2q2pq = 0,

3 + 5 −2h2qpe
q2 − 2hpeq

2

= 0,

3 + 6
αh4q4e

q4 + 6αh3q3(eq)4 + 11αh2q2(eq)4 − 3βhqh
2
q2(eq)4 − 5β(hq)2(eq)4 − 2βhpqh

2
q2(eq)4

− 4βhq(e
q)4 = 0,

...
...

5. Conservation laws

Alternative methods, like the direct method and the Noether method, can
be used to check the conservation laws. Here, the direct method is used to
analyze conservation laws [1, 2]. Assume the differential equation in the form
ρ{x, u} with k order and independent variables of n, where x can be defined
as x = (x1, . . . , xn) and u can be one dependent variable, represented by

ρ[u] = ρ(x, u, ∂u, . . . , ∂ku) = 0.

Considering a multiplier with Λ(x, u, ∂u, . . . , ∂tu) can give us a conservation
law in the form of Λ[u]ρ[u] = Diφ

i[u] = 0 for the equation ρ{x, u} contingent
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upon

EU (Λ(x, U, ∂U, . . . , ∂tU)ρ(x, U, ∂U, . . . , ∂kU)) ≡ 0,

by taking U(x) as an expression for an arbitrary function. The expression EU
which is the Euler operator acting on U , is defined as below:

EU = ∂U −Di∂U + · · ·+ (−1)sDi1 . . . Dis∂Ui1 . . . is

Since the vnCBS equation is concerned about u, x, y, t, it results in multipliers
that further provide locally configured conservation laws for Eq. (2) in the
format of Λ = Λ(x, y, t, U, UxUy, Ut). We can calculate all nontrivial local con-
servation laws related to Eq. (2) from multipliers. Accordingly, the expression
Λ = Λ(x, y, t, U, ∂xU, ∂yU, ∂tU) is a conservation law multiplier regarding Eq.
(2) contingent upon

EU [Λ(x, y, t, U, ∂xU, ∂yU, ∂tU)(Uxt + Uxxxy + 4UxUxy + 2UxxUy + Uxy))] ≡ 0

for U(x, y, t) in the form of an arbitrary function. We then find all potential
multipliers in the format of

Λ = Λ(x, y, t, U, ∂Ux, ∂Uy, ∂Ut)

for Eq. (2). Therefore, the Euler operator is determined to be as follows:

EU = ∂U −Di∂Ui + · · ·+ (−1)3Di1 . . . Di3∂Ui1...i3 .

Moreover, the determining equations become.

EU [Λ(x, y, t, U, ∂Ux, ∂Uy, ∂Ut)(Uxt + Uxxxy + 4UxUxy + 2UxyUy + Uxy))] ≡ 0

so that U(x, y, t) represents an arbitrary function. The above equation can be
separated with respect to Ux, Uy, Ut to provide the over-determined equations:

ΛU,y,y = 0,Λx,x = 0,Λx,y = ΛU,yUx,Λt,x = −ΛU,yg

β
,ΛU,x = 0,

ΛUx,x = ΛU ,ΛUy,x = 0,ΛUt,x = 0,ΛUx,y = −gΛtβ − 2βUtΛUg + βUtΛUtgt
g2

,

ΛUy,y = 4ΛU ,ΛUt,y =
2β (−Λx + ΛUUx)

g
,

Λt,t = −−ggtΛt + 4gUtΛUgt + gUtΛUt
gt,t − 3g2tUtΛUt

g2
,ΛU,t = 0,ΛUx,t = 0,

ΛUy,t = 0,ΛUt,t =
2ΛUg − ΛUt

gt
g

,ΛU,U = 0,ΛU,Ux = 0,ΛU,Uy = 0,ΛU,Ut = 0,

ΛUx,Ux
= 0,ΛUx,Uy = 0,ΛUt,Ux

= 0,ΛUy,Uy
= 0,ΛUt,Uy

= 0,ΛUt,Ut = 0.

Solving the above equations, we get the following results:

Theorem 5.1. For Eq. (2), we have the infinite set of local multipliers:

Λ(x, y, t, U, Ux, Uy, Ut) = C1Ux + C2Uy + F (y),
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where C1 and C2 are real constants, and F is a real function. Meanwhile, Eq.
(2) possesses global conservation laws.

Proof. Using the Anco & Bluman (A&B) homotopy formula [1,2], we determine
the conserved elements of φt, φx and φy corresponding to Λ in the following
format. In particular, we have solved for

[Utxy, Uxxy, Uxyy, Uttxy, Utxxy, Utxyy, Uxxxy, Uxxyy, Uxyyy, Utttxy, Uttxxy, Uttxyy,

Utxxxy, Utxxyy, Utxyyy, Uxxxxy, Uxxxyy, Uxxyyy, Uxyyyy].

Thus, we obtain the following fluxes:

φt =
2

3
Ux2 (C1Ux + C2Uy)β +

1

3
U (C1Ux + C2Uy)βUxx+

1

2
Uxxx (C1Ux + C2Uy)α+ Ux2F (y)β +

1

2
UF (y)βUxx + UxxxF (y)α.

φx =
2

3
U (C1Ux+ C2Uy)βUtx− 1

3
U ((2C1βUx +2 (C1Ux + C2Uy)β)Utx

+2C2βUxUty) +
1

3
Ux (C1Ux + C2Uy)βUt −

1

3
U ((C1Ux +C2Uy)βUtx

+C1βUtUxx + C2βUtUxy) +
1

3
U(2βUxUtx + βUxxUt)C1 −

1

2
UF (y)βUtx

+
1

2
UxF (y)βUt +

1

2
U(gUxy + αUtxxx)C1 −

1

2
U (C1αUtxxx + C2αUtxxy)

+
1

2
Ux (C1αUtxx +C2αUtxy)− 1

2
Uxx (C1αUtx + C2αUty) +

1

2
Uy (C1Ux

+C2Uy) g + UyF (y)g.

φy =
1

3
U(2βUxUtx + βUxxUt)C2 −

1

2
U (C1gUxx +C2gUxy)

+
1

2
U(gUxy + αUtxxx)C2.

Case 1: By setting C1 = 1 into the equation, we have:

Λ(x, y, t, U, Ux, Uy, Ut) = Ux

φt =
2

3
Ux3β +

1

3
UUxβUxx +

1

2
UxxxUxα,

φx =− 1

3
UUxβUtx +

1

3
Ux2βUt +

1

2
UgUxy +

1

2
UxαUtxx −

1

2
UxxαUtx +

1

2
UyUxg,

φy =− 1

2
UgUxx.
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Case 2: Set C2 = 1:

Λ(x, y, t, U, Ux, Uy, Ut) = Uy,

φt =
2

3
Ux2Uyβ +

1

3
UUyβUxx +

1

2
UxxxUyα,

φx =− 1

3
UUyβUtx −

2

3
UβUxUty +

1

3
UxUyβUt −

1

3
UβUtUxy

− 1

2
UαUtxxy +

1

2
UxαUtxy −

1

2
UxxαUty +

1

2
Uy2g,

φy =
2

3
UUxβUtx +

1

3
UβUxxUt +

1

2
UαUtxxx

Case 3: F is an arbitrary function:

Λ(x, y, t, U, Ux, Uy, Ut) = F (y),

φt =Ux2F (y)β +
1

2
UF (y)βUxx + UxxxF (y)α,

φx =− 1

2
UF (y)βUtx +

1

2
UxF (y)βUt + UyF (y)g,

φy =0.

So, for all cases, we can see these fluxes yield the following conservation laws:

Dtφ
t +Dxφ

x +Dyφ
y = 0.

�

Conclusion

Here, Infinitesimal generators and different vector fields for the vnCBS equa-
tion were constructed by applying the basic Lie symmetry group method. Ap-
plying the invariance condition of Eq. (2) under the infinitesimal prolongation,
we earn the Lie symmetries group of the vnCBS equation and the similarity
solution has an essential role in reducing the equation. We earned the conser-
vation laws of Eq. (2) by adding the Bluman-Anco homotopy formula to the
direct method. This paper is important because the obtained invariant solu-
tions and conservation laws of Eq. (2) should be applicable in other applied
sciences such as field theory, fluid dynamics, plasma physics and nonlinear op-
tics. Also, in classical physics, laws of this type govern energy, momentum,
angular momentum, mass, and electric charge. Therefore, in future physical
articles, the obtained invariant solutions and conservation laws of Eq. (2) can
be used.
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