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Abstract. In this note, we present an equivalent condition for linear

preservers of group majorization induced by closed subgroup G of O(Rn).
Moreover, a new concept of majorization is defined on R3 as acu-majorization

and this is extended for 3×m matrices. Then we characterize all its linear

preservers on R3 and M3,m.
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1. Introduction

For x, y ∈ Rn, we say that y majorizes x and write x ≺ y, if

k∑
i=1

x↓i 6
k∑
i=1

x↓i

for k = 1, . . . , n − 1 and equality holds for k = n, where x↓ = (x↓1, . . . , x
↓
n) is

arrangement of x in non-increasing order (see [3]).
An n × n non-negative matrix D is called doubly stochastic if De = e and

Dte = e, where e = (1, . . . , 1)t. We know that x ≺ y if and only if x = Dy for
some doubly stochastic matrix D [3, Theorem II.1.10]. Let Pn be the set of all
n×n permutation matrices. Birkhoff theorem [3, Theorem II.2.3] says that the
set of all n×n doubly stochastic matrices is the convex hull of Pn. In the other
words, x ≺ y if and only if x ∈ conv{Py : P ∈ Pn}. With this view, a new
concept of majorization can be defined which is called group majorization, [8].
In the following, O(V ) means the set of all linear operators g on inner product
space V such that 〈gv, gw〉 = 〈v, w〉 for every v, w ∈ V .

Definition 1.1. [7] Let V be a finite dimensional inner product space and G
be a subgroup of orthogonal group O(V ). We say that x is group majorized by
y, write x ≺G y, if x ∈ conv{gy : g ∈ G}.
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The concept of majorization has been studied in connection with vectors
and matrices. Its motivation comes from mathematical statistics. One of the
interesting things for mathematicians is the study of linear preservers of these
preordering relations. Let R be a relation on Rn. We say that a linear operator
A : Rn −→ Rn preservers R, if AxRAy whenever xRy. Ando characterized all
linear preserver of majorization, [1, Corollary 2.7]. The equivalent condition
for linear preservers of group majorization was proved by Niezgoda as follows.
Assume that ≺G and ≺H are group majorizations induced by closed subgroups
G ⊂ O(V ) and H ⊂ O(W ) respectively.

Theorem 1.2. [7, Theorem 2.2] Let T : V → W be a linear map. Suppose
that H is finite or countable. Then the following conditions are equivalent:

(i) x ≺G y ⇒ T (x) ≺H T (y)
(ii) For any g ∈ G there exists h ∈ H such that Tg = hT .

In Section 2, we extend Theorem 1.2 for every closed subgroup H of O(Rn).
In Section 3, we introduce an uncountable subgroup of O(R3) and define a new
concept of majorization. Also, its linear preservers are characterized. In Section
4, we provide a necessary and sufficient condition for matrix representation of
linear preservers T : Mn,m → Mn,m of G-majorizations on matrices. We also
characterize linear preservers of the new majorization on M3,m.

2. A necessary and sufficient condition for linear preservers
of group majorization

In this section, we present a method which has an essential role to char-
acterize linear preservers of various types of majorizations. To verify linear
preservers of group majorization, we deal with x ∼G y means x ≺G y and
y ≺G x. The following theorem gives an equivalent condition for ∼G.

Theorem 2.1. Let V be an inner product space, G be a subgroup of O(V ) and
x, y ∈ V . Then x ∼G y if and only if x = gy for some g ∈ G.

Proof. By the definition of group majorization, x ≺G y means that x =∑k
t=1 αtgty. Since gt ∈ O(V ),

(1) ‖x‖ = ‖
k∑
t=1

αtgty‖ ≤
k∑
t=1

αt‖gty‖ =

k∑
t=1

αt‖y‖ = ‖y‖.

On the other hand, y ≺G x and then ‖y‖ ≤ ‖x‖. Hence, equality holds in (1).
If αt′ 6= 0 for some 1 ≤ t′ ≤ k, then

(2) ‖αt′gt′y + z‖ = ‖αt′gt′y‖+ ‖z‖,

where z =
∑k
t=1,t6=t′ αtgty. Since equality holds in triangle inequality(cauchy-

schwarz inequality), z = λαt′gt′y for some λ ∈ R. Therefore, x = (1+λ)αt′gt′y.
Since ‖x‖ = ‖y‖, |(1 + λ)αt′ | = 1. By equation (2), |1 + λ| = 1 + |λ| and then
(1 + λ)αt′ = 1. �
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In the following, we will prove Theorem 1.2 for every group majorization
induced by closed subgroup H of O(Rm).

Theorem 2.2. Let G be a subgroup of O(Rn) and H be a closed subgroup of
O(Rm). Let ≺G,≺H be the group majorizations induced by G,H, respectively.
Then the following conditions are equivalent:

(i) A linear map A : Rn −→ Rm preserves ≺G and ≺H .
(ii) For every g ∈ G there exists a matrix h ∈ H such that hA = Ag.

Proof. The proof of (ii)→ (i) is obvious. (i)→ (ii) Let g ∈ G be arbitrary.
Define fA(h) := min{‖(hA−Ag)ei‖2 : (hA−Ag)ei 6= 0, i = 1, . . . , n} provided
that hA 6= Ag and fA(h) = 0 whenever hA = Ag. It is clear that fA is
a continuous function. We define ∆(A, g) := infh∈H fA(h). Since O(Rn) is

a compact subset of Rn2

and H is its closed subset, H is compact. On the
contrary, suppose that hA 6= Ag for every h ∈ H. The compactness of H

implies that ∆(A, g) 6= 0. Let λ ∈
(

0, ∆(A,g)
2n‖A‖2

)
and x =

∑n
i=1 λ

i−1ei. Since A

preserves ≺G and ≺H , Theorem 2.1 implies that hAx = Agx for some h ∈ H.
Hence

(3)

n∑
i=1

λi−1(hA−Ag)ei = 0.

Since hA 6= Ag, there exists i such that (hA−Ag)ei 6= 0. Let i be the first inte-
ger with this property. By equation (3), (hA−Ag)ei = λ

∑n
j=i+1 λ

j−i−1(hA−
Ag)ej . So ∆(A, g) ≤ ‖(hA − Ag)ei‖2 ≤ λ

∑n
j=i+1 λ

j−i−1‖(hA − Ag)ej‖2 ≤

2nλ‖A‖2. Then λ ≥ ∆(A, g)

2n‖A‖2
, a contradiction.

�

3. acu-majorization on R3

In the following, we introduce an uncountable subgroup of O(R3) and define
a group majorization on R3. Then by using Theorem 2.2, we will characterize
its linear preservers. To do this, we need to define circulant permutation. An
operator S : Rn −→ Rn defined by S(x1, . . . , xn)t = (xn, x1, . . . , xn−1)t is
called the shift operator. The circulant matrix associated to x = (x1 . . . xn)t

is the n × n matrix whose the kth column is given by Sk−1x. Let P1 be the
circulant permutation matrix associated to e2 and Pi = P i1. For n = 3, we have

P1 =

 0 0 1
1 0 0
0 1 0

 , P2 =

 0 1 0
0 0 1
1 0 0

 , P3 =

 1 0 0
0 1 0
0 0 1

 .

The set {P1, P2, P3} is denoted by C3. The following theorem provides the
eigenvalues of circulant matrices.
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Theorem 3.1. [4, Theorem 3.2.2] Let pγ(x) = γ1x+γ2x
2+· · ·+γnxn and C be

the circulant matrix pγ(P1). Then C = F ∗diag
(
pγ(1), pγ(ω), . . . , pγ(ωn−1)

)
F,

where ω = e
2πi
n and F is the Vandermonde matrix associated to

(
1, ω, ω2, . . . , ωn−1

)
.

Let x ∈ R3 be not a scalar multiple of e = (1, 1, 1)t. It is easy to show that
the set {P1x, P2x, P3x} is affinely independent. So the affine space generated
by P1x, P2x, P3x is as same as the affine space generated by the orbit of x under
the permutation matrices. In the other words, For x ∈ R3,

(4) aff ({Px : P ∈ P3}) =

{
3∑
i=1

αiPix :

3∑
i=1

αi = 1, Pi ∈ C3

}
.

Theorem 3.2. The set
{∑3

i=1 αiPi :
∑3
i=1 αi = 1,

∑3
i=1 α

2
i = 1, Pi ∈ C3

}
is a

closed subgroup of O(R3).

Proof. Let G =
{∑3

i=1 αiPi :
∑3
i=1 αi = 1,

∑3
i=1 α

2
i = 1, Pi ∈ C3

}
and g1 =∑3

i=1 αiPi, g2 =
∑3
i=1 βiPi be arbitrary elements of G. So

g1g2 = (α1β3 + α2β2 + α3β1)P1 + (α1β1 + α2β3 + α3β2)P2

+(α1β2 + α2β1 + α3β3)P3 = γ1P1 + γ2P2 + γ3P3,

and than γ1 + γ2 + γ3 =
(∑3

i=1 αi

)(∑3
i=1 βi

)
= 1. On the other hand,

3∑
i=1

γ2
i = (

3∑
i=1

α2
i )(

3∑
i=1

β2
i ) + 2(α1α2 + α1α3 + α2α3)(β1β2 + β1β3 + β2β3).

By the definition of G, It is clear that α1α2 + α1α3 + α2α3 = 0. These show
that

∑3
i=1 γ

2
i = 1 and then g1g2 ∈ G.

Since the inverse of the matrix g =
∑3
i=1 αiPi is gt = α2P1 +α1P2 +α3P3 ∈ G,

we know that G is a subgroup of O(R3).

Let ϕ : R3 −→ M3 be defined by ϕ(α1, α2, α3) =
∑3
i=1 αiPi. The linear map

ϕ is bounded and then it is continuous. The set {(α1, α2, α3) :
∑3
i=1 αi =

1,
∑3
i=1 α

2
i = 1} is a closed subset of R3 and this implies that G is a closed

subset of M3.
�

The set
{∑3

i=1 αiPi :
∑3
i=1 αi = 1,

∑3
i=1 α

2
i = 1, Pi ∈ C3

}
is called the affine

circulant unitary group and is denoted by ACU . The majorization induced
by ACU is called the affine circulant unitary majorization or in short acu-
majorization.

Definition 3.3. For x, y ∈ R3, x is said to be acu-majorized by y, denoted by
≺acu, if x ∈ conv{gx : g ∈ ACU}.

With this argument, it can be shown that G is a subgroup of O(Rp) for every
prime number p, so it is possible to define acu-majorization on Rp. But for
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non-prime numbers, it is not possible to prove that g1g2 ∈ G with the above
method.
We know that {x : x ≺ y} & {x : x ≺acu y}. For example, the vector

x =
(

1
3 −

1√
3
, 1

3 + 1√
3
, 1

3

)
is acu-majorized by (1, 0, 0), but x is not majorized

by (1, 0, 0). In Figure 1, we check the difference between majorization and
acu-majorization. To understand this, we used equation (4).

Figure 1. majorization and acu-majorization

In the other words, x ≺acu y if and only if x1 + x2 + x3 = y1 + y2 + y3 and
x2

1 + x2
2 + x2

3 ≤ y2
1 + y2

2 + y2
3 . In the following, by using Theorem 2.2, we will

characterize the linear preservers of acu-majorization.

Theorem 3.4. Let A be a linear operator on R3. Then A preserves acu-
majorization if and only if AP1 = PjA for some Pj ∈ C3.

Proof. Assume that A preserves acu-majorization. Since P1 ∈ ACU , Theo-
rem 2.2 implies that there exists G ∈ ACU such that GA = AP1. If the first
column of A is a, then A =

(
a|Ga|G2a

)
and G3a = a. Since G3 ∈ ACU , there

are β1, β2, β3 such that

G3 =

 β3 β2 β1

β1 β3 β2

β2 β1 β3

 .

Therefore

G3 − I =

 −β1 − β2 β2 β1

β1 −β1 − β2 β2

β2 β1 −β1 − β2

 ,

because β1+β2+β3 = 1. If β1 6= 0 or β2 6= 0, then the rank of the matrix G3−I
is 2. So G3a = a implies that the vector a is a scalar multiple of e = (1, 1, 1)t.
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Hence G3 = I or a = (γ, γ, γ)t. In case a = (γ, γ, γ)t, we have A = J3 = eet

and the assertion hold. Now assume that G3 = I. Since G ∈ ACU ,

G =

 α3 α2 α1

α1 α3 α2

α2 α1 α3


and Theorem 3.1 implies that the eigenvalues of G are λ1 = pγ(ω2) = α1ω

2 +

α2ω + α3, λ2 = pγ(ω) = α1ω + α2ω
2 + α3, λ3 = pγ(1) = 1, where ω = e

2πi
3 .

Since G3 = I, the eigenvalues of G must be the 3th roots of unity. If λ1 = λ2 =
λ3 = 1, then G = P3 = I. Otherwise λ1 = ω, λ2 = ω2 or λ1 = ω2, λ2 = ω.
Case 1: Let λ1 = ω, λ2 = ω2. So

α1 + α2 + α3 = 1

α1ω
2 + α2ω + α3 = ω

α1ω + α2ω
2 + α3 = ω2.

This linear equation system is equal to

(5)

 1 1 1
ω2 ω ω3

ω4 ω2 ω6

 α1

α2

α3

 =

 1
ω
ω2

 .

We know that the determinant of the Vandermonde matrix of equation (5) is
(ω3 − ω2)(ω − ω2)(ω3 − ω). So the Vandermonde matrix is invertible and the
unique solution of (5) is (α1, α2, α3)t = (0, 1, 0)t. This means that G = P2.
Case 2: Assume that λ1 = ω2, λ2 = ω. Then the induced linear system is 1 1 1

ω2 ω ω3

ω4 ω2 ω6

 α1

α2

α3

 =

 1
ω2

ω

 .

By the same argument as in above, we have (α1, α2, α3)t = (1, 0, 0)t and this
implies that G = P1.
Therefore, G must be in the set {P1, P2, P3} and the direct proof is complete.
Conversely, Since AP1 = PjA, for every G = α1P1 + α2P2 + α3P3, we have

AG = α1AP1 + α2AP2 + α3AP3 = α1PjA+ α2P
2
j A+ α3P

3
j A

= (α1Pj + α2P
2
j + α3P

3
j )A.

Since {Pj , P 2
j , P

3
j } = C3 or Pj = I3, we know that Ĝ = α1Pj +α2P

2
j +α3P

3
j is

included in ACU . By Theorem 2.2, the matrix A preserves ≺acu.
�

Now, we are able to characterize linear preservers of acu-majorization on
R3. More details about the following corollary are available in [6].

Corollary 3.5. An operator A : R3 → R3 preserves ≺acu if and only if A =(
a|Pja|P 2

j a
)

for some Pj ∈ C3 and a ∈ R3.
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4. linear preservers of acu-matrix majorization

In this section, we talk about matrix majorization and define a class of group
majorization onMn,m. We will find an equivalent condition for linear preservers
of group majorization on Mn,m. By using that, we will characterize all linear
preservers of acu-matrix majorization. The concept of matrix majorization is
defined as multivariate majorization, see [2].

Definition 4.1. For X,Y ∈ Mn,m, we say that X is multivariate majorized
by Y and write X ≺m Y if there exists doubly stochastic matrix D ∈Mn such
that X = DY .

The theory of group majorization can be extended for matrices and a class
of group matrix majorization can be defined as follows.

Definition 4.2. For X,Y ∈ Mn,m, X is said to be multivariate group ma-

jorized by Y (written as X ≺mg Y ), if X =
∑k
i=1 cigiY where gi ∈ G, ci ≥ 0,∑k

i=1 ci = 1 and G is a subgroup of O(Rn).

We need some preliminaries to study linear preservers of multivariate group
majorization. For every A = (aij) ∈ Mn,m, we associate the vector vec(A) ∈
Rnm defined by vec(A) = [a11, . . . , an1, a12, . . . , an2, . . . , a1m, . . . , anm]t.

Let B = {E11, . . . , En1, E12, . . . , En2, . . . , E1m, . . . , Enm} be the standard
basis of Mn,m and [T ]B be the representation of T with respect to B. Then

(6) [T ]B =


B11 B12 · · · B1m

B21 B22 · · · B2m

...
...

...
Bm1 Bm2 · · · Bmm

 ,

where each Bij ∈ Mn and vec(T (X)) = [T ]B (vec(X)). Let A ∈ Mn,m, X ∈
Mm,p, B ∈Mp,q and C ∈Mn,q. By [5, Lemma 4.3.1], AXB = C if and only if

(7) vec(C) = vec(AXB) = (Bt ⊗A)vec(X).

An equivalent condition for matrix representations of linear preservers of
multivariate group majorization is presented in the following theorem.

Theorem 4.3. Let G be a closed subgroup of O(Rn), T : Mn,m → Mn,m be
a linear operator and [T ]B be as (6). Then T preserves multivariate group
majorization if and only if for every g ∈ G there exists a matrix ĝ ∈ G such
that ĝBij = Bijg for each i, j = 1, . . . ,m.

Proof. Let I⊗G = {Im⊗g : g ∈ G}. Since G is a closed subgroup of O(Rn),
we know that I ⊗ G is the closed subgroup of O(Rmn). It is easy to see that
X ∼mg Y if and only if vec(X) ∼I⊗G vec(Y ). By the hypothesis and equation
(7), we know that [T ]B preserves ∼I⊗G. Therefore, Theorem 2.2 implies that
for every Im⊗ g there exists Im⊗ ĝ such that [T ]B(Im⊗ g) = (Im⊗ ĝ)[T ]B. By
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equation (6), ĝBij = Bijg for each i, j = 1, . . . ,m. Reversing the above process
gives us the other side of the proof. �

In the following, we want to extend the concept of acu-majorization to ma-
trices such as Definition 4.2.

Definition 4.4. For X,Y ∈ M3,m, we say that Y acu-matrix majorizes X if
X = DY for some D =

∑n
i=1 αigi where αi ≥ 0,

∑n
i=1 αi = 1, gi ∈ ACU .

Now, we will characterize the linear preservers of acu-matrix majorization
by using Theorem 4.3.

Theorem 4.5. Let T : M3,m →M3,m be an operator. T preserves acu-matrix
majorization if and only if there exist 1 ≤ j ≤ 3 and A,B,C ∈ Mm such that
T (X) = P1RjXA+ P2RjXB + P3RjXC where Rj = [e1|Pje1|P 2

j e1].

Proof. Let [T ]B be the block matrix as (6). By Theorem 3.4 and Theorem
4.3, there exists a circulant permutation Pj ∈ C3 such that BtsP1 = PjBts for
every t, s ∈ {1, . . . ,m}. Then Bts = (vts|Pjvts|P 2

j vts) for some vts ∈ R3. It

means that Bts = atsRj + btsP1Rj + ctsP2Rj where vts = (ats, bts, cts)
t. By

choosing A = (ats), B = (bts), C = (cts), we have [T ]B = A⊗Rj +B ⊗P1Rj +
C ⊗ P2Rj . Now, equation (7) implies that

T (X) = P1RjXB
t + P2RjXC

t + P3RjXA
t.

Conversely, let T (X) = P1RjXA + P2RjXB + P3RjXC and X ≺acu Y .
So there exists D =

∑n
i=1 αigi such that αi ≥ 0,

∑n
i=1 αi = 1, gi ∈ ACU and

X = DY . If g = β1P1 +β2P2 +β3P3 ∈ ACU , then Rjg = β1PjRj +β2P
2
j Rj +

β3P
3
j Rj . So Rjg = g′Rj for some g′ ∈ ACU , because {Pj , P 2

j , P
3
j } = C3 or

Pj = I3. It implies that RjD = D′Rj where D′ =
∑n
i=1 αig

′
i. On the other

hand, it is clear that Ptg
′ = g′Pt for every t = 1, 2, 3 and then PtD

′ = D′Pt.
Therefore, T (DY ) = D′T (Y ) and T (X) ≺acu T (Y ). �

The following example is presented as a linear preserver of acu-matrix ma-
jorization on M3,2.

Example 4.6. Let m = 2, A =

(
1 2
3 4

)
, B =

(
5 6
7 8

)
and C =

(
1 2
5 6

)
.

For j = 2, we have Rj =

 1 0 0
0 0 1
0 1 0

 . By Theorem 4.5, the operator T is
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defined as

T

 x11 x12

x21 x22

x31 x32

 =

 0 1 0
1 0 0
0 0 1

 x11 x12

x21 x22

x31 x32

( 1 2
3 4

)

+

 0 0 1
0 1 0
1 0 0

 x11 x12

x21 x22

x31 x32

( 5 6
7 8

)

+

 1 0 0
0 0 1
0 1 0

 x11 x12

x21 x22

x31 x32

( 1 2
5 6

)
,

preservers acu-matrix majorization.

5. Conclusion

Let q be a prime number. With an argument similar to the proof of Theorem
3.2, it can be shown that the set

G =

{
q∑
i=1

αiPi :

q∑
i=1

αi = 1,

q∑
i=1

α2
i = 1, Pi ∈ Cq

}
is a subgroup of O(Rp). Using this, the concept of acu-majorization can be
extended to Rp. But in general, this argument cannot be shown that G is a
subgroup of O(Rn). This concept can be extended to Rn as an affine unitary
majorization. For x, y ∈ Rn, x is said to be affine unitary majorized by y, if∑n
i=1 xi =

∑n
i=1 yi and ‖x‖2 ≤ ‖y‖2. As a future work, it can be checked that

this definition is a group majorization on Rn and checked its linear preservers.
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