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ABSTRACT. In this note, we present an equivalent condition for linear
preservers of group majorization induced by closed subgroup G of O(R"™).
Moreover, a new concept of majorization is defined on R3 as acu-majorization
and this is extended for 3 x m matrices. Then we characterize all its linear
preservers on R3 and M3 .
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1. Introduction

For z,y € R", we say that y majorizes x and write = < vy, if

for k = 1,...,n — 1 and equality holds for k& = n, where 2+ = (a:%,,xil) is

arrangement of  in non-increasing order (see [3]).

An n x n non-negative matrix D is called doubly stochastic if De = e and
Dte = e, where e = (1,...,1)!. We know that x < y if and only if z = Dy for
some doubly stochastic matrix D [3, Theorem I1.1.10]. Let P,, be the set of all
n X n permutation matrices. Birkhoff theorem [3, Theorem II.2.3] says that the
set of all n x n doubly stochastic matrices is the convex hull of PP,,. In the other
words, < y if and only if € conv{Py : P € P,}. With this view, a new
concept of majorization can be defined which is called group majorization, [8].
In the following, O(V') means the set of all linear operators g on inner product
space V such that (gv, gw) = (v, w) for every v,w € V.

Definition 1.1. [7] Let V be a finite dimensional inner product space and G
be a subgroup of orthogonal group O(V'). We say that z is group majorized by
y, write z <g y, if € conv{gy : g € G}.
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The concept of majorization has been studied in connection with vectors
and matrices. Its motivation comes from mathematical statistics. One of the
interesting things for mathematicians is the study of linear preservers of these
preordering relations. Let R be a relation on R”. We say that a linear operator
A :R™ — R™ preservers R, if AxRAy whenever xRy. Ando characterized all
linear preserver of majorization, [1, Corollary 2.7]. The equivalent condition
for linear preservers of group majorization was proved by Niezgoda as follows.
Assume that <g and <pg are group majorizations induced by closed subgroups
G Cc O(V) and H C O(W) respectively.

Theorem 1.2. [7, Theorem 2.2] Let T : V. — W be a linear map. Suppose
that H is finite or countable. Then the following conditions are equivalent:

() 2 <¢y=T(x) <a T(y)

(ii) For any g € G there exists h € H such that Tg = hT.

In Section 2, we extend Theorem 1.2 for every closed subgroup H of O(R").
In Section 3, we introduce an uncountable subgroup of O(R?) and define a new
concept of majorization. Also, its linear preservers are characterized. In Section
4, we provide a necessary and sufficient condition for matrix representation of
linear preservers T' : My, , — My, , of G-majorizations on matrices. We also
characterize linear preservers of the new majorization on M3z p,.

2. A necessary and sufficient condition for linear preservers

of group majorization

In this section, we present a method which has an essential role to char-
acterize linear preservers of various types of majorizations. To verify linear

preservers of group majorization, we deal with * ~g y means * <5 y and
y < x. The following theorem gives an equivalent condition for ~¢.

Theorem 2.1. Let V be an inner product space, G be a subgroup of O(V') and
z,y € V. Then x ~g y if and only if x = gy for some g € G.

Proof. By the definition of group majorization, x <g y means that z =
k .
> i1 egey. Since g € O(V),

k k E
(1) lzll = 1Y cugeyll < D allgeyll = D enllyll = llyll-
t=1 t=1 t=1

On the other hand, y <¢ « and then ||y|| < ||z||. Hence, equality holds in (1).
If ayr # 0 for some 1 < ¢/ <k, then

(2) lawgery + 2| = llew geyll + [121],

where z = Zf:l,t 2t Ot GtY- Since equality holds in triangle inequality(cauchy-
schwarz inequality), z = Aay gpy for some A € R. Therefore, v = (14+\)ay gy y.
Since ||z|| = |lyl|, [(1 + A)aw| = 1. By equation (2), |1 + A| =1+ |A| and then
(1 + )\)Oét/ =1. O
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In the following, we will prove Theorem 1.2 for every group majorization
induced by closed subgroup H of O(R™).

Theorem 2.2. Let G be a subgroup of O(R™) and H be a closed subgroup of
O(R™). Let <, <u be the group majorizations induced by G, H, respectively.
Then the following conditions are equivalent:

(i) A linear map A : R" — R™ preserves < and <m.
(ii) For every g € G there exists a matriz h € H such that hA = Ag.

Proof. The proof of (i) — (4) is obvious. (i) — (i) Let g € G be arbitrary.
Define f4(h) := min{||(hA — Ag)e;||2 : (hA— Ag)e; # 0,i=1,...,n} provided
that hA # Ag and fa(h) = 0 whenever hA = Ag. Tt is clear that fa is
a continuous function. We define A(A4,g) := infrey fa(h). Since O(R™) is
a compact subset of R™ and H is its closed subset, H is compact. On the
contrary, suppose that hA # Ag for every h € H. The compactness of H

implies that A(A, g) # 0. Let A € (0, ﬁfﬁlm and @ = S Ai~le,. Since A

preserves <o and <, Theorem 2.1 implies that hAx = Agx for some h € H.
Hence

n
(3) Z N (hA — Ag)e; = 0.
i=1
Since hA # Ag, there exists ¢ such that (hA— Ag)e; # 0. Let i be the first inte-
ger with this property. By equation (3), (hA — Ag)e; = A>T, V771 (hA —
Agej. So A(A,g) < [I(hA — Agleillz < A7, M7 H[(RA — Ag)ejllz <

2n\||Al|o. Then \ > A(4,9)

> m, a contradiction.
n 2

3. acu-majorization on R?

In the following, we introduce an uncountable subgroup of O(R?) and define
a group majorization on R3. Then by using Theorem 2.2, we will characterize
its linear preservers. To do this, we need to define circulant permutation. An
operator S : R®* — R" defined by S(z1,...,20)" = (Tn,T1,...,Tn_1)t is
called the shift operator. The circulant matrix associated to z = (z1 ... x,)*
is the n x n matrix whose the k" column is given by S¥~1'2. Let P; be the
circulant permutation matrix associated to es and P; = Pf. For n = 3, we have

P =

= o O

10 1
01|, P=|0
00 0

O = O
= o O
o~ O
_— o O

1
0|, pr=
0

The set {Py, Py, P3} is denoted by C3. The following theorem provides the
eigenvalues of circulant matrices.
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Theorem 3.1. [/, Theorem 3.2.2] Let p(x) = y1x+y22%+- - -+7,2™ and C be
the circulant matriz p(Py). Then C = F*diag (pny(l),pv(w)7 ... ,py(w”_l)) F,

27i

wherew = e » and F is the Vandermonde matriz associated to (1, w,w?, ... ,w”fl).

Let # € R? be not a scalar multiple of e = (1,1,1). It is easy to show that
the set {Pyz, Pz, Pyz} is affinely independent. So the affine space generated
by Pix, Pox, P3x is as same as the affine space generated by the orbit of x under
the permutation matrices. In the other words, For = € R3,

3 3
(4) aff({Px:Pe}Pg}):{Zaipix:Za¢:1,1%603}.

Theorem 3.2. The set {2?21 o; P 2?21 o = 1,2?:1 a?=1,P; € C3} s a
closed subgroup of O(R3).

Proof. Let G = {Zle o; P - Zle o; = 1,Zf=1 a?=1,P ¢ Cg} and g1 =
Z§:1 ;P90 = Zf’zl B:i P; be arbitrary elements of G. So

9192 = (01 B3 + aafa + a3fi)P1 + (161 + a3 + a3f2) Po
+(a1f2 + azfr + azfB3)Ps = y1 Py + v2 P + 3 P3,

and than v1 + vo + 73 = (Zle ai> (Zle 51) = 1. On the other hand,

3 3 3
Y =0 B + 210 + aras + azas)(BiB2 + B1Bs + Bafs).
i=1 i=1 i=1
By the definition of G, It is clear that ajas + ajas + asag = 0. These show
that Z?Zl 72 =1 and then g1 g2 € G.
Since the inverse of the matrix g = Zf’zl ;P is gt = s Pl + a1 P+ asPs € G,
we know that G is a subgroup of O(R3).
Let ¢ : R® — M3 be defined by ¢(a1, s, a3) = Zle a; P;. The linear map
¢ is bounded and then it is continuous. The set {(aq, a9, as) : Z?:1 o =
172?:1 a? = 1} is a closed subset of R® and this implies that G is a closed
subset of Ms3.
|
The set {Zle P =150 a2=1,P ¢ Cg} is called the affine
circulant unitary group and is denoted by ACU. The majorization induced
by ACU is called the affine circulant unitary majorization or in short acu-
majorization.

Definition 3.3. For z,y € R?, z is said to be acu-majorized by v, denoted by
<acus if T € conv{gz : g € ACU}.

With this argument, it can be shown that G is a subgroup of O(RP) for every
prime number p, so it is possible to define acu-majorization on RP. But for
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non-prime numbers, it is not possible to prove that g1g, € G with the above
method.

We know that {z : # < y} & {2 : © <acu y}. For example, the vector
x = % — %, % + %,% is acu-majorized by (1,0,0), but x is not majorized
by (1,0,0). In Figure 1, we check the difference between majorization and
acu-majorization. To understand this, we used equation (4).

y=uYy2¥3)
FIGURE 1. majorization and acu-majorization

In the other words, x <4 ¥ if and only if 1 + z2 + 3 = y1 + y2 + y3 and
2?2 + 2% + 23 < y? + y3 + y3. In the following, by using Theorem 2.2, we will
characterize the linear preservers of acu-majorization.

Theorem 3.4. Let A be a linear operator on R3. Then A preserves acu-
magorization if and only if AP, = P;A for some P; € Cs.

Proof. Assume that A preserves acu-majorization. Since P; € ACU, Theo-
rem 2.2 implies that there exists G € ACU such that GA = AP;. If the first
column of A is a, then A = (a|Ga|G?a) and G*a = a. Since G* € ACU, there
are f31, B2, B3 such that

Bz B2 B
G=| B B B
B2 B1 B3
Therefore
—f1 — B2 B2 b1
G —1= b1 —B1 — B2 B2 ;
B2 b1 —B1 — B2

because 31+ 2+ B3 = 1. If 1 # 0 or 32 # 0, then the rank of the matrix G3 —I
is 2. So G®a = a implies that the vector a is a scalar multiple of e = (1,1, 1)".
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Hence G® = I or a = (7,7,7)t. In case a = (7,7,7)!, we have A = J3 = eet

and the assertion hold. Now assume that G® = I. Since G € ACU,

a3 Q2 Qg
G= a1 Q3 Q2
Qo Q71 Q3
and Theorem 3.1 implies that the eigenvalues of G are \; = p,(w?) = ajw? +

27i

Qow + ag, A2 = py(w) = ajw + asw?® + as, A3 = py(1) = 1, where w = €75 .
Since G2 = I, the eigenvalues of G must be the 3th roots of unity. If \; = Ay =
A3 =1, then G = P3 = I. Otherwise A\; = w, Ay = w? or \; = w?, Ay = w.
Case 1: Let \; = w, Ay = w?. So

a1 t+as+az=1
a1w2+agw+a3:w
2 2
1w + aow” + az = w”.

This linear equation system is equal to

1 1 1 oy 1
(5) w? wo Wl ay | =] w
wt w? Wb as w?

We know that the determinant of the Vandermonde matrix of equation (5) is
(w? — w?)(w — w?)(w? — w). So the Vandermonde matrix is invertible and the
unique solution of (5) is (aq, a2, ag)’ = (0,1,0)". This means that G = Ps.
Case 2: Assume that A\; = w?, Ay = w. Then the induced linear system is

1 1 1 aq 1
w2 ow WP Qs = w?
wt w? Wl Qs w

By the same argument as in above, we have (a1, as,a3)! = (1,0,0)" and this
implies that G = P;.

Therefore, G must be in the set {P;, P2, P3} and the direct proof is complete.
Conversely, Since AP, = P} A, for every G = a1 P1 + aa P> + a3 P3, we have

AG = O(1AP1 + a2AP2 + OégAP3 = Oélij + OéQPj2A + Oéng3A
= (Oqu + OZQsz + O[3PJ3)A.
Since {P;, PjQ, P;’} = Cs or P; = I3, we know that G = o Py + ang + C¥3P]3 is

included in ACU. By Theorem 2.2, the matrix A preserves <.
O

Now, we are able to characterize linear preservers of acu-majorization on
R3. More details about the following corollary are available in [6].

Corollary 3.5. An operator A : R? — R3 preserves <qcy if and only if A =
(a|Pja|P?a) for some P; € Cs and a € R3.
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4. linear preservers of acu-matrix majorization

In this section, we talk about matrix majorization and define a class of group
majorization on My, ,,,. We will find an equivalent condition for linear preservers
of group majorization on M, ,,. By using that, we will characterize all linear
preservers of acu-matrix majorization. The concept of matrix majorization is
defined as multivariate majorization, see [2].

Definition 4.1. For X,Y € M, ,,, we say that X is multivariate majorized
by Y and write X <., Y if there exists doubly stochastic matrix D € M,, such
that X = DY

The theory of group majorization can be extended for matrices and a class
of group matrix majorization can be defined as follows.

Definition 4.2. For X,Y € M, ,,, X is said to be multivariate group ma-
jorized by Y (written as X <,y V), if X = Zle ¢ig;Y where g; € G, ¢; > 0,
Ele ¢; =1 and G is a subgroup of O(R™).

We need some preliminaries to study linear preservers of multivariate group
majorization. For every A = (a;;) € M, n, we associate the vector vec(A) €
R™™ defined by vec(A) = [a11, -, Qn1, @12, -, An2y - oy ALy -« - At

Let B = {E117 SN ,Enl, Elg, ceay Eng, feay Elma ceay Enm} be the standard
basis of M, ., and [T]g be the representation of T with respect to B. Then

By By -+ Bim
Byy By -+ DBapy

(6> [T]B = : : : )
Bml Bm2 e Bmm

where each B;; € M,, and vec(T'(X)) = [T]5 (vec(X)). Let A € M, , X €
My, p, B€ My 4 and C € M,, 4. By [5, Lemma 4.3.1], AXB = C if and only if

(7) vec(C) = vec(AX B) = (B' ® A)vec(X).

An equivalent condition for matrix representations of linear preservers of
multivariate group majorization is presented in the following theorem.

Theorem 4.3. Let G be a closed subgroup of O(R™), T : My, p, — My, m be
a linear operator and [T|g be as (6). Then T preserves multivariate group
majorization if and only if for every g € G there exists a matriz g € G such
that gB;; = Byj;g for each i,j =1,...,m.

Proof. Let I® G = {I,,®g : g € G}. Since G is a closed subgroup of O(R"),
we know that I ® G is the closed subgroup of O(R™"). It is easy to see that
X ~pmg Y if and only if vec(X) ~rge vec(Y). By the hypothesis and equation
(7), we know that [T|p preserves ~j;gq. Therefore, Theorem 2.2 implies that
for every I,, ® g there exists I,,, ® g such that [T]5([, ® 9) = (I, ®9)[T]s. By
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equation (6), gB;; = B,;g for each i,j = 1,...,m. Reversing the above process
gives us the other side of the proof. O

In the following, we want to extend the concept of acu-majorization to ma-
trices such as Definition 4.2.

Definition 4.4. For X,Y € Mj ,,, we say that Y acu-matrix majorizes X if
X = DY for some D =" | a;g; where a; > 0,27, a; =1, g; € ACU.

Now, we will characterize the linear preservers of acu-matrix majorization
by using Theorem 4.3.

Theorem 4.5. Let T : M3, — M3, be an operator. T preserves acu-matrix
magjorization if and only if there exist 1 < j < 3 and A, B,C € M,, such that
T(X)=PR; XA+ P,R;XB+ P3R;XC where R; = [61|Pj€1|Pj261].

Proof. Let [T]s be the block matrix as (6). By Theorem 3.4 and Theorem
4.3, there exists a circulant permutation P; € C3 such that By, P = P; B, for
every t,s € {1,...,m}. Then By, = (vts|Pjvts|Pj21)ts) for some v € R3. Tt
means that By = aisRj + bis PLRj + ¢isPaR; where vy = (ags, bs, ¢rs)'. By
choosing A = (ats), B = (bis),C = (¢1s), we have [T|p = AQR; + BQ PR, +
C ® P,R;. Now, equation (7) implies that

T(X)=PRjXB"+ P,R;XC" + P;R; X A",

Conversely, let T(X) = PLR; XA+ PR;XB + PsR;XC and X <4 Y.
So there exists D = > | a;g; such that a; > 0,> 1, oy = 1, g; € ACU and
X =DY. Ilf g= p1Pr+ BaPr+ PB3P3 € ACU, then Rjg = BleRj +52Pj2Rj +
BsPPR;. So Rjg = ¢'R; for some g’ € ACU, because {P;, P}, P} = C3 or
P; = I3. Tt implies that R;D = D'R; where D’ = >""" | a;g;. On the other
hand, it is clear that P,g’ = ¢’ P; for every t = 1,2,3 and then P,D' = D'P,.
Therefore, T(DY) = D'T(Y) and T(X) <gcu T(Y). O

The following example is presented as a linear preserver of acu-matrix ma-
jorization on M3 5.

1 2 5 6 1 2
Example4.6.Letm—Z,A—(3 4:>,B—<7 8)andC’-<5 6>'

100
For j = 2, we have R; = 0 0 1 |. By Theorem 4.5, the operator T is
01 0
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defined as
T11  T12 010 Tl T12 1 9
T| o1 222 | =1 0 0 Tol  T22 ( 3 4 )
r31 T32 0 0 1 €r31 T32
0 0 1 r11 T12 5 6
+{ 0 1 O To1 T2 78
1 0 0 r31 I32
1 O 0 11 xr12 1 9
+1 0 0 1 To1 22 ( 5 6 >,
01 0 T31 X32

preservers acu-matriz majorization.

5. Conclusion

Let g be a prime number. With an argument similar to the proof of Theorem
3.2, it can be shown that the set

q q q
G= Z%’Pi : Zai = 1,20[? =1,Pe(,
i=1 i=1 i=1

is a subgroup of O(RP). Using this, the concept of acu-majorization can be
extended to RP. But in general, this argument cannot be shown that G is a
subgroup of O(R™). This concept can be extended to R™ as an affine unitary
majorization. For z,y € R", x is said to be affine unitary majorized by vy, if
S xi =,y and |lz]2 < |lyll2- As a future work, it can be checked that
this definition is a group majorization on R™ and checked its linear preservers.
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