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Abstract The aim of this study was to study the performance of xgboost 

algorithm in genomic evaluation of complex traits as an alternative for Gradient 
Boosting algorithm (GBM). To this end, genotypic matrices containing genotypic 
information for, respectively, 5,000 (S1), 10,000 (S2) and 50,000 (S3) single 
nucleotide polymorphisms (SNP) for 1000 individuals was simulated. Beside 
xgboost and GBM, the GBLUP which is known as an efficient algorithm in terms 
of accuracy, computing time and memory requirement was also used to predict 
genomic breeding values. xgboost, GBM and GBLUP were run in R software 
using xgboost, gbm and synbreed packages. All the analyses were done using a 
machine equipped with a Core i7-6800K CPU which had 6 physical cores. In 
addition, 32 gigabyte of memory was installed on the machine. The Person's 
correlation between predicted and true breeding values (rp,t) and the mean 
squared error (MSE) of prediction were computed to compare predictive 
performance of different methods. While GBLUP was the most efficient user of 
memory, GBM required a considerably high amount of memory to run. By 
increasing size of data from S1 to S3, GBM went out from the competition mainly 
due to its high demand for memory. Parallel computing with xgboost reduced 
running time by 99% compared to GBM. The speedup ratios (the ratio of the GBM 
runtime to the time taken by the parallel computing by xgboost) were 444 and 554 
for the S1 and S2 scenarios, respectively. In addition, parallelization efficiency 
(speed up ratio/number of cores) were, respectively, 74 and 92 for the S1 and S2 
scenarios, indicating that by increasing the size of data, the efficiency of parallel 
computing increased. The xgboost was considerably faster than GBLUP in all the 
scenarios studied. Accuracy of genomic breeding values predicted by xgboost 
was similar to those predicted by GBM. While the accuracy of prediction in terms 
of rp,t was higher for GBLUP, the MSE of prediction was lower for xgboost, 
specially for larger datasets. Our results showed that xgboost could be an efficient 
alternative for GBM as it had the same accuracy of prediction, was extremely fast 
and needed significantly lower memory requirement to predict the genomic 
breeding values. 

Keywords: genomic evaluation, parallel computing, computing time, SNP 

Introduction 
Grossman (1989) showed the practical implementation of   

Smith (1967) was the first one who suggested the idea of  genetic markers for this purpose. Their method was termed  
using genetic markers for improvement of the quantitative  the marker assisted selection (MAS). The MAS has a succe-  
traits. However, it took 22 years until Fernando and ssful history in improving the less complicated traits such as  
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tolerance in plants, which are controlled by a small 
number of genes. However, it was hardly used to 
improve the complex traits in crops and animals, traits 
which are regulated by a large number of genes. The 
MAS needed accurate estimation of marker effects 
which was computationally difficult. In addition, 
genotyping was economically affordable only for a few 
markers. Meuwissen et al. (2001) introduced the 
genomic selection (GS) to overcome the MAS 
drawbacks. The main part of GS was whole genome 
sequencing techniques providing genome-wide 
information needed for genomic evaluation. Instead of 
using few markers, the GS has the ability of using 
genetic information of all markers distributed along the 
genome. Accordingly, the genomic breeding values 
(GBV) of selection candidates can be estimated by 
adding the effects of all markers underlying the trait and 
therefore a much more comprehensive and reliable 
selection is expected compared to MAS. For the first 
time, GS was applied by the US dairy industry in August 
2003 and its formal results were published by Van Raden 
et al. (2008). In plants, the first results of applying 
genomic selection in maize were published by Bernardo 
and Yu (2007). By increasing the accuracy and intensity 
of selection and decreasing the generation interval, the 
GS can double the rate of genetic gain for economically 
important traits in livestock (Matthews et al., 2019).  

One of the important issues in genomic selection is 
the estimation of the effect of SNPs for which different 
parametric and nonparametric methods have been 
developed. These methods differ in accuracy of 
prediction, memory requirement and computing time 
(Wang et al., 2018). By lowering the cost of genotyping, 
today, we can genotype more animals for many more 
markers. For example, at the present, high density 
marker panels (777K; Matukumalli et al., 2011) are 
available for GS in dairy cows. Increasing the number of 
high-density genotyped animals increases the 
computational requirements of genomic prediction 
models. For some models, such as single step GBLUP 
(ssGBLUP), handling of big genotypic matrices becomes 
practically impossible when the number of animals 
exceeds 100,000, and for models such as Bayesian 
variable selection models, if not impossible, will be very 
time consuming (Ødegård et al., 2018). In addition, the 
use of cheap next-generation sequencing (NGS) 
technologies in animal breeding has been started. The 
NGS allows genotyping of large numbers of individuals 
and usually produces huge amounts of data. Analyzing 
such large genomic datasets in a reasonable time 
requires more efficient methods. Parallel computing 
(Figure 1) can be a promising strategy to deal with such 
large genomic datasets (Guo et al., 2018). The basis for 
parallel computing is the Hyper-Threading (HT) 
technology of the Intel company (Intel® Hyper-Threading 
Technology, 2003) by which the maximum processing 
power of the central processing unit (CPU) of the 
machine is exploited to analysis the data. Using a CPU  
 

 
 
with 10 cores, because of HT technology, the job is 
divided to 10 parts and then executed simultaneously on 
10 cores of the CPU; hereby, decreasing the computing 
time. New parallel algorithms are able to use different 
numbers of cores for doing analysis based on the size of 
the input data and, with the aim of supercomputers, they 
could analyze all the available information at once which 
are important for researchers when real-time results are 
needed (Orozco-Arias et al., 2017). It is worthwhile to 
mention that parallel computing does not enable the 
machine to do what it was previously unable to do; rather 
it enables the machine to do what it was previously able 
to do much faster. 

Figure 1. Parallel vs. serial computing (https://pythonnumeri 

calmethods.berkeley.edu/notebooks/chapter13.01- 232 Parall 
el-Computing-Basics.html) 

 
The Gradient Boosting algorithm (GBM) (Shapire, 

2003) is a machine learning algorithm which is used for 
both classification and regression problems. It has been 
applied in genomic studies for gene function prediction, 
analysis of gene expression, and evaluation of genomic 
susceptibility (Kim and Kim, 2017). While GBM has been 
used for genomic selection (González-Recio et al., 2014; 
Ghafouri-Kesbi et al., 2017), this method is memory 
expensive and extremely slow (Ghafouri-Kesbi et al., 
2017). Recently, a variant of GBM has been introduced 
through xgboost package (Chen et al., 2019) which 
automatically does parallel computing. Therefore, this 
study was conducted to compare xgboost with GBM 
algorithms and GBLUP in terms of computing time, 
memory requirement, and the accuracy of prediction. 
 

Materials and methods 

Data simulation 
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The genome and population were simulated using the 
package hypred in R (Technow, 2013). In the framework 
of genomic selection, we need a reference population 
and a validation population. A reference population 
comprised of 1000 individuals was simulated for which 
genotypic and phenotypic information were available. 
Subsequently, the validation population was generated 
from the reference population. Animals in the validation 
population only had genotypic information but their 
phenotypic information was unknown. This validation 
population comprised of selection candidates whose 
genomic breeding values had to be estimated. 
Heritability was set to 0.5. The QTL effects were sampled 
from a gamma distribution, with shape and scale 
parameters as 0.4 and 1.66, respectively (Meuwissen et 
al., 2001). Using prediction equations, the effects of all 
SNPs were estimated in the reference population by 
combining the genotypic and phenotypic information of 
all individuals. Then, the genomic breeding values of 
selection candidates were estimated by summing the 
effects of all SNPs they carry according to SNPs effects 
previously estimated in the reference population. In 
different scenarios, different genomes were simulated in 
terms of the number of chromosomes and number of 
SNP markers. The aim was to hold a competition 
between different methods in terms of the computing 
time and amount of data they could handle. To do this, 
three scenarios of size of data were considered. A 
genome comprised of 5 and 10 and 25 chromosomes 
were simulated on which, respectively, 5,000 (S1), 
10,000 (S2) and 50,000 SNP (S3) was uniformly 
distributed. The covariate for each genotype with alleles 
A1 and A2 was set to 1 for A1A1, -1 for A2A2 and 0 for 
A1A2 or A2A1. Minor allele frequency was set to 0.05.  
  

Method of genomic prediction 
 
Gradient Boosting algorithm 
The Gradient Boosting belongs to a family of machine 
learning algorithms that convert the weak learners to 
strong learner. Here, regression trees were the weak 
learners. The GBM adds regression trees to the residual 
(misclassified inputs) of the previously decision tree in 
such a way that by adding the new trees, the error 
function decreased (Hastie et al., 2009; Oguto et al., 
2011): 

𝑓(𝑥) = ∑ 𝛽𝑚𝑏(𝑥; 𝛾𝑚)

𝑀

𝑚=1

 

 
where, 𝛽𝑚 , m=1,2,.., M are basis expansion 

coefficient, and 𝑏(𝑥; 𝛾𝑚)  are simple functions of the 
multivariate argument, with a set of parameters 𝛾 =
(𝛾1,𝛾2,… , 𝛾𝑀). Prediction is accomplished by weighting 

the ensemble outputs of all the regression trees. Both 
the serial and parallel GBM were considered. The serial 
GBM was carried out using the package gbm (Greenwell 
et al., 2019). The tuning parameters in GBM were the 
number of tree (ntree), tree depth or tree complexity (tc)  
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and shrinkage rate or learning rate (lr). A series of values 
for each parameter was specified and the performance  
of the model with each combination of the tuning 
parameters was evaluated. In the model with highest 
predictive performance, ntree = 1500, tc = 7 and lr = 
0.02.  
 
xgboost 
Chen et al. (2019) developed the xgboost package for 
parallel tree GBM. Like GBM, xgboost uses the method 
of additive training by which it grows regression trees on 
the residual of the previous tree sequentially. But it 
doesn’t mean that it cannot be run in parallel. Of course, 
xgboost doesn't run multiple trees in parallel because it 
needs predictions of each tree to update the gradients. 
Rather, it does the parallelization within a single tree to 
create branches independently. Searching for optimal 
splits in the 'weak' decision trees can be streamlined by 
utilizing large number of cores. Contrary to the GBM 
codes which are executed serially on CPU of machine, 
the xgboost codes are automatically executed in parallel 
on all cores of the CPU. Assessing the model’s 
performance in terms of computing time was performed 
by calculating the speedup ratio as follows: 
 

Speed up ratio= T-Serial/T-Parallel 
 

where, T-Serial was the execution time of the 
sequential algorithm and T-parallel was the execution 
time of the parallelized algorithm. The Speedup ratio was 
then used to calculate the parallelization efficiency as: 
Speedup ratio/number of cores. 

 
Genomic Best Linear Unbiased Prediction (GBLUP) 
The GBLUP was fitted as follow: 
 

y=1µ+Zg+e, 
 

where, y is the vector of phenotypic observations, Z 
is the design matrix associating the phenotypic 
observations to GBVs, g is the vector of genomic 

breeding values, assuming that g~N(0,G𝛿𝑔
2), where 𝛿𝑔

2 is 

the additive genetic variance, and G is the genomic 
relationship matrix whose elements were estimated 
based on the allelic similarity between individuals 
(VanRaden, 2008). The R package synbreed (Auinger et 
al., 2018) was used to run GBLUP. 
 
Comparison of methods 
Two criteria were used to measure the prediction 
accuracy of methods: 1) the Person's correlation 
between the predicted and true breeding values (rp,t). 2) 
The mean squared error of prediction (MSE). Larger 
estimates of rp,t show more reliable predictions. The MSE 
of prediction provides a measure of overall fit of the 
model. Each scenario which was a combination of data 
size and prediction method was analyzed 10 times and 
the average computing time, memory requirement, rp,t 
and MSE of each scenario were presented. 
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Memory requirement and computing time  
The package pryr was used to record memory usage for 
each method (Wickham, 2018).  It records the amount of 
memory occupied by the objects created by executing a 
function in R. The computing time in each scenario was 
monitored and recorded with an R function. The 
computing time was measured as the time consumed for 
executing the codes of the methods studied, and did not 
include the time consumed for the simulation of 
population and genome. All the analyses were done 
using a machine with the CPU model Intel Core i7-
6800K. This CPU has 6 physical cores and a base 
frequency of 3.40 gigahertz. In addition, 32 gigabyte of 
memory was installed on the machine. 
 
Results 
 
Figure 2 shows that GBM was an inefficient user of 
memory. In the S1 scenario, the total size of objects on 
the memory during execution of the GBM codes was 138 
megabytes, while for GBLUP it was only 331 kilobytes. 
The xgboost were ranked as second. The difference 
between xgboost and GBM was significant (38.5 
megabytes vs. 138 megabytes). Figure 2 also shows 
that GBM only could handle the S1 and S2 data and 
dealing with S3 scenario of data size, it went out from the 
competition. 
 

Figure 2. Memory requirement for the studied methods using 

S3 dataset 

 
Figure 3 shows the differences between methods in 

terms of computing time. The xgboost was superior to 
other methods studied. In the scenario of S1, in which 
both GBM and xgboost were present, the xgboost which 
runs in parallel, decreased the computing time by 99.7% 
compared to GBM which runs serially (1.49 seconds vs. 
661 seconds). The speedup ratio was 444 with 
parallelization efficiency as 74. In addition, in the S2 
scenario, xgboost decreased the computing time by 
99.8% compared to GBM (2.55 seconds vs. 1384.3 
seconds). The corresponding speedup ratio and 
parallelization efficiency were 554 and 92, respectively.  

 

 

 
Figure 3. Computing time of the studied methods in different 

scenarios of data size 

Figures 4 and 5 show the prediction accuracy and 
MSE of prediction, respectively. In all methods studied, 
by increasing the number of markers, the accuracy of 
prediction (rp,t) decreased and mean square error of 
prediction (MSE) increased. For xgboost and GBLUP, rp,t 
decreased by 18% and 20% following the increase in the 
number of SNPs from 5,000 to 50,000. On the other 
hand, the MSE of prediction increased 4 times by 
increasing the number of SNPs from 5,000 to 50,000. 
Regarding the accuracy of prediction measured by rp,t, 
GBLUP predicted the GBVs with higher accuracy 
compared to other methods. But regarding MSE, in all 
the scenarios studied, the MSE of predictions for 
xgboost was smaller than other methods, although in 
most cases its differences with GBM were not 
statistically significant (P>0.05).  

 

 
Figure 4. Accuracy of the studied methods in different 

scenarios of data size 
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Figure 5. MSE of prediction for the studied methods in different 

scenarios of data size 

Discussion 
 
The results showed that GBLUP was the most efficient 
user of memory. Therefore, GBLUP could handle much 
larger datasets compared to other methods. The amount 
of memory required by a method depends on the 
mathematical algorithm used and the software on which 
it run. For example, implementation of some methods 
such as rrBLUP requires inverting large matrices that 
take up a lot of space on the memory and makes the 
operation to be very memory expensive. In addition, 
some packages in R such as gbm (Greenwell et al., 
2019) which was used to run GBM suffer from the 
“memory leakˮ or “space leakˮ problem. Because of this 
problem, a package cannot correctly manage memory 
allocation in a way that memory which is no longer 
needed is not released and therefore there won't be free 
room on the memory for execution of remained codes 
(Singh et al., 2007).  

Significant decrease in computing time for xgboost 
was in agreement with Thompson and Charnigo (2015) 
who reported that machine learning algorithms which 
account for heterogeneous correlation structures could 
benefit significantly from parallelization. Increases in 
speedup ratio and parallelization efficiency following an 
increase in the data size indicated that by increasing the 
size of data, the efficiency of parallel computing 
increased. In other words, scenarios of using small 
datasets could not well represent the advantage of 
parallel computing over serial computing. Carlborg et al. 
(2001) used serial and parallel computing to detect the 
quantitative trait loci (QTL) and reported that parallel 
computing decreased the computing time by 85% 
compared to serial computing (13.7 hours vs. 2.1 hours). 
Ma et al. (2008) showed that by parallelizing a GWAS 
including 50000 SNPs and 2000 individuals the 
computing time decreased from 10 hours to 0.2 hours. 
Wu et al. (2012) applied the Bayesian method in parallel 
using Hidden Markov Chain for genome-enabled 
prediction of the rib Eye in a population of beef cattle and 
reported 87% decrease in computing time compared to  
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serial computing (7.78 minutes vs. 1386 minutes). Guo 
et al. (2018) used Hidden Markov Chain to do parallel 
computing with Bayesian methods for genomic 
predictions of four quantitative traits in a Simmental 
population and reported, depending on the method used, 
3 to 13 fold decreases in computing time compared with 
serial computing. The xgboost not only was superior to 
its serial form (GBM), but also it was significantly faster 
than GBLUP (Figure 3). For small datasets, the 
decrease in runtime may not be very important, but when 
analyses include large datasets, decrease in runtime is 
valuable for researchers. Especially with recent 
advances in DNA technology which allow the rapid 
collection of up to a few million genetic markers of 
thousands individuals, the use of big data in genomic 
evaluation of livestock will be inevitable. Under such 
situations, parallelization of genomic prediction models 
will be an effective strategy to obtain results of genomic 
evaluation as soon as possible. In addition, the extent to 
which xgboost can accelerate the process of genomic 
selection depends on the number of cores in the CPU of 
the machine. Here, using a CPU equipped with 6 cores, 
xgboost was considerably faster than GBLUP. Certainly 
with a CPU equipped with higher number of cores, it will 
be much faster than GBLUP. With a cluster of thousands 
cores, a serial computing-GBLUP which takes hours to 
complete, would be finished in a few second by xgboost. 
The superiority of xgboost over other methods showed 
that xgboost is highly efficient for high dimensional data. 

Following the increase in the number of markers from 
5,000 to 50,000 markers, a decrease in predictive 
performance of prediction methods shown by rp,t and 
MSE was noticed. This was expected, because by 
increasing the number of markers, the computation 
burden increases significantly as the number of unknown 
parameters (p, number of markers) that have to be 
estimated by using a fixed number of known parameters 
(n, number of individuals) increases (Zhang et al., 2019). 
This is termed "Big-p, Little-n" or "p >> n" problem. A 
major problem with p >> n problem when using machine 
learning models is overfitting the training dataset. Given 
the lack of samples, most models are unable to 
generalize and instead learn the statistical noise in the 
training data. Therefore, the model performs perfectly on 
training set, while fitting poorly on testing set (Ying, 
2019). Considering the GBLUP, the problem with more 
predictors than phenotypic values is that there will be no 
unique solution to a standard linear regression problem. 
Therefore, once the coefficients for n of the predictors 
are estimated, the coefficients for the other (p−n) 
predictors can be expressed as arbitrary linear 
combinations of those first n predictors.  As a result, by 
increasing the number of markers, the number of 
phenotyped animals in the reference population should 
be increased to prevent a decrease in accuracy. The 
current results demonstrated that while parallel 
computing accelerated the analyses, it did not affect the 
accuracy of prediction" and add them to the beginning of 
the next paragraph.  
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The current results demonstrated that while parallel 

computing accelerated the analyses, it did not affect the 
accuracy ofmprediction. Guo et al. (2018) reported that 
parallel computing for genomic evaluation of Simental 
cow provided predictions with similar accuracy as serial 
computing. The GBLUP superiority to other methods, 
regarding the accuracy of prediction, was in agreement 
with other studies including Neves et al. (2012), 
Abdollahi-Arpanahi et al. (2013) and Zhang et al. (2019) 
who reported higher rp,t for GBLUP compared to other 
methods studied. However, the predictions with xgboost 
and GBM had significantly smaller MSE (P<0.05). There 
is no consensus among researchers regarding the use 
of rp,t or MSE for model comparison. The rp,t is the most 
commonly used criterion to evaluate the predictive ability 
of genomic prediction models. While larger estimates of 
rp,t show more reliable predictions, it does not address 
the bias of predictions. The MSE of prediction is equal to 
the squared prediction bias plus the variance of the 
prediction error and, therefore, it includes both the 
predictive accuracy and bias of predicted genomic 
breeding values. Small values of MSE show that the 
predictor is precise and accurate (Gonzales Racio et al., 
2014). Gonzales Racio et al. (2014) compared the MSE 
with rp,t and reported that MSE was more informative 
than rp,t for comparing genomic prediction methods. 
They demonstrated that methods with similar rp,t, may 
have different MSE and suggested using MSE as the 
main metric for model comparison. Comparison of the 
long-term genomic selection schemes based on GBVs 
evaluated by rp,t or MSE could help to resolve the 
ambiguities in this area.  
 

Conclusions 
 
In conclusion, xgboost significantly speeded up the 
process of genomic evaluation compared with GBM. 
Although, the accuracy of prediction in terms of rp,t was 
higher for GBLUP, the MSE of prediction was smaller for 
xgboost. Taking into account that big genomic data are 
being generated for use in genomic evaluation 
procedure, developing packages for parallelization of 
accurate genomic methods such as GBLUP is 
recommended. 
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