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ABSTRACT 

To minimize potential damage, it is crucial to carefully harvest 

greenhouse crops like tomatoes at the optimal time. To improve this 

process, the use of robotic harvesting methods has been proposed. The 

robotic harvester consists of important components including a mobile 

platform with robotics, displacement units that can move linearly or 

rotationally, a manipulator, a gripper, a camera, an image processing-

based fruit detection unit, and a depth sensor. A robotic manipulator with 

three linear degrees of freedom was created in the Cartesian coordinate 

system. To enhance its capabilities, a gripper mechanism was 

incorporated, providing an additional rotational degree of freedom. The 

primary objective of this robot was to autonomously detect the position 

of ripe tomatoes. To achieve this, the displacement control of both the 

robot arms and gripper was executed through commands from the image 

processing unit. Different channel of some color space was studied. The 

effectiveness of this channels was assessed by conducting tests in the 

presence of tomato plants. The accuracy of the system in approaching 

the crop were thoroughly evaluated. Channels H of HSV color space, Cr 

of YCrCb color space, and a of Lab color space showed better result. The 

accuracy of detecting ripe tomatoes in channel H of HSV color space 

was the highest and 87%. 
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INTRODUCTION 

By the year 2050, it is projected that the global 

population will reach approximately 10 billion 

individuals. Consequently, ensuring food security 

for this expanding population stands as one of the 

primary challenges faced by humanity. To 

enhance agricultural production and meet this 

demand, several measures must be implemented. 

These include optimizing water consumption, 

overcoming climatic constraints, boosting crop 

yields, adopting vertical agriculture techniques, 

and implementing automated controlled climates. 

However, the successful implementation of 

controlled climate production methods 

necessitates skilled operators. As the scarcity of 

labor persists and labor costs continue to rise, the 

automation of various stages of greenhouse crop 

production becomes an inevitable solution. 

Based on the data concerning the allocation of 

labor in tomato farming, approximately 25 to 

40% of the overall workforce is engaged in 

repetitive harvesting activities. In the 

conventional harvesting method, manual labor is 

predominantly utilized with minimal assistance 

from mechanical tools such as trolleys and 

cutting implements. Consequently, the majority 

of the expenses incurred are attributed to human 

labor (Abdi-pour & Shamsi, 2023; Benavides et 

al., 2020). 

In recent times, there has been significant 

attention given to the advancement of robots as 

potential replacements for fruit workers. 

However, it is important to note that robots 

operating in natural settings cannot solely rely on 

geometric coordinates of their targets to carry out 

their tasks. Therefore, they must possess the 

capability to identify unnecessary leaves, apply 

pesticides, gather and trim fruits and branches, 

much like a human would, all in accordance with 

the intended objective. 

The process of automatically harvesting 

tomatoes involves the identification of ripe 

tomatoes, locating their central points, and then 

separating them. In a greenhouse setting, ripe 

tomatoes are often surrounded by the stem, 

leaves, unripe tomatoes, and the ground. By 

implementing a comprehensive classification 

system, we can ensure that the harvesting process 

occurs at the optimal stages of ripening (Chen, 

2015). 

The maturity stage of tomatoes can be 

primarily determined by their color. Additionally, 

the image processing system is capable of 

recognizing color as well. In the case of the 

tomato harvesting robot, the image processing 

steps involved the identification of target areas, 

specifically the tomato fruits, within the camera's 

field of view. Furthermore, the system was able 

to recognize and position each ripe tomato 

individually in two dimensions. To ensure 

efficient tomato harvesting, a secondary sensor 

was utilized to determine the depth at which the 

ripe tomatoes should be placed. Finally, the 

results obtained from the first three steps were 

integrated and optimized to provide a 

comprehensive solution (Chen, 2015). 

Mohammadi Monvar et al. (2012) employed a 

color CCD camera to successfully identify 

tomatoes. The researchers utilized three different 

color spaces, namely RGB, HSI, and YCbCr, 

along with three distinct algorithms for edge, 

curve, and color detection. The findings of their 

investigation revealed that the YCbCr color space 

yielded a tomato detection rate exceeding 83.3% 

(Mohammadi Manour et al., 2013). 

Yin et al. (2009) introduced a robotic system 

designed specifically for the purpose of 

harvesting tomatoes in a greenhouse setting. The 

primary objective of their research was to 

develop a method for effectively detecting ripe 

tomatoes within the intricate and challenging 

environment of a greenhouse. To achieve this, the 

researchers employed the Lab color space and 

utilized the k-means clustering method to 

accurately identify ripe tomatoes. Additionally, 

they employed the mathematical morphological 

method to address various challenges such as 

removing noise, resolving overlapping instances, 

and mitigating shading issues. The effectiveness 

of the system was evaluated through a validation 

test involving 20 tomatoes, wherein only one case 

exhibited an error, highlighting the system's 

overall accuracy and reliability. 
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Wei et al. (2014) employed the OHTA color 

space to identify the location of pixels associated 

with mature tomatoes within the intricate setting 

of a greenhouse. To achieve this, they utilized the 

automatic Etsu method for thresholding. OHTA, 

which comprises 8 color components, served as 

the basis for their analysis. The results indicated 

a commendable extraction accuracy of 

approximately 95%. 

Feng et al. (2015) employed a CCD camera and 

the HSV color model to carry out image 

segmentation. To determine the three-

dimensional distance to the center of each tomato, 

a laser sensor was utilized. The researchers 

achieved a success rate of 83.9% in tomato 

harvesting, with a time requirement of 24 seconds 

for a complete harvesting cycle, encompassing 

tomato location recognition, arm movement, and 

harvesting. 

Malek et al. (2018) employed the HSV 

transformation technique to successfully identify 

red tomatoes. To separate tomatoes that were 

clustered together, they applied the edge 

algorithm. The results of their analysis revealed 

that approximately 81.6% of the red tomatoes 

were accurately detected. 

Researchers utilized three-dimensional (3D) 

images to discern the product. Wang et al. (2017) 

employed a stereo vision system integrated with 

Otsu's method to accurately identify ripe 

tomatoes. The detection of ripe tomatoes 

achieved an impressive success rate of 99%. 

Yoshida et al. (2019) successfully captured 

three-dimensional images of tomatoes and 

accurately identified the location of the tomato 

bunch. The researchers utilized a limited set of six 

sample images for their analysis, however, the 

time taken for each image acquisition was not 

explicitly mentioned. Remarkably, they achieved 

an impressive accuracy rate of 98.85% in their 

findings. The primary objective of their work 

involved detecting and determining the position 

of ripe tomatoes in the two-dimensional plane (X, 

Y) using a camera. Subsequently, the precise 

location of fruit separation from the plant was 

determined and transmitted to the mechanical 

system. 

Various robotic platforms were utilized to 

transport the end effectors and execute the task of 

transferring the position command from the 

computer to the system, thereby achieving the 

designated targets. In their study, Feng et al. 

(2018) made specific modifications to their 

system to cater to the harvesting of cherry 

tomatoes. They employed a camera to determine 

the precise position of the tomatoes, a laser sensor 

to measure the distance between the tomato and 

the end arm, and a Cartesian system to manipulate 

the arms, resulting in the development of a cherry 

tomato harvester. The results of their experiment 

revealed that this robotic system successfully 

harvested 83% of ripe tomatoes. Furthermore, 

they were able to complete a single withdrawal 

cycle within a time frame of 8 seconds. It is worth 

noting that the duration required for the 

movement of the platform was not included in 

this measurement. 

Lili et al. (2017) constructed a robot consisting 

of four wheels and a 5-degree-of-freedom arm 

robot attached to it. The robot was equipped with 

an Akerman steering wheel and utilized a laser 

sensor to accurately determine the direction of 

movement with a precision of 8 cm. To detect 

ripe tomatoes, the researchers employed the Otsu 

method and a dual camera. The depth-finding 

system exhibited an error of 10 mm when the 

tomatoes were located at a distance of 60 cm. The 

entire process of detecting and harvesting 

tomatoes took approximately 15 seconds. The 

system developed by Lilly et al. achieved an 

accuracy rate of 86%. 

In the researches of Hashimoto et al. (2012) 

and Menesatti et al. (2012), four types of features 

were used: color, shape, size and texture. The 

color characteristics depended on the position of 

the fruits in the canopy, because the lighting 

conditions were not completely uniform. Color 

calibration of the images taken under field 

conditions was done. For the shape feature, a very 

simple feature of the area's width to height ratio 

was used. 

Wan et al. (2018) employed a color model and 

shape analysis in order to identify tomatoes. 

Nevertheless, these methodologies were 
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incapable of extracting profound features and 

consequently resulted in the occurrence of 

detection errors under intricate environmental 

circumstances. Whittaker et al. (2019) adopted a 

shape-oriented procedure (known as circular 

Hough transform) to identify tomatoes and 

demonstrated that this approach is proficient in 

ascertaining the location of tomatoes based on 

their respective shapes in images that possess 

notable background noise. However, the 

computational nature of this method necessitates 

a substantial amount of time for non-tomato 

processing, thereby rendering its application 

within real-time robotic harvesting to be quite 

challenging. 

One of the additional challenges encountered 

in this research pertained to the automatic 

collection of tomatoes, specifically the presence 

of hindrances such as leaves and stems. Tomatoes 

that are clearly visible to the detection system can 

be plucked by a mechanical robot apparatus from 

the frontal region. However, in order to harvest 

concealed tomatoes, the trajectory of the robot 

arm must be determined by taking into account 

the positioning of the obstructions. In a study 

conducted by Ikeda et al. (2021), a technique was 

proposed to distinguish between hidden and 

visible tomatoes. Subsequently, the usage of the 

"Hough Circles" method from the Open CV 

library enabled the detection of whether a tomato 

is concealed or not by identifying a circular 

shape. In this particular detection, the underlying 

assumption is that the tomatoes possess a circular 

shape. In the event that this circular shape is 

perceptible, it is identified as an observable 

tomato. Conversely, if the circular shape fails to 

be perceptible, it is classified as a concealed 

tomato. There exist concealed tomatoes that 

cannot be detected or harvested owing to the 

existence of obstacles in their proximity. 

Researchers have leveraged the advancements 

in machine learning-based detection systems by 

employing the powerful capabilities of CNN 

convolutional neural network. In their study, 

Zeng et al. (2023) adopted a deep learning 

approach to enhance the precision of diagnosis. 

To identify the whereabouts of tomatoes, they 

utilized YOLO (You only look once) as a 

detection technique. Impressively, their detection 

system exhibited a remarkable processing speed 

of 26 images per second. Operating at such a 

rapid image input rate, their algorithm achieved 

an impressive accuracy rate of 92% in correctly 

identifying ripe tomatoes within the images. 

A harvesting robot consists of three main parts:  

1) Robotic platform with the ability to move in 

three directions X, Y, Z  

2) Imaging and image processing system 

(computer vision) to detect product position  

3) The end effector of harvesting the tomato  

After conducting a thorough analysis of 

multiple sources, it has been determined that the 

identification of ripe tomatoes continues to pose 

a significant challenge. This difficulty arises from 

the intricate backdrop of the greenhouse's natural 

environment, making it arduous to pinpoint the 

exact pixel representing the product. The 

recognition system greatly benefits from the 

distinct coloration of ripe tomatoes. However, 

complications arise when dealing with semi-ripe 

tomatoes and obstructions caused by stems and 

leaves obstructing the product. These issues were 

thoroughly investigated in the course of this 

research, subsequent to the construction of the 

robot.  

In order to develop an automated tomato 

harvesting system at Tabriz University, a three-

axis platform was meticulously constructed. This 

sophisticated robot was controlled by an image 

processing management system, which 

effectively executed the necessary tasks on the 

tomatoes with precision. Once the target, which 

in this case is a tomato, was identified, the system 

skillfully maneuvered the end arm towards it and 

delicately picked it up. 

MATERIALS AND METHODS 

In order for a robot to be able to perform 

automatic harvesting operations, it must have 

four parts of a mobile robotic platform with the 

ability to move in three directions x, y and z, and 

a computer vision system to detect tomatoes, 

product holder clip and if needed, product collar 

cutting system. 
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The tomato harvesting robotic system was built 

in the electrical and instrumentation laboratory at 

Biosystem Engineering department in University 

of Tabriz, which consisted of three main parts. 

The Cartesian robotic platform  

The platform is capable of movement along 

three axes, namely X, Y, and Z. The utilization of 

the Cartesian robotic system was prevalent in the 

majority of the reviewed sources due to its 

compatibility with the conventional layout of 

tomato cultivation in greenhouses. This research 

focuses on the geometric attributes of the planting 

rows and the precise positioning of tomato 

products on the plants. A rectangular robotic 

platform, also known as a Cartesian platform, 

was constructed with dimensions of 1.0 × 0.5 × 3 

meters (height, width, and length respectively). In 

the context of tomato cultivation, the tomatoes 

are typically positioned at a distance of 

approximately 2 meters from the ground. Within 

a 1-meter range, there are no tomato present, only 

the main stems of the plants. Consequently, the 

vertical arm of the Cartesian manipulator can 

extend up to approximately 200 cm. The moving 

component of the manipulator was situated on a 

stationary platform that can traverse alongside the 

rows of plants. The wheels of the platform were 

powered by a single DC gearbox-motor. As the 

manipulator's parts move in a linear fashion, a 

rotational to linear conversion mechanism was 

necessary to drive the main parts of the 

manipulator in a linear direction (Figure 1). 

 

Figure 1. The Cartesian manipulator for tomato harvesting 

Stepper motor 17 was used to create movement 

in three movement directions. The TB6600 

circuit was used as a driving circuit and computer 

interface, which was transmitted to the driver by 

Arduino Mega 2560. 

In order to convert the rotational motion of the 

motor into linear motion, two systems were 

needed to convert the rotational motion into 

linear motion and a linear motion guide. 

For motion conversion, there were three belt 

and gantry options, lead screw ball screw, which 

used a gantry and belt assembly to increase the 

speed of movement. To keep the movement of the 

gantry, two supporting axes were used. The 

camera and illumination system were mounted on 

the ganry (Figure 2). 

 
Figure 2. linaer displacement by using the gantry 

mechanism 
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The gripper that is placed at the end of the Z and 

grabs the tomato.  

A finger-shaped end effector, known as a 

gripper, has been assigned the duty of seizing and 

enclosing the tomato for the purpose of picking it 

up (Figure 5). The detachment of most tomato 

varieties from the stem can be achieved by a 

simple pulling action. Nevertheless, specific 

types of tomatoes might necessitate the use of 

cutters or high voltage separators to facilitate the 

separation process. The gripper has the ability to 

securely hold the tomato by adjusting the gap size 

between its fingers. To ensure that the tomato is 

not dropped, the gap size should be slightly larger 

than the dimensions of the tomato. The closure of 

the fingers was initiated upon detection of the 

tomato within the gripper by the depth sensor. 

According to the geometric relationship between 

the camera installation position and the robot arm 

position, the end effector is transferred to the 

vicinity of the tomato using the inverse kinematic 

calculation of the operator (Figure 1). 

Computer vision system  

The gripper was accompanied by a Basler 

Aca1920 color camera, which effectively 

captured frames in the RGB color space of the 

tomato plant scene. These captured frames were 

then transferred to the computer via the USB3 

interface port. A Python code was utilized to 

process the frames and detect the position of the 

fruits. Achieving optimal lighting conditions and 

considering the influence of external light sources 

presented a major challenge during the tomato 

detection step. 

 

Figure 3. tomato detection algorithm based on image processing 

Following the acquisition of the image, a color 

space channel that is appropriate is chosen, and 

segmentation is carried out on the grayscale 

image obtained at the previous stage. Through the 

utilization of thresholding, a binary image is 

obtained, where the white pixels correspond to 

the tomato and the background is represented by 

black pixels. Subsequently, the total number of 

white pixels is computed, and if this value 

exceeds a predetermined threshold, it indicates 

the presence of tomatoes in the scene, thereby 

necessitating the execution of the harvesting 

operation by moving the manipulator and 

utilizing the gripper (Figure 3). 
 

Figure 4. camera and depth sensor position related to 

gripper 

start 

Image processing and 

generate tomato presence 

and its position command 

Decision 

making 

Change the scence by 

manipulator moving 

image 

acquiring 

 

Pick it by 

moving the 

end effector 

yes 

No 
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Image processing of ripe and semi-ripe 

tomatoes  

In order to detect the presence of ripe tomatoes 

in the imaged scene (Figure 5) and to determine 

the position of the tomato itself and its stem as a 

cutting site (if needed), a segmentation operation 

must be carried out. In order to execute the 

segmentation process, it is essential to eliminate 

not only the background pixels but also 

distinguish the pixels associated with the ripe 

product from those of the unripe product. The 

effect of natural light irradiated by the sun and the 

variability of its intensity and direction was the 

main challenge of this research. 
 

 

Figure 5. a) tomato plant, b) dtected tomato position in the image 

DISCUSSION AND RESULTS 

By default, the information related to the pixels 

of color images called by the considered library 

in Python can be obtained in three separate 

channels, B, G and R, respectively. Being seen 

more distinctly in terms of the human visual 

system is a visual recognition based on the brain's 

processing system that apparently humans see as 

distinct components in the image. 

In the first step, to differentiate the pixels 

related to ripe colored tomatoes, the best color 

space was first selected among the three-color 

spaces, YCbCr, Lab, and HSV. 

A quantitative criterion for this diagnosis is a 

frequency chart or histogram, which provides a 

threshold level value for distinguishing two or 

more distinct objects. Therefore, in this research, 

the basis of the work for detecting ripe tomatoes 

was the thresholding method based on the 

histogram diagram. Unlike the human brain, in 

computers, processing is usually based on single-

channel data processing. As can be seen in Figure 

6 and 7, The difference cannot be detected in the 

image histogram for any of the three channels, 

specifically B, G, and R. In the histogram 

diagram, the presence of a distinct valley is a 

decision criterion. 

R G B 

  0  
Figure 6. Three splited color channels of RGB space color 
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R 

G 

B 

Figure 7. The histogram of channels of RGB color space 

a) Component a represents the greenness-

redness of a pixel, with lower values indicating 

green objects and higher values associated with 

magenta (Gonzalez, 2009). Red objects are 

expected to have higher values. The presence of 

a larger amount of 'a' in ripe tomatoes aids in 

determining their ripeness Figure 8. 

b) Component b represents the blueness-

yellowness of a pixel. So, yellow pixels have a 

higher values of b (Gonzalez, 2009). So, 

immature areas of tomatoes may have larger 

values of b. 

The L channel is independent of color 

information and encodes brightness only, So, it is 

not expected to be utilized for tomato color 

detection. 

  L  a   b 

Figure 8. splied channels of Lab color space 

a) Cr channel: This channel is related to the Cr 

component (red-yellow color component) which 

is usually used in skin detection and related colors 

(Gonzalez, 2009). Ripe tomatoes may have larger 

amounts in this channel.  

b) Cb channel: This channel corresponds to the 

Cb component (blue-yellow color component), 

which indicates color differences in the blue-

yellow axis (Gonzalez, 2009). This channel can 

also be used to detect color differences between 

unripe and ripe. 

Y channel in YCrCb (YCbCr in MATLAB) 

color space in similar to L in Lab color space. 
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Cb  Cr  Y 

Figure 9. Y component - Cr component - Cb component of YCrCb color space 

A) Scale of color levels (Value/V): This feature 

indicates the brightness of the color (Gonzalez, 

2009). Ripe tomatoes usually have larger V 

values than unripe tomatoes, indicating a higher 

color intensity in ripe tomatoes.  

b) Color saturation scale (Saturation/S): This 

feature shows the amount of color in the color. 

Ripe tomatoes usually have lower S values than 

unripe ones (Gonzalez, 2009).  

c) H stands for Hue, which represents intensity 

of color or chroma of an object (Gonzalez, 2009). 

 

 

 

Figure 10. H, S, and V channels of HSV color space 

In this research, the image processing method 

was evaluated for accurate detection of tomato 

fruits, including ripe, semi-ripe and unripe fruits. 

To better evaluate the detection performance of 

tomatoes, 50 tomato images were randomly 

selected from the dataset and the total number of 

ripe and semi-ripe tomatoes in all three 

components of the selected color space was 

examined. 

The area under the Precision-Recall graph, 

known as Average Precision (AP), can be used as 

a metric to summarize the performance of the 

object recognition model. This method uses 

precision and recall criteria to evaluate the 

performance of the model in the validation stages 

(Table 1). The number of True Positives (TP) 

represents the number of ripe tomatoes correctly 

identified as ripe tomatoes. False Positive (FP) 

represents the number of background regions 

detected as ripe tomatoes, but actually 

background. False Negative (FN) represents the 

number of ripe tomatoes identified as background 

regions, but are actually tomatoes. True Negative 

(TN) represents the number of context regions 

that are correctly identified as context. Equation 

1 was used to determine the accuracy. 

Table 1. Concepts used to determine accuracy 

Prediction by algorithm  

No Yes  

Real label FN TP Yes 

TN FP No 

 

(1) 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

The accuracy of detecting ripe tomatoes in 

channel H of HSV color space was the highest 

and 87%. After that, the Cr channel of images in 

YCrCb color space were obtained with an 

accuracy of 82% and the images taken in a 

channel of Lab color space were 78%. The 

apparent difference between the segmented 
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images was not large. The main reason for this 

difference in accuracy was the threshold level 

values in the histogram diagram related to H 

channel, due to the more distinct distance of the 

peaks. 

By examining the results of the tomato ripeness 

identification test based on image processing, it 

was determined that due to the overlaps made by 

the stem and leaves, the shine of the leaves, the 

system should be modified. By examining the 

images that were wrongly segmented, it was 

found that corrections should be made in the type 

of lighting. The application of deep learning 

methods is unavoidable as the authors are 

completing the data sets required for system 

training. 

HSV color space thresholded images 

 
 

 
 

HSV color space histogram plots 

 

  
Figure 11. Histogram and thresholded images for channel H of HSV color space for 3 different images 

Thresholded images of LAB color space 

 
 

 

LAB color space histogram charts 
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Figure 12. Histogram diagram and thresholded images for channel a of  Lab color space 

YCRCB color space thresholded images 

 
  

YCRCB color space histogram charts 

 
  

Figure 14. Histogram diagram and thresholded images for channel Cr of YCrCb color space 

CONCLUSION 

As the histogram shows, although the peaks in 

the H channel are close to each other, the peaks 

are completely different from each other. Also, 

the valleys have extended to the bottom, which 

means that the abundance is almost zero. 

Therefore, the possibility of mistakes in 

segmentation is less. In the rest of the channels, 

despite the better distance between the peaks, the 

valleys were not completely distinct and clear. In 

practice, it was found that the range of the 

threshold level is wider than that of the H mode, 

and this causes that if a fixed threshold level value 

is selected, unfortunately, a part of the ripe 

tomato is recognized as the background. For this 

reason, component a of the Lab color space is 

removed, and H was selected from the two 
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components Cr in the YCrCb color space and H 

component in the HSV color space. 
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