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ABSTRACT 

Every year, frost causes the loss of many agricultural products. There is 

numerous equipment to protect plants against frost. Late turning on these 

equipment causes inefficiency in raising the air temperature, and early 

turning them on will increases energy consumption and costs. Therefore, 

accurately forecasting frost is crucial for turning on the equipment on 

time. In this research, an intelligent radiation frost forecasting and 

warning system (IFFS) based on the Internet of Things (IoT) technology 

was designed and constructed. This system comprises a wireless sensor, 

computing, and intelligent forecasting based on deep learning methods 

and warning announcements to the farmer by a message. Intelligent 

forecasting based on forecasting dew point temperature for the next three 

hours according to the in-situ measurement of temperature and relative 

humidity of the air. The meteorological data of the studied regain from 

2011-2021 were used to train the network. The IFFS Performance was 

evaluated. Based on the obtained results, the system accuracy in 

measuring temperature and relative humidity of the air was 99% and 

98%, respectively. The F-score of the IFFS obtained 96%, and the 

system accuracy in the warning announcement obtained 100%. Finally, 

applying the IFFS for better protection of plants is recommended. 
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INTRODUCTION 

 Climate change is the primary source of 

agricultural production risk (Fraisse et al., 2006), 

which has a tremendous negative effect on 

agricultural products (Hoogenboom, 2000a; Ding 

et al., 2021). Frost is one of the consequences of 

climate change and every year damages many 

crops, especially horticultural crops around the 

world (Chevalier et al., 2012). 

Currently, numerous active methods, including 

machinery and equipment, are used to protect 

plants against frost. The efficiency of these 

methods depends on the time of turning on the 

equipment (Guillen-Navarro et al., 2021). 

Turning on the equipment late makes their use 

inefficient, and turning it on early increases 

energy consumption and costs. Therefore, it is 

necessary to forecast frost with the aim of timely 

use of active protection methods. In reality, 

forecasting frost occurrence has been introduced 

as one of the strategies to reduce damage to 

agricultural products (Fraisse et al., 2016).  

In the past, weather forecasts were based on a 

statistical analysis of meteorological data. 

However, today artificial intelligence and expert 

decision-making systems have provided an 

excellent opportunity to provide more accurate 

forecasting models  (Fraisse et al., 2006). Takle 

(1990) used an expert system to forecast frost. 

The minimum and maximum temperature of the 

previous day, cloud cover percentage, current 

dew point temperature, precipitation, and wind 

speed were used as input variables. The results 

showed that the accuracy of forecasting by the 

expert system was comparable with human 

forecasting methods. Hoogenboom et al. (1998, 

2000) built an Automated Environmental 

Monitoring Network (AEMN). This system 

consisted of more than 70 meteorological stations 

in agricultural areas. The meteorological stations 

collected data related to air temperature, air 

relative humidity, soil temperature (at a depth of 

5, 10, and 20 cm), wind speed and direction, and 

solar radiation. The accuracy of this system in 

recording air temperature, air relative humidity, 

wind speed, solar radiation, and soil temperature 

obtained ±0.5o C, 2%, ±1.5%, ±5%, and ±0.4o C, 

respectively. Robinson and Mort (1997) 

developed a neural network-based system for 

frost forecasting. The input variables included 

temperature, cloud cover, wind speed and 

direction, and air relative humidity. 

This system could forecast frost for the next 24 

hours with acceptable accuracy. Hubbard et al. 

(2003) developed Kimball et al. research to 

provide a more accurate and less complicated 

method for forecasting and estimating dew point 

temperature. They showed that the combination 

of minimum and maximum temperature and the 

average temperature is the best input variable for 

estimating dew point temperature. The root 

means square error (RMSE) and means error 

(MAE) were obtained as 3.23 and 2.55, 

respectively. Jain et al. (2006) forecasted frost 

risk in three regions of Georgia using an artificial 

neural network. This system was able to forecast 

the temperature from 1 to 12 hours in the future. 

The data included meteorological variables such 

as air temperature, wind speed, rainfall, relative 

humidity, and solar radiation. The results showed 

that the rainfall variable does not affect the air 

temperature forecast, and the average error 

increases with the increase of the forecast period. 

Also, they estimated the most appropriate 

forecast interval to be 2-6 hours. The average 

error in forecasting one to 12 hours earlier was 

0.6o C and 2.5o C, respectively. Prabha and 

Hoogenboom (2008) proposed a local-scale 

weather forecasting model for advective and 

radiation frost in peach and blueberry orchards. 

They found that the accuracy of forecasting dew 

point temperature depends on the time of day. 

Shank et al. (2008) used an artificial neural 

network to estimate air dew point temperature. 

They obtained an accuracy of about 0.8 for 

forecasting air dew point temperature within the 

next two hours. Smith et al. (2009) developed 12 

artificial neural network models to forecast the air 

temperature in the next 1-12 hours. The average 

forecasting error ranged from 0.52o C to 1.9o C in 

forecasting one hour to 12 hours earlier. 

Chevalier et al. (2012) designed an expert system 

based on web-based fuzzy logic to prevent the 
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frost of peach and blueberry crops. They used the 

regional meteorological data bank and an expert 

system to forecast frost from one to 12 hours in 

advance. Castanda-Miranda and Castano-

Meneses (2017) used an artificial neural network 

to forecast frost in a greenhouse. The variables, 

including the temperature outside the greenhouse, 

outside and inside relative humidity, solar 

radiation, and wind speed, are used as network 

inputs. The accuracy of frost forecasting was 

0.95. In 2020, these researchers succeeded in 

building an intelligent system based on the IoT to 

protect greenhouse tomatoes against frost. In this 

system, the weather station parameters, including 

temperature, relative humidity, wind speed, and 

solar radiation are used, and an artificial neural 

network and fuzzy (ANFIS) are used for 

forecasting the future temperature and frost. The 

probability of frost is announced to the 

greenhouse keeper through mobile phones and 

the internet. Also, in the frost condition, the 

sprinkler system will automatically turn on to 

increase the temperature of the environment. 

Guillen-Navarro et al. (2021) developed an IoT 

system to reduce frost damage to orchard trees. 

Ding and Tamura (2021) used a machine-learning 

method for forest forecasting. They applied time-

series temperature data for developing a model 

and forecasting forest. The accuracy of the 

system was 0.6 in experiments. 

Due to the lack of meteorological stations near 

agricultural fields and the uncertainty of 

meteorological data to predict frost, it is 

necessary to use local forecasting systems, the 

purpose of this research is to design and construct 

a local-scale intelligent system for frost 

forecasting. 

MATERIALS AND METHODS 

In this research, an intelligent system for local-

scale frost forecasting was designed and 

constructed (Figure 1). This system calculates the 

current dew point temperature and forecasts the 

dew point temperature for the next three hours by 

deep learning. After forecasting frost, a warning 

message will be sent to the farmer by SMS. The 

implementation of the research is as follows: 

 

Figure 1. The IFFS system 

Identifying variables affecting the radiation 

frost 

Based on documentary studies and the review 

of previous research, the variables affecting crop 

frost include minimum and maximum air 

temperature, dew point temperature, cloud cover, 

air relative humidity (Perry et al., 1998), wind 

speed and direction, and solar radiation. The most 

influential parameters in frost forecasting include 

air temperature, air relative humidity, and dew 

point temperature (Chevalier et al., 2012). So, 

based on the obtained results, these three 

variables can forecast frost with an accuracy of 

over 90%. Therefore, in this research, the air 

temperature, air relative humidity, and dew point 

temperature were used for local-scale forecasting 

of the radiation frost. 

Design and construction of frost forecasting 

intelligent system 

The IoT-based block diagram of the IFFS is 

shown in Figure 2. This system consists of four 

layers, including the perception layer, network 

layer, intelligent forecasting layer, and 

application layer. The task of the perception layer 

is to collect and store the air temperature and 

relative humidity data. The task of the network 

layer is to transfer the stored data from the 
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perception layer to the intelligent forecasting 

layer. The intelligent forecasting layer is 

responsible for calculating the current dew point 

temperature and predicting the future dew point 

temperature based on the deep learning method. 

An application layer announces a warning to the 

farmer by SMS. More details are below: 

 

 

 

 

 

 

 

 

 

Figure 2. The IoT-based block diagram of the IFFS  

The perception layer of the IFFS  

The SHT35 digital sensor measures air 

temperature and air relative humidity. This sensor 

has high accuracy and the ability to work in an 

open environment and harsh weather conditions. 

This sensor is for simultaneous measurement of 

temperature (in the range of -40 to +125o C) and 

air relative humidity (in the range of 0-100%) 

with a digital output with an accuracy of ±0.2o C 

in temperature measurement, and an accuracy of 

±1.5% in humidity measurement. The SHT35 

sensor is fully calibrated, and its output is linear. 

The working voltage of the sensor is 2.4-5.5V. 

Reliability, high stability, and high signal-to-

noise ratio are the characteristics of this sensor. 

The sensor needed a special board to connect to 

the circuit board, which connected to it. The 

sensor is set to measure and store the data every 

60 seconds and transmit it to the intelligent 

forecasting layer through the wireless link. The 

Arduino UNO R3 board by Atmega 328 

microcontroller (5V operating voltage, 40mA 

direct current) is applied to store and transfer the 

sensor data. 

Due to the lack of electricity outdoors, a solar 

power bank provids the required electric power 

for the system. It includes the following 

components:  

- Rechargeable 18650 lithium-ion battery with 

a voltage of 2.4 volts and a current of 3300 mAh 

 -An 18650 lithium-ion battery charger module 

(voltage 5 volts, current 1 A, USB output)  

- Charge controller module 

 - Solar panel model Cl-650 with 24 cells and 4 

watts capacity (CCLAMP Company, China) with 

fast charging capability. 

The network layer of the IFFS  

Wireless communication connected the 

perception (sensor node) to the intelligent 

forecasting layer. Among the types of 

communication protocols, the ZigBee 

communication protocol is chosen according to 

distance, environmental conditions, and cost. The 

Zigbee DRF 1605H CC2530CA module has a 

long-range antenna, a voltage of 2.6-3.6V, a 

maximum current consumption of 120mA, a 

frequency of 2.4GHz, a maximum range of 1600 

m, with communication protocol: UART, a 

working temperature -40 to +85o C is used. The 

CC2530 Zigbee Module USB to UART 

Backplane (DRF1605-USB) board used to set up 

the Zigbee module and connect it to the USB port. 

Warning 

Announcement 

by SMS 

Application layer 

Computing, 

Intelligent 

Forecasting  

Server 

Power Supply 

  ُ Perception Layer 

Sensor Node 

Wireless Communication 

Network Layer Intelligent forecasting layer 
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The intelligent forecasting layer of the IFFS  

The Raspberry Pi 4 with 4 Gigabyte memory 

(5V, 3A) is used as hardware for data calculation 

and forecasting. It acts as a base station and is 

connected to the perception layer through a 

wireless communication protocol. Its operating 

system is Linux, and its programming language is 

Python. After transmitting the online sensor data 

to the Raspberry Pi, the current dew point 

temperature was calculated from equation (1) 

(Alizadeh, 2016): 

𝑇𝑑=(0.1𝑇−112)+(112+0.9𝑇)(𝑅𝐻)0.125                                 (1) 

 Where, RH, Air Relative Humidity (%); T, Air 

Temperature (o C);Td, Dew Point Temperature (o 

C). 

Frost was forecasted based on forecasting the 

future dew point temperature using the deep 

learning method and applying the gradient 

boosting algorithm. The frost threshold is set to a 

dew point temperature of 0o C. The threshold 

value changed according to the critical frost 

temperature of the plant. The GBM method by 

xgboost 1.6.1 library of PyPi implements the 

gradient boosting algorithm. The min-max scaler 

method is used to normalize the data, and the 

grid-search method is used to find the best grid 

parameters in training. Finally, the optimal 

parameters were obtained. Also, the num-boost-

round parameter, which specifies the number of 

training repetitions, was considered 5. 

For intelligent forecasting, time-series 

temperature and relative humidity data for April 

and May months during ten years (2011-2021) 

were gathered from the National Meteorological 

Organization. The time interval between data was 

3 hours, and the total data was 4961. The data was 

separated into three categories: 65% of data for 

training, 10% of data for testing, and 25% of data 

for evaluation.  

The application layer of the IFFS  

A warning is sent announced to the farmer by 

SMS in frost conditions. A SIM800C SIM 

(Subscriber Identity Module) card shield with a 

GSM shield antenna is used to send the SMS. 

This shield was compatible with Raspberry Pi. Its 

communication protocol was serial UART, 

voltage 5-18V, working temperature from -25° C 

to +85° C, and data transfer rate of 2400-115200 

bits per second.   To prevent entering rain, snow, 

or moisture into the system, as well as to prevent 

animal damage, devices were placed in 

waterproof and resistant boxes. 

The performance evaluation of the IFFS  

The evaluation of the performance of the IFFS 

was carried out in three stages as follows: 

Evaluation of the performance of the IFFS 

in measuring the temperature and relative 

humidity of the air 

To evaluate the accuracy of the IFFS, the 

temperature and relative humidity sensor data 

were compared with the meteorological 

reference data. So, the IFFS was placed next to 

the accurate temperature and relative humidity 

sensors of the meteorological organization's 

synoptic station for five days (120 hours). Data 

is recorded and stored every hour. Then, the 

gathered data were compared. 

Evaluation of the accuracy of IFFS in 

forecasting 

To evaluate the IFFS frost forecasting 

accuracy, the confusion matrix of the results 

presented and the accuracy, sensitivity, 

specificity, and the F-Score obtained based on 

the below formulas (Cadenas et al., 2020):  

Accuracy =  
TP+TN

TP+TN+FP+FN
    (Cadenas et al., 2020)  (2) 

Sensitivity =  
TP

TP+FN
             (Cadenas et al., 2020)  (3) 

Specificity =  
TN

TN+FP
             (Cadenas et al., 2020)   (4) 

F − Score =  
2TP

2𝑇𝑃+𝐹𝑃+𝐹𝑁
           (Hand et al., 2021)  (5) 

Where, TP (True Positive), Forecasted Frost; 

FP (False Positive), Forecasted False Frost; FN 

(False Negative), Frost Not Forecasted; TN 

(True Negative), No Frost. 

Evaluation of the accuracy of the system in 

warning announcement 

To evaluate the IFFS warning announcing 

accuracy, the system was placed in an orchard 
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under different weather conditions in March and 

May. Then, the performance of the IFFS in 

sending SMS in frost conditions was evaluated. 

RESULTS AND DISCUSSION 

To evaluate the performance of the IFFS, the 

hardware is located in the orchard near the trees. 

The distance between the sensor node and 

Raspberry Pi could be a maximum of 1000 

meters, and the height of the sensor from the 

ground level should be 1.5-2 meters. The results 

are presented as follows: 

Evaluation of the performance of the IFFS 

in measuring the temperature and relative 

humidity of the air 

In Figure 3, the result of comparing the IFFS 

data with the meteorological reference sensor 

data is shown. Based on the figure, the 

correlation between air temperature data 

recorded by the IFFS and the air temperature data 

recorded by the meteorological sensor was 0.99. 

The results confirm the accuracy of the 

temperature sensor. Also, the result of comparing 

the air relative humidity recorded by the IFFS 

with the air relative humidity recorded by the 

meteorological sensor is shown. Based on the 

figure, the data of the air relative humidity 

recorded by the IFFS had a correlation of 0.98 

with the air relative humidity data of the 

meteorological reference sensor. Therefore, the 

sensor has sufficient accuracy to measure the 

air's relative humidity in actual conditions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Comparing the air temperature (a) and air relative humidity (b) recorded by the IFFS with the data recorded 

by the reference sensor 

 

 

Evaluation of the performance of IFFS in 

frost forecasting 

The confusion matrix of the test data is shown 

in Figure 4. Also, the results of measuring 

accuracy, sensitivity, specificity, and F-Score are 

presented in Table 1. Based on the figure, out of 

495 data used for the testing model, 390 data 

forecasted non-frost conditions (True Positive), 

75 data forecasted freezing conditions (True 

Positive), 20 data forecasted frost (False 

Positive), and 10 data forecasted non-frost (False 

Negative).  
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Figure 4. The confusion matrix of the test data 

Based on the results of Table 1, the accuracy of 

the IFFS forecasting model was 94% and 94% of 

frost and non-frost events forecasting were 

correct. The false positive error was about six 

percent. The sensitivity of the IFFS forecasting 

model was also 88.2%. In other words, more than 

88% of forecasted frost results were corrected, 

and the false negative error was about 12%. Also, 

the specificity of the IFFS obtained 0.95 which 

means 95% of the results of forecasting non-frost 

events were corrected. Also, the F-score was 

equal to 96%, which shows the high accuracy of 

the forecasting model.  

Table 1. The results of the confusion matrix of test data 

F-Score 

 
Specificity Sensitivity Accuracy 

0.963 0.951 0.882 0.939 

Evaluation of the performance of the IFFS 

in warning announcement 

The result of the evaluation of the performance 

of the IFFS in warning announcements is 

presented in Table 2. In all frost situations, a 

warning message is sent to the farmer. Also, in all 

non-frost situations, a warning message was not 

sent to the farmer. The results indicated an 

accuracy of 100% in warning announcements. 

 

Table 2. The performance of the IFFS in warning 

announcement 

This system is designed in such a way that it 

announces warning messages in two situations:  

- When forecasting the frost in the next three 

hours 

 - When the sensor node does not send data to 

the Raspberry PI according to the schedule (due 

to battery or sensor failure).  

CONCLUSION 

In this research, an intelligent system for local-

scale forecasting of radiation frost and warning 

announcements to farmers is designed and 

constructed. This system is based on IoT and 

consists of 4 layers, including a perception layer, 

network layer, intelligent forecasting layer, and 

application layer. Intelligent Frost forecasting 

was carried out using the deep learning method 

by gradient boosting algorithm. The 10-year 

meteorological data (from 2011-2021) was used 

to train the network. When frost forecasts within 

the next three hours, the system sends a warning 

SMS to the farmer.  

The performance evaluation result showed that 

the accuracy of the IFFS in measuring air 

temperature and air relative humidity was 0.99, 

and 0.98, respectively. Also, the F-score obtained 

0.96, and the accuracy in announcing the warning 

was 100%. Due to the acceptable accuracy of the 

system, the IFFS recommended forecasting 

radiation frost. This system is recommended to 

forecast radiation frost of all agricultural products 

by having at least ten years of data on air 

Warning Announcement Frost Forecasting 

Not Sending 

SMS 

Sending 

SMS 
No Frost Frost 

 √ - √ 

- √ - √ 

√ - √ - 

- √ - √ 

√ - √ - 

√ - √ - 

- √ - √ 

- √ - √ 

- √ - √ 

√ - √ - 
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The real data 
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temperature, air relative humidity, and dew point 

temperature of the region. 

To get better results in using this system, 

farmers must do the following work:  

- Always keep the mobile phone on while using 

the IFFS.  

- Considering the plant protective equipment 

must start working before the air temperature 

reaches the critical value, operators should turn 

on equipment at least 30 minutes before starting 

the forest. 

REFERENCES 

Alizadeh, A. (2006). Principles of Applied 

Hydrology. Publications of Imam Reza 

University. Twenty-sixth edition. 811 pages. 

(In Persian) 

Cadenas, J. M., Garrido, M. C., Martínez-

España, R., & Guillén-Navarro, M. A. 

(2020). Making decisions for frost prediction in 

agricultural crops in a soft computing 

framework. Computers and Electronics in 

Agriculture, 175, 105587. 

https://doi.org/10.1016/j.compag.2020.105587 

Castañeda-Miranda, A., & Castaño, V. M. 

(2017). Smart frost control in greenhouses by 

neural networks models. Computers and 

Electronics in Agriculture, 137, 102-

114.https://doi.org/10.1016/j.compag.2020.10

5614. 

Castañeda-Miranda, A., & Castaño-Meneses, 

V. M. (2020). Internet of things for smart 

farming and frost intelligent control in 

greenhouses. Computers and Electronics in 

Agriculture, 176, 105614. 

https://doi.org/10.1016/j.compag.2020.105614 

Chevalier, R. F., Hoogenboom, G., McClendon, 

R. W., & Paz, J. O. (2012). A web-based fuzzy 

expert system for frost warnings in horticultural 

crops. Environmental Modelling & Software, 

35, 84-91. 

https://doi.org/10.1016/j.envsoft.2012.02.010. 

Diniz, E. S., Lorenzon, A. S., Castro, N. L. M., 

Marcatti, G. E., Marcatti, G. E., Santos, O. 

P., Junior, J. K. D., Cavalcante, R. B. L., 

Fernandes-Filho, E. I., & Amaral. C. H. 

(2021). Forecasting frost risk in forest 

plantations by the combination of spatial data 

and machine learning algorithms. Agricultural 

and forest meteorology, 306, 108450. 

https://doi.org/10.1016/j.agrformet.2021.1084

50. 

Ding, L., Tamura, Y., Noborio, K., & Shibuya, 

K. (2021). Frost forecast-a practice of machine 

learning from data. International Journal of 

Reasoning-based Intelligent Systems, 13(4), 

191-203. 

https://doi.org/10.1504/IJRIS.2021.10038162. 

Ding, L., Tamura, Y., Yoshida, S., Owada, K., 

Toyoda, T., Morishita, Y., Noborio, K., & 

Shibuya, K. (2021). Ensemble causal 

modelling for frost forecast in vineyard. 

Procedia Computer Science, 192, 3194-3203. 

https://doi.org/10.1016/j.procs.2021.09.092. 

Fraisse. C., Andreis. J., Borba. T., Cerbaro. V., 

Gelcer. E., Pavan. W., Pequeno. D., Perondi. 

D., Shen. X., Staub. C., Uryasev. O., 

Wagner. A. P. (2016). AgroClimate-Tools for 

managing climate risk in agriculture. 

Agrometeoros, 24(1), 121-129. 

https://doi.org/10.31062/agrom.v24i1.24887 

Fraisse. C. W., Breuer. N. E., Zierden. D., 

Bellow. J. D., Paz.  J., Cabrera. V. E., 

Garcia. A., Garcia . Y., Ingram. K. T., 

Hatch. U., Hoogenboomd. G., Jones. J. W., 

& O’Brien. J.J. (2006). AgClimate: A climate 

forecast information system for agricultural 

risk management in the southeastern USA. 

Computers and electronics in agriculture, 

53(1), 13-27. 

https://doi.org/10.1016/j.compag.2006.03.002 

Guillén‐Navarro, M. A., Martínez‐España, R., 

López, B., & Cecilia, J. M. (2021). A high‐

performance IoT solution to reduce frost 

damages in stone fruits. Concurrency and 

Computation: Practice and Experience, 33(2), 

e5299. https://doi.org/10.1002/cpe.5299.  

Hand, D. J., Christen, P., & Kirielle, N. (2021). 

F*: an interpretable transformation of the F-

measure. Machine Learning, 110(3), 451-

456.https://doi.org/10.1007/s10994-021-

05964-1. 

Hubbard, K. G., Mahmood, R., & Carlson, C. 

(2003). Estimating daily dew point temperature 

https://doi.org/10.1016/j.compag.2020.105587
https://doi.org/10.1016/j.compag.2020.105614
https://doi.org/10.1016/j.compag.2020.105614
https://doi.org/10.1016/j.compag.2020.105614
https://doi.org/10.1016/j.envsoft.2012.02.010
https://doi.org/10.1016/j.agrformet.2021.108450
https://doi.org/10.1016/j.agrformet.2021.108450
https://doi.org/10.1504/IJRIS.2021.10038162
https://doi.org/10.1016/j.procs.2021.09.092
https://doi.org/10.31062/agrom.v24i1.24887
https://doi.org/10.1016/j.compag.2006.03.002
https://doi.org/10.1002/cpe.5299
https://doi.org/10.1007/s10994-021-05964-1
https://doi.org/10.1007/s10994-021-05964-1


 

55 
 

for the northern Great Plains using maximum 

and minimum temperature. Agronomy Journal, 

95(2), 323-328. 

https://doi.org/10.2134/agronj2003.0323. 

Hoogenboom, G. (2000). Contribution of 

agrometeorology to the simulation of crop 

production and its applications. Agricultural 

and forest meteorology, 103(1-2), 137-157. 

https://doi.org/10.1016/S0168-

1923(00)00108-8. 

Jain, A., McClendon, R. W., & Hoogenboom, G. 

(2006). Freeze prediction for specific locations 

using artificial neural networks. Transactions 

of the ASABE, 49(6), 1955-1962. 

https://doi.org/10.13031/2013.22275. 

Kimball, J. S., Running, S. W., & Nemani, R. 

(1997). An improved method for estimating 

surface humidity from daily minimum 

temperature. Agricultural and forest 

meteorology, 85(1-2), 87-98. 

https://doi.org/10.1016/S0168-

1923(96)02366-0. 

Perry, K. B. (1998). Basics of frost and freeze 

protection for horticultural crops. 

HortTechnology, 8(1), 10-15. 

https://doi.org/10.21273/HORTTECH.8.1.10. 

Powell, A. A., Himelrick, D. G. (2003). Principles 

of freeze protection for fruit crops. Available 

at: www.aces.edu/dept/peaches/freeze.html. 

Alabama Cooperative Extension System. 

Accessed 21 August 2006. 

Prabha, T., & Hoogenboom, G. (2008). 

Evaluation of the Weather Research and 

Forecasting model for two frost events. 

Computers and electronics in agriculture, 

64(2), 234-247. 

https://doi.org/10.1016/j.compag.2008.05.019. 

Rieger, M. (1989). Freeze protection for 

horticultural crops. Horticultural reviews, 11, 

45-109. 

https://doi.org/10.1002/9781118060841.ch3. 

Robinson, C., & Mort, N. (1997). A neural 

network system for the protection of citrus 

crops from frost damage. Computers and 

electronics in agriculture, 16(3), 177-187. 

https://doi.org/10.1016/S0168-

1699(96)00037-3. 

Shank, D. B., Hoogenboom, G., & McClendon, 

R. W. (2008). Dewpoint temperature 

prediction using artificial neural networks. 

Journal of applied meteorology and 

climatology, 47(6), 1757-1769. 

https://doi.org/10.1080/08839510802226785. 

Smith, B. A., Hoogenboom, G., & McClendon, 

R. W. (2009). Artificial neural networks for 

automated year-round temperature prediction. 

Computers and Electronics in Agriculture, 

68(1), 52-61. 

https://doi.org/10.1016/j.compag.2009.04.003. 

Smith, T. M., & Lakshmanan, V. (2011). Real-

time, rapidly updating severe weather products 

for virtual globes. Computers & Geosciences, 

37(1), 3-12. 

https://doi.org/10.1016/j.compag.2009.04.003. 

Takle, E. S. (1990). Bridge and roadway frost. 

Occurrence and prediction by use of an expert 

system. Journal of Applied Meteorology and 

Climatology, 29(8), 727-734. 

https://doi.org/10.1175/1520-

0450(1990)029<0727:BARFOA>2.0.CO;2. 

Tamura, Y., Ding, L., Noborio, K., & Shibuya, 

K. (2020). Frost prediction for vineyard using 

machine learning. 2020 Joint 11th International 

Conference on Soft Computing and Intelligent 

Systems and 21st International Symposium on 

Advanced Intelligent Systems (SCIS-ISIS). 

https://doi.org/10.1109/SCISISIS50064.2020.

9322770. 

 

https://doi.org/10.2134/agronj2003.0323
https://doi.org/10.1016/S0168-1923(00)00108-8
https://doi.org/10.1016/S0168-1923(00)00108-8
https://doi.org/10.13031/2013.22275
https://doi.org/10.1016/S0168-1923(96)02366-0
https://doi.org/10.1016/S0168-1923(96)02366-0
https://doi.org/10.21273/HORTTECH.8.1.10
https://doi.org/10.1016/j.compag.2008.05.019
https://doi.org/10.1002/9781118060841.ch3
https://doi.org/10.1016/S0168-1699(96)00037-3
https://doi.org/10.1016/S0168-1699(96)00037-3
https://doi.org/10.1080/08839510802226785
https://doi.org/10.1016/j.compag.2009.04.003
https://doi.org/10.1016/j.compag.2009.04.003
https://doi.org/10.1175/1520-0450(1990)029%3C0727:BARFOA%3E2.0.CO;2
https://doi.org/10.1175/1520-0450(1990)029%3C0727:BARFOA%3E2.0.CO;2
https://doi.org/10.1109/SCISISIS50064.2020.9322770
https://doi.org/10.1109/SCISISIS50064.2020.9322770

