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Abstract. Let V be a unitary vector space. Suppose G is a permutation

group of degree m and Λ is an irreducible unitary representation of G.
We denote by VΛ(G) the generalized symmetry class of tensors associated

with G and Λ. In this paper, we prove the existence of orthogonal bases

consisting of generalized decomposable symmetrized tensors for the gen-
eralized symmetry classes of tensors associated with unitary irreducible

representations of group U6n, as well as dihedral and dicyclic groups.
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1. Introduction

The study of symmetry classes of tensors finds its motivation in various
branches of both pure and applied mathematics, including matrix theory, op-
erator theory, combinatorial theory, differential geometry, group representation
theory, partial differential equations, quantum mechanics, and other related
fields (refer to [14, 15] for further details). In this research, we focus on gener-
alized symmetry classes of tensors.

In this section, we provide an overview of the generalized symmetry classes
of tensors. For a more comprehensive introduction, readers are encouraged to
refer to [13,16,17].

Let V represent an n-dimensional inner product space and V ⊗m denotes the
tensor product of m copies of V . Consider a permutation group G acting on
m elements. Let Λ be an irreducible unitary representation of G over an inner
product space U with dimension r, which affords the character λ of G. For any
σ ∈ G, we define the permutation operator as follows:

P (σ) : V ⊗m → V ⊗m

P (σ)(v1 ⊗ · · · ⊗ vm) = vσ−1(1) ⊗ · · · ⊗ vσ−1(m).
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The “generalized symmetry class of tensors” associated with G and Λ is the
range of the projection operator:

SΛ =
1

|G|
∑
σ∈G

Λ(σ)⊗ P (σ).

This class is denoted as VΛ(G). When dim U = 1, VΛ(G) reduces to Vλ(G),
which is the symmetry class of tensors associated with G and λ (for more
details, refer to [6,10,11,14,15]). The elements of VΛ(G) in the form of SΛ(u⊗
x⊗) are referred to as “generalized decomposable symmetrized tensors” and
are denoted as u~ x~.

The inner product on U ⊗ V ⊗m induces an inner product on VΛ(G) that
satisfies:

(u~ x~, v ~ y~) =
1

|G|
(DΛ(A)u, v).

Here, A = [(xi, yj)] and DΛ : Cm×m → End(U) is the “generalized Schur
function”:

DΛ(A) =
∑
σ∈G

Λ(σ)

m∏
i=1

aiσ(i).

Let Γm,n denote the set of all sequences α = (α(1), . . . , α(m)) with 1 ≤
α(i) ≤ n for 1 ≤ i ≤ m. We define the action of G on Γm,n as follows:

ασ = (α(σ(1)), . . . , α(σ(m))) .

We denote α ∼ β if α and β belong to the same orbit in Γm,n. Let ∆ repre-
sent a system of distinct representatives of these orbits. For clarity, note that
each sequence in ∆ is selected as the first element in its orbit, based on the
lexicographic order. We use Gα to denote the stabilizer subgroup of α.

For any α ∈ Γm,n, we define the linear map Tα : U → U as follows:

Tα =
1

|Gα|
∑
σ∈Gα

Λ(σ).

It is a well-established result that Tα represents an orthogonal projection on U
and Tα 6= 0 if and only if

∑
σ∈Gα λ(σ) 6= 0. We define the set Ω as

Ω = {α ∈ Γm,n |
∑
σ∈Gα

λ(σ) 6= 0}

and denote the intersection of ∆ and Ω as ∆̄ = ∆ ∩ Ω.

Let {u1, . . . , uf} and {e1, . . . , en} be orthonormal bases for U and V , respec-
tively. Then for each 1 6 i, j 6 f and α, β ∈ Γm,n, we have

(ui ~ e
~
α , uj ~ e

~
β ) =

 0 if α � β
1

[G : Gα]
(Tαui, uj) if α = β

.
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In particular, uj ~ e~α = 0 if and only if Tαuj = 0.

For α ∈ Γm,n, the subspace

V ~
α = 〈 ui ~ e~α | 1 ≤ i ≤ f 〉 = 〈u1 ~ e

~
ασ | σ ∈ G〉

of VΛ(G) is called the generalized orbital subspace corresponding to α. It is
proved that

dimV ~
α =

1

|Gα|
∑
σ∈Gα

λ(σ).

Also,

VΛ(G) =
⊕
α∈∆̄

V ~
α

is an orthogonal direct sum. So, if Λ is a linear representation of G then
dimV ~

α = 1. In this case, the set

{u1 ~ e
~
α | α ∈ ∆̄}

forms an orthogonal basis for VΛ(G). We refer to a basis comprising of gen-
eralized decomposable symmetrized tensors u1 ~ e~α as an orthogonal ~-basis.
However, if Λ is not a linear representation, it is possible that VΛ(G) does not
possess an orthogonal ~-basis. In [16, Theorem 2.3], a necessary condition for
the existence of an orthogonal ~-basis is provided. In this paper, we prove the
existence of orthogonal ~-bases for the generalized symmetry classes of tensors
associated with unitary irreducible representations of group U6n, as well as di-
hedral and dicyclic groups. The existence of orthogonal bases in other types of
symmetry classes has been explored by various authors (refer to [1–3,8,9,22]).

2. The dihedral group

The dihedral group of order 2k (k ≥ 3) is defined by

D2k = 〈a, b | ak = b2 = 1, b−1ab = a−1〉.
In particular,

D2k = {ar, arb | 0 ≤ r ≤ k − 1}.
In D2k, there exist two types of subgroups:

(i) Subgroups of the form 〈ar〉, where r divides k. For each r that divides
k, there exists exactly one such subgroup. The order of these subgroups
is given by |〈ar〉| = k/gcd(k, r), where gcd(k, r) denotes the greatest
common divisor of k and r.

(ii) Subgroups of the form 〈ar, asb〉, where r divides k and 0 ≤ s < r. The
order of these subgroups is given by |〈ar, asb〉| = 2k/gcd(k, r).

For each integer 0 < h < k
2 , the group D2k has an irreducible unitary

representation of degree 2 given by

Λh(a) =

(
ωh 0
0 ω−h

)
and Λh(b) =

(
0 1
1 0

)
,
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where ω = e
2πi
k is a primitive kth root of unity (see [12]). Note that here i is the

imaginary unit. Let λh be the corresponding character of the representation
Λh. Then, λh(ar) = 2 cos(2πrh/k) and λh(arb) = 0. The other irreducible
representations of D2k are linear. We first prove the following lemma.

Lemma 2.1. Let r, s, j, n ∈ N, 0 ≤ k ∈ Z, ω = e
2πi
n and l is the order of ωk.

Then

r∑
t=1

ωkt =

{
r if n | k
0 if n - k, r = jl

Also if n - k, s < l and l = rs then
∑jr
t=1 ω

kst = 0.

Proof. We know that n = o(ω) and l = o(ωk) = n/gcd(n, k). Therefore if n | k
then ωk = 1 and so

∑r
t=1 ω

kt = r. Now suppose that n - k. Thus ωk 6= 1. If
r = jl then

0 = ωk(ωkr − 1) = (ωk − 1)

r∑
t=1

ωkt

and so
∑r
t=1 ω

kt = 0. In particular, we have
∑l
t=1 ω

kt = 0. Also if s < l and
l = sr then

0 = ωk(s−1)

jl∑
t=1

ωkt = (

jr∑
t=1

ωkst)(

s−1∑
t=0

ωkt)

and so
∑jr
t=1 ω

kst = 0, because
∑s−1
t=0 ω

kt 6= 0 �

Lemma 2.2. Let G = D2k (k ≥ 3) and λ = λh (0 < h < k
2 ). Assume α ∈ Γm,n

and Gα is of the form Gα = 〈ar〉, where r | k. Then,∑
g∈Gα

λ(g) =

{
2|Gα| if k | rh
0 if k - rh

.

Proof. Let |Gα| = l = k/gcd(k, r). Applying Lemma 2.1, we have

∑
g∈Gα

λ(g) =

l∑
t=1

λ(art)

= 2

l∑
t=1

cos

(
2πrht

k

)

=

{
2l if k | rh
0 if k - rh

.

So the result holds. �
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Lemma 2.3. Let G = D2k (k ≥ 3) and λ = λh (0 < h < k
2 ). Assume α ∈ Γm,n

and Gα is of the form Gα = 〈ar, asb〉, where r | k, 0 ≤ s < r. Then,∑
g∈Gα

λ(g) =

{
|Gα| if k | rh
0 if k - rh .

Proof. By assumption, |Gα| = 2l, where l = k/gcd(k, r). Using Lemma 2.1,∑
g∈Gα

λ(g) =

l∑
t=1

λ(art) +

l∑
t=1

λ(art+sb)

= 2

l∑
t=1

cos

(
2πrht

k

)
+ 0

=

{
2l if k | rh
0 if k - rh

.

So the result holds. �

Theorem 2.4. Let G = D2k be a subgroup of Sm and Λ = Λh, where k ≥ 3
and 0 < h < k/2. Then VΛ(G) has an orthogonal ~-basis.

Proof. Since VΛ(G) =
⊕

α∈∆̄ V ~
α , it is sufficient to prove that, for every α ∈ ∆̄,

the generalized orbital subspace V ~
α has an orthogonal ~-basis.

Take α ∈ ∆̄. Then,
∑
σ∈Gα λh(σ) 6= 0. By Lemmas 2.2 and 2.3, we have

dimV ~
α = (1/|Gα|)

∑
g∈Gα λ(g) = 1 or 2. If dimV ~

α = 1 then there is no
problem with the existence of an orthogonal ~-basis. Therefore, we assume
that dimV ~

α = 2. Lemma 2.2 implies that Gα = 〈ar〉, where r | k and k | rh.

Thus, ωrht = e
2πirh
k = 1. Therefore, the orthogonal projection Tα is the

identity. Since Λ is two-dimensional, let {u1, u2} be an orthonormal basis for
U . Then,

V ~
α = 〈u1 ~ e

~
α , u2 ~ e

~
α 〉.

Now,

(u1 ~ e
~
α , u2 ~ e

~
α ) =

1

[G : Gα]
(Tαu1, u2) =

l

2k
(u1, u2) = 0,

and the set {u1 ~ e~α , u2 ~ e~α } is an orthogonal basis for V ~
α . This completes

the proof of the Theorem. �

Example 2.5. Let G = D6 = 〈a, b | a3 = b2 = 1, b−1ab = a−1〉 ∼= S3. Then G
has only one non-linear irreducible unitary representation given by

Λ(a) =

(
ω 0
0 ω−1

)
and Λ(b) =

(
0 1
1 0

)
,

where ω = e
2πi
3 is a primitive 3th root of unity. Let λ be the corresponding

character of the representation Λ. Then,

λ(1) = 2, λ((132)) = λ((123)) = −1, λ((23)) = λ((12)) = λ((13)) = 0.
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Let dimV = n = 2. Then,

∆ = {α = (1, 1, 1), β = (1, 1, 2), γ = (1, 2, 2), δ = (2, 2, 2)}.

Clearly, Gα = Gδ = G, Gβ = {(1), (12)} and Gγ = {(1), (23)}. It is easy to
see that ∆̄ = {β, γ} and dimV ~

β = dimV ~
γ = 1. Since VΛ(G) = V ~

β

⊕
V ~
γ , so

the set {u1 ~ e
~
β , u1 ~ e~γ } is an orthogonal basis for VΛ(G).

3. The dicyclic group

The group T4k (k ≥ 2), generated by the elements a, b such that

a2k = 1, ak = b2, b−1ab = a−1,

is called the dicyclic group of degree k. This group is of order 4k and

T4k = {ai, aib | 0 ≤ i < 2k}.

For each integer 0 < j < k, the group T4k has an irreducible unitary represen-
tation of degree 2 given by

Λj(a) =

(
ξj 0
0 ξ−j

)
and Λj(b) =

(
0 1
ξjk 0

)
,

where ξ = e
πi
k is a primitive (2k)th root of unity. Let λj be the corresponding

character Λj . The other irreducible representations of T4k are linear (see [12]).

Lemma 3.1. [4, Lemma 1]
Let H be a subgroup of T4k. Then, there exists an integer r, 0 ≤ r < 2k, such
that H = 〈ar〉 or 〈ar〉 ( H with H ∩ 〈a〉 = 〈ar〉. In the second case, we have
|H| > 2|〈ar〉|.

Lemma 3.2. [4, Lemma 3]
Suppose G = T4k (k > 2) and the representation Λj (0 < j < k) affords
character λj of G. Let H be a subgroup of G, i.e. H = 〈ar〉 or 〈ar〉 ( H with
H ∩ 〈a〉 = 〈ar〉, for some 0 ≤ r < 2k. If l = 2k/gcd(2k, r), then we have

∑
σ∈H

λj(σ) =

{
2l if 2k | rj
0 if 2k - rj

.

Theorem 3.3. Let G = T4k (k ≥ 2) be a subgroup of Sm, Λ = Λj and λ = λj,
where 0 < j < k. Then, VΛ(G) has an orthogonal ~-basis.

Proof. To establish the desired result, it is sufficient to demonstrate that for
every α ∈ ∆̄, the generalized orbital subspace V ~

α possesses an orthogonal
~-basis.

Let α ∈ ∆̄. Hence,
∑
σ∈Gα λ(σ) 6= 0. According to Lemma 3.1, Gα = 〈ar〉

or 〈ar〉 ( Gα with Gα ∩ 〈a〉 = 〈ar〉. We will consider two cases:
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(i) Gα = 〈ar〉. Then, |Gα| = 2k/gcd(2k, r). By Lemma 3.2, 2k | rj and
we have dimV ~

α = (1/|Gα|)
∑
σ∈Gα λ(σ) = 2. Suppose {u1, u2} is an

orthonormal basis for U . Therefore,

V ~
α = 〈u1 ~ e

~
α , u2 ~ e

~
α 〉.

One can easily see that the orthogonal projection Tα is identity. Thus,(
u1 ~ e

~
α , u2 ~ e

~
α

)
=

1

[G : Gα]
(Tαu1, u2) = 0

and {u1 ~ e~α , u2 ~ e~α } is an orthogonal ~-basis for V ~
α .

(ii) 〈ar〉 ( Gα. Then, Gα ∩ 〈a〉 = 〈ar〉 and |Gα| > 2|〈ar〉|. By Lemma 3.2,
we still have 2k | rj. Consequently,

dimV ~
α =

1

|Gα|
∑
σ∈Gα

λ(σ) =
1

|Gα|
2l 6 1,

which establishes the desired result.

�

Example 3.4. Let G = T8 = 〈a, b | a4 = 1, a2 = b2, b−1ab = a−1〉. Then
G ∼= Q8, the quaternion group of order 8. By classical Cayley Theorem, we can
embed T8 in S8 and so we assume that T8 is a subgroup of S8. The group T8

has an irreducible unitary representation of degree 2 given by

Λ(a) =

(
i 0
0 −i

)
and Λ(b) =

(
0 1
−1 0

)
,

where i is the imaginary unit.
Let λ be the corresponding character Λ. Then,

λ(1) = 2, λ(a) = λ(a3) = 0, λ(a2) = −2,

λ(akb) = 0, 0 ≤ k < 4.

The subgroups of G are one of the following forms:

H = 〈ar〉(0 ≤ r ≤ 2), H = 〈b〉 and H = 〈ab〉.

It is easy to see that
∑
σ∈H λ(σ) 6= 0 if and only if H = {1}. So, if α ∈ ∆̄,

then Gα = {1}. Consequently, dimV ~
α = 2.

Suppose {u1, u2} is an orthonormal basis for U . Assume that ∆̄ = {α, β, . . .}.
As in the proof of Theorem 3.3, we can easily see that the set

{u1 ~ e
~
α , u2 ~ e

~
α ;u1 ~ e

~
β , u2 ~ e

~
β ; . . .}

is an orthogonal basis for VΛ(G).
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4. The group U6n

The group U6n is generated by two elements, a and b, with the orders 2n
and 3, respectively, satisfying the condition a−1ba = b−1. In other words,

U6n = 〈a, b | a2n = b3 = 1, a−1ba = b−1〉.
The relation a−1ba = b−1 implies:

a2k b = b a2k, a2k−1 b−1 = b a2k−1.

Hence, we deduce that all members of U6n can be expressed in the form of aibj ,
where i ranges from 0 to 2n− 1 and j ranges from 0 to 2:

U6n = {aibj | 0 ≤ i ≤ 2n− 1, 0 ≤ j ≤ 2}.
The group G = U6n has conjugacy classes given by:

{a2k}, {a2kb, a2kb2}, {a2k−1, a2k−1b, a2k−1b2}.
where 0 ≤ k ≤ n − 1. Additionally, G′ = 〈b〉, and G/G′ is isomorphic to C2n,
where C2n is a cyclic group of order 2n.

Let’s denote ε = e
2πi
2n and ω = e

2πi
3 as the 2n-th and 3-th primitive roots of

unity, respectively. For each 1 ≤ j ≤ n, there exists an irreducible representa-
tion of G of degree 2 as follows:

Λj(a) =

(
0 εj

εj 0

)
, Λj(b) =

(
ω 0
0 ω2

)
.

Then,

Λj(a
2k) = ε2kj

(
1 0
0 1

)
, Λj(a

2kb) = ε2kj

(
ω 0
0 ω2

)
, Λj(a

2k−1) = ε(2k−1)j

(
0 1
1 0

)
.

Let’s denote χj as the corresponding character of Λj . In this case,

χj(a
2k) = 2ε2kj , χj(a

2k−1) = 0, χj(a
2kb) = −ε2kj .

The other irreducible characters of G are all linear (see [12]). The subgroups
of U6n can take one of the following forms:

(i) H = 〈ak〉, (ii) H = 〈ak, b〉,

(iii) H = 〈akb〉, (iv) H = 〈akb2〉,
where 0 ≤ k ≤ 2n and k divides 2n (see [20, Table 4]). These subgroups are
not necessarily distinct and under some conditions they might be even similar.
Let

l = o(ak) =
o(a)

gcd(k, o(a))
=

2n

gcd(k, 2n)
=

2n

k
.

(i) Let’s assume H = 〈ak〉. In this case, H is a cyclic subgroup of order l.
(ii) If H = 〈ak, b〉 then the order of H is equal to 3l, and it can be expressed

as

H = {1, ak, . . . , ak(l−1), b, akb, . . . , ak(l−1)b, b2, akb2, . . . , ak(l−1)b2}.
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(iii) If H = 〈akb〉 then let’s consider two cases as below:

Case 1 : k is odd. Then, for all integers r, we have

(akb)r =

{
akrb , if r is odd
akr , if r is even .

Since k is odd, l will be even and

H = {1, akb, a2k, a3kb, . . . , ak(l−1)b}.

In this case, H is a subgroup of the order l.

Case 2 : k is even. Then,

(akb)r =

 akr , if r ≡ 0 (mod 3)
akrb , if r ≡ 1 (mod 3)
akrb2 , if r ≡ 2 (mod 3)

.

If l ≡ 1 (mod 3) then (akb)l = aklb = b, which means b is an
element of H. Therefore, H = 〈ak, b〉.
If l ≡ 2 (mod 3) then (akb)l = aklb2 = b2, implying that b2 is in
H and thus, b is in H. Consequently, H = 〈ak, b〉.
If l ≡ 0 (mod 3) then (akb)l = akl = 1, meaning that H is a cyclic
subgroup of order l.

(iv) If H = 〈akb2〉, let’s consider two cases:

Case 1 : k is odd. In this case,

(akb2)r =

{
akrb2, if r is odd
akr, if r is even

.

Since k is odd, l will be even and we can express H as follows:

H = {1, akb2, a2k, a3kb2, . . . , ak(l−1)b2}.
In this case, H is a subgroup of order l.

Case 2 : Let’s consider that k is even. In this case,

(akb2)r =

 akr, if r ≡ 0 (mod 3)
akrb2, if r ≡ 1 (mod 3)
akrb, if r ≡ 2 (mod 3)

.

If l ≡ 1 (mod 3) then (akb2)l = aklb2 = b2. This implies that b2 is
in H, which in turn means that b is in H. Therefore, H = 〈ak, b〉.
If l ≡ 2 (mod 3) then (akb)l = aklb = b. Thus, b is in H and
again, H = 〈ak, b〉. If l ≡ 0 (mod 3) then (akb)l = akl = 1. This
implies that H is a cyclic subgroup of order l.
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Lemma 4.1. Let H = 〈ak〉, where k divides 2n and 1 ≤ j ≤ n. Then,∑
σ∈H

χj(σ) =

{
2l if 2n | jk
0 otherwise

if k is even, and ∑
σ∈H

χj(σ) =

{
l if 2n | jk
0 otherwise

if k is odd.

Proof. First note that l = 2n/gcd(2n, k) = 2n/k is an integer multiple of
o(εjk) = 2n/gcd(2n, jk). Using Lemma 2.1, if k is even, then

∑
σ∈H

χj(σ) =

l∑
t=1

χj(a
kt) =

l∑
t=1

2εjkt = 2

l∑
t=1

(e
2πjki
2n )t

=

{
2l if 2n | jk
0 otherwise

and if k is odd, then l is even and so

∑
σ∈H

χj(σ) =

l∑
t=1

χj(a
kt) =

l
2∑
t=1

2ε2jkt = 2

l
2∑
t=1

(e
2πjki
2n )2t

=

{
l if 2n | jk
0 otherwise

.

�

Lemma 4.2. Consider H = 〈ak, b〉, where k divides 2n and 1 ≤ j ≤ n. Then,∑
σ∈H

χj(σ) = 0.

Proof. Let’s consider two cases:

(i) If k is odd then l is even. Let’s suppose l = 2s. In this case,

∑
σ∈H

χj(σ) =

l∑
t=1

χj(a
kt) +

l∑
t=1

χj(a
ktb) +

l∑
t=1

χj(a
ktb2)

=

s∑
t=1

χj(a
2kt) +

s∑
t=1

χj(a
2ktb) +

s∑
t=1

χj(a
2ktb2)

=

s∑
t=1

2ε2ktj −
s∑
t=1

ε2ktj −
s∑
t=1

ε2ktj = 0.
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(ii) If k is even, then

∑
σ∈H

χj(σ) =

l∑
t=1

χj(a
kt) +

l∑
t=1

χj(a
ktb) +

l∑
t=1

χj(a
ktb2)

=

l∑
t=1

2εktj −
l∑
t=1

εktj −
l∑
t=1

εktj = 0.

So, the result holds. �

Lemma 4.3. Consider H = 〈akbs〉, where 1 ≤ s ≤ 2, 1 ≤ j ≤ n, and k is an
odd number. Then,

∑
σ∈H

χj(σ) =

{
l if n | kj
0 otherwise

.

Proof. Suppose 2n = kl. Since k is odd, let’s say l = 2r. Thus

H = {1, akbs, a2k, a3kbs, . . . , ak(l−1)bs}

and

∑
σ∈H

χj(σ) =

l∑
t=1

χj((a
kbs)t) =

r∑
t=1

χj(a
2tk)

= 2

r∑
t=1

ε2jkt = 2

r∑
t=1

e
4πjkti

2n .

Now, by using Lemma 2.1, the result is obtained. �

Lemma 4.4. Suppose H = 〈akbs〉, where 1 ≤ s ≤ 2, 1 ≤ j ≤ n, k is even, and
l ≡ 0 (mod 3). Then,

∑
σ∈H

χj(σ) =


0 if 2n - 3jk

0 if 2n | jk
l if 2n | 3jk and 2n - jk

.
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Proof. Let us assume s = 1 and l = 3r. Then,∑
σ∈H

χj(σ) =

l∑
t=1

χj((a
kb)t)

=

r∑
t=1

χj((a
kb)3t) +

r∑
t=1

χj((a
kb)(3t−1)) +

r∑
t=1

χj((a
kb)(3t−2))

=

r∑
t=1

χj(a
3tk) +

r∑
t=1

χj(a
(3t−1)kb2) +

r∑
t=1

χj(a
(3t−2)kb)

=

r∑
t=1

2ε3kjt −
r∑
t=1

ε(3t−1)kj −
r∑
t=1

ε(3t−2)kj

= 2

r∑
t=1

ε3kjt − ε−kj
r∑
t=1

ε3tkj − ε−2kj
r∑
t=1

ε3tkj

=
(
2− ε−kj − ε−2kj

) r∑
t=1

ε3kjt

=
(
2− ε−kj − ε−2kj

) r∑
t=1

e
6πjkt
2n i.

If 2n - 3kj then, by Lemma 2.1,
∑
σ∈H χj(σ) = 0. Now, let’s consider the case

where 2n | 3kj, and we’ll set 3jk = 2nd. Then,

A = 2− ε−kj − ε−2kj = 2− e− 2πd
3 i − e− 4πd

3 i = 2− ωd − ω2d.

Using the division algorithm, we can express d as d = 3q+q′, where q′ = 0, 1, 2.
If q′ = 0 then d = 3q and therefore, 3jk = 2n(3q), implying that 2n | jk. In
this case, we find that A = 0. However, when q′ = 1 or q′ = 2, we get

A = 2− ωq′ − ω2q′ = 2− ω1 − ω2 = 2− (ω + ω2) = 3.

This is because ω + ω2 = −1. Therefore, in these cases, we conclude that the
result holds. Similarly, for s = 2, the proof follows a similar pattern. �

Notice that if H = 〈akbs〉, where 1 ≤ s ≤ 2, 1 ≤ j ≤ n, k is even and l ≡ 1, 2
(mod 3) then H = 〈ak, b〉. By Lemma 4.2, we have

∑
σ∈H χj(σ) = 0.

Theorem 4.5. Let G = U6n (n ≥ 1) and Λ be a unitary irreducible represen-
tation of G. Then, VΛ(G) has an orthogonal ~-basis.

Proof. If the degree of Λ is equal to 1, there is nothing to prove. Suppose Λ
has a degree greater than 1 and let Λ = Λj for 1 ≤ j ≤ n. Take an arbitrary
α ∈ ∆̄. Then,

∑
σ∈Gα χj(σ) 6= 0. According to the four Lemmas 4.1-4.4, Gα

falls into one of the following three cases:

(a) Gα = 〈ak〉, where k divides 2n.
(b) Gα = 〈akbs〉, where s = 1, 2, k divides 2n and k is odd.
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(c) Gα = 〈akbs〉, where s = 1, 2, k divides 2n, k is even and l ≡ 0 (mod 3).

In all three cases, |Gα| = l and
∑
σ∈Gα χ(σ) = l or 2l. So,

dimV ~
α =

1

|Gα|
∑
σ∈Gα

χ(σ) = 1 or 2.

If dimV ~
α = 1, then the set {u1~e~α | α ∈ ∆̄} forms an orthogonal basis for the

symmetry class of VΛ(G) and the result is established. Therefore, we assume
that dimV ~

α = 2. Then Gα = 〈ak〉, where k is even. In this case,

Tα =
1

|Gα|
∑
σ∈Gα

Λ(σ) =
1

l

l∑
t=1

Λj(a
kt) = (

1

l

l∑
t=1

εjkt) I2

= (
1

2|Gα|
∑
σ∈Gα

χ(σ)) I2 = I2,

where I2 is the identity matrix of order 2× 2. Let {u1, u2} be an orthonormal
basis for U . Then,

V ~
α = 〈u1 ~ e

~
α , u2 ~ e

~
α 〉.

Now,

(u1 ~ e
~
α , u2 ~ e

~
α ) =

1

[G : Gα]
(Tαu1, u2) = 0,

and the set {u1 ~ e~α , u2 ~ e~α } is an orthogonal basis for V ~
α . �

Remark 4.6. By utilizing the Theorems 2.4, 3.3 and 4.5, it becomes evident
that the existence of an orthogonal ~-basis within the generalized symmetry
classes of tensors associated with the group U6n, the dihedral group and the di-
cyclic group is not contingent upon the permutation structure of the respective
groups.

Finally, we propose the following conjecture.

Conjecture 4.7. Let V be a unitary vector space. Consider G as a subgroup
of Sm and let Λ be an irreducible unitary representation of G over an inner
product space U . Then, VΛ(G) always possesses an orthogonal ~-basis.

5. Conclusion

Consider a unitary complex vector space V . Let G be a permutation group
that acts on m elements. Let Λ be an irreducible unitary representation of G
over an inner product space U , which affords the character λ of G. We define
VΛ(G) as the generalized symmetry class of tensors associated with G and Λ.
When the dimension of U equals 1, VΛ(G) reduces to Vλ(G), which represents
the symmetry class of tensors associated with G and λ. In the case where λ is
a linear character of G, Vλ(G) possesses an orthogonal ∗-basis.
The existence of an orthogonal basis consisting of decomposable symmetrized
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tensors for symmetry class Vλ(G) associated with G and a non-linear irreducible
character λ of G has been investigated by many researchers (see [6, 18, 19, 21,
23]). In particular, in [4, 10], a necessary and sufficient condition for the ex-
istence of an orthogonal ∗-basis for the symmetry class Vλ(G) is given when
G is the dicyclic or dihedral group. Additionally, [5, 7] prove that there is no
orthogonal ∗-basis for the symmetry class Vλ(U6n).
In this paper, we proved that for the generalized symmetry class VΛ(G), there
is always an orthogonal ~-basis, where G is the group U6n, dihedral or dicyclic
group.
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