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Abstract. Clustering multivariate data based on mixture distributions

is a usual method to characterize groups and label data sets. Mixture
models have recently been received considerable attention to accommo-

date asymmetric and missing data via exploiting skewed and heavy-tailed
distributions. In this paper, a mixture of multivariate mean-mixture of

normal distributions is considered for handling missing data. The EM-

type algorithms are carried out to determine maximum likelihood of pa-
rameters estimations. We analyzed the real data sets and conducted sim-

ulation studies to demonstrate the superiority of the proposed methodol-

ogy.

Keywords: EM-type algorithms, Finite mixture model, MMN distribu-

tion, Missing data, Skew distribution.
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1. Introduction

Model-based clustering is an important sub-field of pattern recognition for
modeling data with a complex structure. Among several statistical methods,
finite mixture (FM) of multivariate distribution is mostly used to identify the
pattern of sophisticated and high-dimensional data. Classification based on
FM models can divide datasets into some groups such that the similarity within
and between groups are maximum and minimum, respectively. Specifically, a p-
variate random vector Y is said to have an FM model if it takes the probability
density function (pdf) as

(1) f(y; Θ) =

g∑
i=1

πiφ(y,θi),

where πi > 0 are mixing proportions with limitation π1 + · · · + πg = 1, Θ =
(π1, . . . , πg−1,θ1, . . . ,θg) and φ(·,θi) denotes the pdf of ith mixing component.
Although the initial FM model [6] assumed the multivariate normal distribution
as a mixture component, the interest of skewed and heavily-tailed distributions
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have increasingly been considered as a robust framework for data analysis. For
more study about FM models, we can refer to [12, 21, 22, 27], a few recently
published contributions.

The parsimonious mixture of multivariate t distributions as well as missing
data was proposed in [15] that is applicable for the symmetric and tick-tail
data as a rival for the original finite mixture model. In order to extend the
normally-based FM model, two important issues are always in interest: (i) the-
oretical convenience and mathematical properties, and (ii) the flexibility and
robustness in analyzing strongly skewed and missing data. In this regard, the
family of skew-normal (SN) (Azzalini [4]) distributions is one of distributions
that used in constructing an efficient finite mixture models for analyzing skewed
data with missing information. For instance, Lin and Lin [16] considered a ver-
sion of multivariate SN distribution that provides more flexibility in clustering
data with strong skewness features. The finite mixture of skew-t distributions
introduced in [30] as an extension of the finite mixture of SN distributions for
handling heavily-tailed asymmetric with missing information datasets.

The mean mixture of normal (MMN) distribution is a class of skew dis-
tributions that introduced by Negarestani et al. [25] as an alternative to the
baseline SN distribution. Based on [25], the MMN distribution has inherited
mathematical and computational aspects and a flexible platform of statistical
analysis. Recently, Hashemi et al. [13] extended the original factor analyzer
model based on MMN distribution and showed that the class of MMN distri-
butions outperforms the skew-t distribution whenever the degree of freedom
increases. Simulation results of Hashemi et al. [13] showed that the speed of
convergence of MMN distribution on the data is much faster than some ex-
isting models. Naderi et al. [23] used MMN distributions for proposing a new
matrix-variate model and showed that the class of MMN distributions offers dif-
ferent orientation compared to the family of mean-variance mixture of normal
distributions.

In this paper, we are devoted to contrive a skew extension of finite mixture
models based on the MMN distribution for analysis skewed and missing data,
referred to as the FM-MMN model henceforth. The problem of missing data
is ubiquitous in many scientific fields and should be addressed appropriately
before engaging learning algorithms. Statistical methods of simply deleting
subjects with missing values can cause seriously biased estimates and cluster-
ing and subsequently leads to distorted inference. A variety of traditional and
modern techniques to deal with missing data are available, see Little and Ru-
bin [17] for a comprehensive overview. Therefore, the clustering of multivariate
data with missing information is one of the main reasons introduced FM-MMN
model. Another the main reasons is reduce free parameters model by introduc-
ing 14 parsimonious structures via eigen-decomposition [9, 19]. To address the
presence of missing values, two auxiliary indicator matrices are incorporated
for methodological and theoretical developments in a more efficient manner.
Based on a convenient hierarchical representation of the proposed model, we
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develop a computational feasible EM-based algorithm [11] to estimate maxi-
mum likelihood with almost all closed-form expressions for the E- and M-steps.

The paper layout is as follows. In section 2, we recall the MMN distribution
with some preliminary theoretical properties and four special cases. Section 3
addresses the estimation and computational framework of the MMN mixture.
For parameter estimation, we extend an EM-type algorithm of the Expectation
Conditional Maximization either (ECME), represented by [18]. In section 4 and
5, the proposed methodology is demonstrated with extensive application of a
real data set and simulation studies.

2. Model formulation

2.1. The formulation of MMN distribution. MMN formulation and some
properties of its class of distributions are reviewed in this section to describe the
motivation and parameter estimation better. Let us consider the p-dimensional
random vector Y ∈ Rp following an MMN distribution and denoted it by Y ∼
MMN (µ,Σ,λ,ν) with mean vector µ, covariance matrix Σ and shape pa-
rameter λ. Considering mixing cumulative distribution function (cdf) H(·;ν),
the pdf of an MMN distribution as

(2) fMMN(y;θ) =

∫ ∞
−∞

φ(y;µ+ λw,Σ)h(w;ν) dw, y ∈ Rp,

where θ = (µ,Σ,λ,ν). Then, a p-variate random vector Y is said to have a
MMN distribution if it can be generated through the linear stochastic repre-
sentation

(3) Y = µ+ λW +Z, Z⊥W,

where Z follows the p-variate normal distribution with mean vector 0 and
covariance matrix Σ, Np(0,Σ), W is an arbitrary random variable with cdf
H(·;ν) and the symbol ‘⊥’ denotes the independence of two random variables.

2.2. Special case of the MMN distribution.

• Convolution with truncated normal distribution. Let W be a random
variable in (3) with the truncated standard normal distribution lying
within a truncated interval (0,∞), W ∼ T N (0, 1; (0,∞)). Therefore,
the pdf of restricted skew-normal (rSN) distribution can be obtained
as

(4) frSN(y;µ,Σ,λ) = 2φp(y;µ,Ω)Φ

(
λ>Ω−1(y − µ)√

1− λ>Ω−1λ

)
, y ∈ Rp,

where Ω = Σ + λλ>, and Φ(·) is the cdf of the univariate standard
normal distribution, N (0, 1). The notation Y ∼ rSN (µ,Σ,λ) will be
used if Y has pdf (4).
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An extension of rSN distribution can be postulated by considering
W ∼ T N (0, 1; (−ν,∞)). This leads to obtain the pdf of Y , called ErSN
and denoted by Y ∼ ErSN (µ,Σ,λ, ν), as

fErSN(y;µ,Σ,λ, ν) =
φp(y;µ,Ω)

Φ(ν)
Φ

(
ν + λ>Ω−1(y − µ)√

1− λ>Ω−1λ

)
, y ∈ Rp.(5)

• Convolution with the two-piece normal distribution. Let W be a ran-
dom variable in (3) with the pdf

(6) f(w; ν) = φ(
w

1 + ν
)I[0,∞)(w) + φ(

w

1− ν
)I(−∞,0)(w), ν ∈ (−1, 1),

where IA(·) denotes the indicator function of set A and φ(·) is the
pdf of N (0, 1). Therefore, the pdf of two-piece mixing rSN (TPrSN)
distribution, denoted by Y ∼ T PrSN (µ,Σ,λ, ν), can be obtained as

fTPrSN(y;µ,Σ,λ, ν) =
(1 + ν)

2
frSN(y;µ,Σ, (1 + ν)λ)

+
(1− ν)

2
frSN(y;µ,Σ, (ν − 1)λ), y ∈ Rp, ν ∈ (−1, 1).(7)

As expected, a mixture of two rSN distributions formulated pdf (7).
• Convolution with a exponential distribution. Let W be a random vari-

able in (3) with the exponential distribution of mean 1/ν, denoted by
E(ν). Therefore, the pdf of exponential MMN (MMNE) distribution,
denoted by Y ∼MMNE(µ,Σ,λ, ν), can be obtained as

fMMNE(y;µ,Σ,λ, ν) =
ν
√

2π

τ
exp

{A2
E

2

}
φp(y;µ,Σ)Φ(AE), y ∈ Rp,(8)

where τ2 = λ>Σ−1λ, and AE = τ−1
[
λ>Σ−1(y − µ)− ν

]
.

• Convolution with a mixture of exponential and half-normal distribu-
tion. Let W be a random variable in (3) with the pdf

(9) f(w; ν) = ν1ν2 exp{−ν2w}+ 2(1− ν1)φ(w), w, ν2 > 0, 0 < ν1 < 1.

Therefore, the pdf of half-normal exponentiated MMN (MMNEH) dis-
tribution, denoted by Y ∼MMNEH(µ,Σ,λ, ν), can be obtained as

fMMNEH(y;µ,Σ,λ,ν) =ν1ν2

√
2π

τ
exp

{A2
EH

2

}
φp(y;µ,Σ)Φ(A

EH
)

+ (1− ν1)frSN(y;µ,Σ,λ), y ∈ Rp,

where A
EH

= τ−1
[
λ>Σ−1(y − µ) − ν2

]
. As can be expected, the pdf

above is formulated by a mixture of the MMNE and rSN distributions.
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3. FM-MMN models with incomplete data

3.1. The general model. Let Yj be a p-dimensional random vector of the
jth individual for j = 1, . . . , n from a FM-MMN distributions. The pdf Yjs
can be formulated as

f(yj ; Θ) =

g∑
i=1

πifMMNp(yj ;µi,Σi,λi,νi), i = 1, . . . , g,(10)

where πi’s are mixing probabilities sum of which equals one, Θ denotes the
model parameters, and fMMNp

(y;µ,Σ,λ, ν) is the MMN density defined in
(2). Define the latent membership-indicator vectors, Z1, . . . ,Zn, where Zj =
(Z1j , . . . , Zgj) with Zij = 1 if jth observation belongs to the ith component
and 0 otherwise. FM-MMN models can be represented hierarchically at the
following three levels:

Yj |(wj , zij = 1) ∼ Np(µi + λiwj ,Σi),

Wj |(zij = 1) ∼ h(wj |νi),
Zj ∼ M(1;π1, . . . , πg).(11)

This paper examines the case where uncontrolled nonresponses cause missing
values. For the FM-MMN model to be formulated with incomplete data, we
consider two matrices Oj (poj ×p) and Mj((p−poj)×p) for partition Yj(p× 1).
Therefore, we have used these two matrices Y o

j = OjYj and Y m
j = MjYj ,

observed and missing parts of Yj , respectively.
The following proposition presents some significant consequences, which help

to obtain the Q-function of the ECME algorithm.

Proposition 3.1. If the conditions of relation (11) hold then:

(a) The marginal distribution of the observed component Y o
j is given zij =

1

(12) Y o
j |(zij = 1) ∼MMN po

j
(µo

ij ,Σ
oo
ij ,λ

o
ij ,νi),

where µo
ij = Ojµi, λ

o
ij = Ojλi and Σoo

ij = OjΣiO
>
j .

(b) The conditional distribution of Y o
j given wj and zij = 1 is

Y o
j | (wj , zij = 1) ∼ Npo

j
(µo

ij + wjλ
o
ij ,Σ

oo
ij ),

(c) The conditional distribution of Y m
j given yo

j , wj and zij = 1 is

Y m
j | (yo

j , wj , zij = 1) ∼ Np−po
j
(ϕm.o

ij ,Σmm.o
ij ),

where ϕm.o
j = Mj

[
µi + wjλi + ΣiS

oo
ij (yj − µi − wjλi)

]
, Σmm.o

ij =

Mj

(
Ip −ΣiS

oo
ij

)
ΣiM

>
j , and Soo

ij = O>j
(
OjΣiO

>
j

)−1
Oj.
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Proposition 3.2. (a) Let Y o
j ∼ ErSN po

j
(µo

ij ,Σ
oo
ij ,λ

o
ij , νi) andW ∼ T N (0, 1; (−νi,∞)).

Then, Wj conditionally on Y o
j = yo

j and Zij = 1, denoted by Wyo
j
, fol-

lows Wyo
j
∼ T N

(
ξ, ω2; (0,∞)

)
, where ξ = νi + λo

ij
>Ωoo

ij
−1(yo

j − µo
ij)

and ω2 = 1− λo
ij
>Ωoo

ij
−1λo

ij for Ωoo
ij = Σoo

ij + λo
ijλ

o
ij
>.

(b) Let Y o
j ∼ T PrSN po

j
(µo

ij ,Σ
oo
ij ,λ

o
ij , νi) and Wj have a density in (6).

Then, Wyo
j
has pdf

fWyo
j
(w) = π(yo

j )
φ
(
w; ξ1, ω

2
1

)
Φ(ξ1/ω1)

I[0,∞)(w) + (1− π(yo
j ))

φ
(
w; ξ2, ω

2
2

)
Φ(−ξ2/ω2)

I(−∞,0)(w),

where ξ1 = (1 + νi)
2λo

ij
>Ωoo

1ij
−1(yo

j − µo
ij) and ω2

1 = (1 + νi)
2 −

(1 + νi)
4λo

ij
>Ωoo

1ij
−1λo

ij, Ωoo
1j = Σoo

ij + (1 + νi)
2λo

ijλ
o
ij
>, ξ2 = (1 −

νi)
2λo

ij
>Ωoo

2ij
−1(yo

j −µo
ij) and ω2

2 = (1−νi)2− (1−νi)4λo
ij
>Ωoo

1ij
−1λo

ij,

Ωoo
2j = Σoo

ij + (1− νi)2λo
ijλ

o
ij
>, and

π(yo
j ) =

(1 + νi)frSN(yo
j ;µo

ij ,Σ
oo
ij , (1 + ν)λo

ij)

2fTPrSN(yo
j ;µo

ij ,Σ
oo
ij ,λ

o
ij , νi)

.

Furthermore, for any yo
j ∈ Rpo

j , and k = 1, 2, . . . ,

E(W k
yo
j
) = π(yo

j )E
(
V k
1

)
+ (1− π(yo

j ))E(V k
2 ),

where V1 ∼ T N
(
ξ1, ω

2
1 ; (0,∞)

)
, V2 ∼ T N

(
ξ2, ω

2
2 ; (−∞, 0)

)
.

(c) Let Y o
j ∼MMNEpo

j
(µo

ij ,Σ
oo
ij ,λ

o
ij , νi) and Wj ∼ E (νi). Then, Wyo

j
∼

T N
(
Ao

Eijτ
o
ij
−1, τoij

−2; (0,∞)
)
where τoij

2 = λo
ij
>Σoo

ij
−1λo

ij and

Ao
Eij = τoi

−1
[
λo
ij
>Σoo

ij
−1(yo

j − µo
ij)− νi

]
.

(g) Let Y o
j ∼ MMNEHpo

j
(µo

ij ,Σ
oo
ij ,λ

o
ij ,νi) with νi = (ν1i, ν2j) and Wj

have a density in (9). Then, Wyo
j
has pdf

fWyo
j
(w) = π(yo

j )
φ
(
w;Ao

EHijτ
o
ij
−1, τoij

−2)
Φ(Ao

EHij
)

+ (1− π(yo
j ))

φ
(
w; ξ, ω2

)
Φ(ξ/ω)

,

where

π(yo
j ) =

ν1iν2j
√

2π

2τoijfMMNEHpo
j
(µo

j ,Σ
oo
j ,λ

o
j , ν)

φp
(
y;µo

j ,Σ
oo
j

)
× exp

(
Ao

EHij

2

)
Φ(Ao

EHij
),

where Ao
EHij == τoij

−1
[
λo
ij
>Σoo

ij
−1(yo

j − µo
ij)− ν2i

]
. Furthermore, for

any yo
j ∈ Rpo

j , and k = 1, 2, . . . ,

E(W k
y ) = π(y)E

(
V k
1

)
+ (1− π(y))E(V k

2 ),

where V1 ∼ T N
(
Ao

EHijτ
o
ij
−1, τoij

−2; (0,∞)
)
, V2 ∼ T N

(
ξ, ω2; (0,∞)

)
.
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3.2. Parameter estimation. In this section, the parameter estimation of
the FM-MMN is carried out via an ECME algorithm. [18] considered the
ECME algorithm as an extension of the expectation maximization algorithm
[20]. Several properties of this algorithm include stable features, implemen-
tation simplicity, and monotone convergence. To simplify notation, we de-
note the complete data by yc = (yo,ym,U ,W ,Z), where yo = (yo

1, . . . ,y
o
n),

ym = (ym
1 , . . . ,y

m
n ), W = (W1, . . . ,Wn) and Z = (Z1, . . . ,Zn). From (11),

the log-likelihood function of Θ for yc, without considering constant terms, is

`(Θ|yc) =

g∑
i=1

n∑
j=1

zij

[
log πi + log h(wj |νi)−

1

2
log Σi

]

− 1

2
tr

{
g∑

i=1

Σ−1i

n∑
j=1

zij

[
(yj − µi)(yj − µi)

>

− wj(yj − µi)λ
>
i − wjλi(yj − µi)

> + w2
jλiλ

2
i

]}
.(13)

We then have the following conditional expectations.

ẑ
(k)
ij =

π̂
(k)
i fMMNpo

j
(yo

j ;µo
ij ,Σ

oo
ij ,λ

o
ij ,νi)∑g

h=1 π̂
(k)
h fMMNpo

j
(yo

j ;µo
hj ,Σ

oo
hj ,λ

o
hj ,νh)

,

(14)

ŵ
(k)
rij =E(W r

j | yo
j , zij = 1, Θ̂(k)), Ψ̂

(k)
ij = E(log h(Wj ; νi) | yo

j , zij = 1, Θ̂(k)),

for j = 1, . . . , n and i = 1, . . . , g. Evaluations can be conducted using previous
Propositions 3.2.The ECME algorithm used to obtain the ML estimate of the
FM-MMN distributions iterates the below E- and CM-steps as follows.

• E-step: Calculate

Q(Θ|Θ̂) =

g∑
i=1

n̂
(k)
i log πi +

g∑
i=1

n∑
j=1

ẑ
(k)
ij Ψ̂

(k)
ij

− 1

2

g∑
i=1

n̂
(k)
i log Σi −

1

2

g∑
i=1

tr
(
Υ̂

(k)
ij

)
,(15)

where n̂
(k)
i =

∑n
j=1 ẑ

(k)
ij , Υ̂

(k)
ij = E

((
Yj−µi−Wjλi

)(
Yj−µi−Wjλi

)> |
yo
j , zij = 1, Θ̂(k)

)
, and the necessary conditional expectations obtained
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by Proposition 3.1 and 3.2 are

ẑ
(k)
ij =

π̂
(k)
i fMMNpo

j
(yo

j ;µo
ij ,Σ

oo
ij ,λ

o
ij ,νi)∑g

h=1 π̂
(k)
h fMMNpo

j
(yo

j ;µo
hj ,Σ

oo
hj ,λ

o
hj ,νh)

,

ŵ
(k)
rij =E(W r

j | yo
j , zij = 1, Θ̂(k)),

Ψ̂
(k)
ij =E(log h(Wj ; νi) | yo

j , zij = 1, Θ̂(k)),(16)

• CM-step 1: Maximizing (15) over πi, µi, λi and Σi leads to the fol-
lowing CM estimators:

π̂
(k+1)
i =

n̂
(k)
i

n
,

µ̂
(k+1)
i =

∑n
j=1 ẑ

(k)
ij q̂

oo(k)

ij − Σ̂
(k)
i

∑n
j=1 ẑ

(k)
ij ŵ

(k)
1ij Ŝ

oo(k)

ij λ̂
(k)
i

n̂
(k)
i

,

λ̂
(k+1)
i =

∑n
j=1

[
ẑ
(k)
ij ŵ

(k)
2ij Ê

oo(k)

ij + ẑ
(k)
ij ŵ

(k)
1ij (q̂oo

(k)

ij − µ̂(k+1)
i )

]
∑n

j=1 ẑ
(k)
ij ŵ

(k)
2ij

,

Σ̂
(k+1)
i =

∑n
j=1 ẑ

(k)
ij Υ̂

(k+1)
ij

n̂
(k)
i

,(17)

where q̂oo
(k)

ij = µ̂
(k)
i +Σ̂

(k)
i Ŝoo(k)

ij (yj−µ̂(k)
i ), Êoo(k)

j =
(
Ip − Σ̂

(k)
i Ŝoo(k)

ij

)
λ̂
(k)
i

and

Υ̂
(k+1)
ij =

(
q̂oo

(k)

ij − µ̂(k+1)
i

)(
q̂oo

(k)

ij − µ̂(k+1)
i

)>
+
(
Ip − Σ̂

(k)
i Ŝoo(k)

ij

)
Σ̂

(k)
i

+ ŵ
(k)
2ij

(
Êoo(k)

ij − λ̂(k+1)
i

)(
Êoo(k)

ij − λ̂(k+1)
i

)
+ ŵ

(k)
1ij

(
q̂oo

(k)

ij − µ̂(k+1)
i

)(
Êoo(k)

ij − λ̂(k+1)
i

)>
+ ŵ

(k)
1ij

(
Êoo(k)

ij − λ̂(k+1)
i

)(
q̂oo

(k)

ij − µ̂(k+1)
i

)>
.

• CML-step 2: In the light of (11), when the νis are assumed to be
unequal, the updated estimate of νi is obtained as

(18) ν̂
(k+1)
i = arg max

νi

n∑
j=1

ẑ
(k)
ij fMMNpo

j

(
yo
j ; µ̂o(k+1)

ij , Σ̂oo(k+1)

ij , λ̂o(k+1)

ij ,νi

)
,

where fMMNpo
j

(
yo
j ; · · ·

)
is the MMN pdf as defined in (2). In the case

where the νis are constrained to be identical, say, we update ν1 = · · · =
νg = ν by maximizing the constrained actual observed log-likelihood
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function, namely

ν̂(k+1) = arg max
ν

g∑
i=1

n∑
j=1

{
π̂
(k+1)
i log fMMNpo

j

(
yo
j ; µ̂o(k+1)

ij , Σ̂oo(k+1)

ij , λ̂o(k+1)

ij ,νi

)}
,

where µ̂o(k+1)

ij , Σ̂oo(k+1)

ij , and λ̂o(k+1)

ij are µ̂o
ij , Σ̂oo

ij , and λ̂o
ij in Proposition

3.1, respectively, evaluated at the current estimates at the start of the
(k + 1)th iteration.

In short, the update of νi for the special cases of the FM-MMN can be obtained
as

ν̂
(k+1)
i =


Free of parameter for rSN;
Obtained by (18) for ErSN;
1/ ˆ̄w1i for MMNE;
Obtained by (18) for TPrSN;

where ˆ̄w1i =
∑n

j=1 ẑ
(k)
ij ŵ

(k)
1ij∑n

j=1 ẑ
(k)
ij

and ˆ̄w2i =
∑n

j=1 ẑ
(k)
ij ŵ

(k)
2ij∑n

j=1 ẑ
(k)
ij

.

Remark 3.3. For the update estimates of νi = (ν1i, ν2i), we can circumvent this
difficulty by introducing a binary variable Vij as the second source of missing
data into the representation (11) as

Y o
j |(Wj = wj , Zij = 1, Vij = 1) ∼ Npo

j
(µo

ij + wjλ
o
ij ,Σ

oo
ij ),

Wj |(Zij = 1, Vij = 1) ∼ E(ν2i),

Vj |(Zij = 1) ∼ B(1, ν1i),

Zj ∼ M(1;π1, . . . , πg).(19)

where B(1, ν1i) denotes the Bernoulli trail with ν1i probability. In this part,
Vij = 1 if yj in group g is taken from the MMNEH distribution and Vij = 0 if xo

j

in group g is generated by the rMSN model. According to representation (19),
the update of parameter νi through the ECME algorithm can be computed as

(20) ν̂
(k+1)
1i =

∑n
j=1 ẑ

(k)
ij v̂

(k)
ij

n̂
(k)
i

and ν̂
(k+1)
2i =

∑n
j=1 ẑ

(k)
ij v̂

(k)
ij∑n

j=1 ẑ
(k)
ij ŵ

(k)
1ij v̂

(k)
ij

,

where

(21) v̂
(k)
ij =

ν1iν2i
√

2πΦ(Ao
ij)

2τoijfMMNEH(yo
j ;µo

ij ,Σ
oo
ij ,λ

o
ij ,νi)

φp
(
yo
j ;µo

ij ,Σ
oo
ij

)
exp

(
Ao2

ij

2

)
.

3.3. Parsimonious versions of the general model. For the FM-MMN
models, the covariance matrices of latent factors (Σi) have p(p + 1)/2 free
parameters. By increasing the number of components, the model fitting the
process could be affected by over-parameterization. For this potential problem,
the parsimony in the multivariate normal and non-normal mixture models was
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introduced by [6]. They consider the eigenvalue decomposition parameteriza-
tion on the component covariance matrices

(22) Σi = ηiΓi∆iΓ
>
i ,

where ηi = |Σi|1/p known as the constant of proportionality, ∆i is a diagonal
matrix of eigenvalues of Σi sorted from highest to lowest |∆i| = 1, and Γi is the
orthogonal matrix consisting of eigenvectors of Σi that are ordered according
to their eigenvalues. By applying various constraints to the eigenvalue decom-
position of the covariance matrix (22), [9] introduced clustering using fourteen
Gaussian parsimonious mixture models. The results are summarized in Table
1 in the supplemental file of this paper. Bear in mind that parameterization in
(22) has different geometric interpretations. Indeed, ηi represents the volume
of the ith cluster while ∆i and Γi determine the shape and orientation of the
ith cluster, respectively.

3.4. Predicting missing information. To calculate predicting factor scores

and missing information, denote the ML estimates by Θ̂ = (π̂i, µ̂i, Σ̂i, λ̂i, ν̂i), as
a by-product of our ECME algorithm and Proposition 3.1 part (c), conditional
imputation is used to estimate missing values as

(23) ŷm
j = Mj

[
µ̂i + ŵ1ijλ̂i + Σ̂iŜ

oo
ij (yj − µ̂i − wjλ̂i)

]
,

where Ŝoo
ij = O>j

(
OjΣ̂iO

>
j

)−1
Oj . We use the mean squared deviation (MSD)

as a measure of the difference between the true value ym
j and the imputed value

ŷm
j . MSD can be calculated as follows:

(24) MSD =
1

n∗

n∑
j=1

(ym
j − ŷm

j )>(ym
j − ŷm

j ),

where n∗ is the number of missing items.

3.5. Notes on Implementation. Like any EM-type algorithm, if the ECME
algorithm is given reasonable parameter estimates, convergence may be sped up
or made more manageable. When the raw data contains missing values, after
filling in the missing values of kth variable with the mean of the corresponding
column regardless of the missing values, for specifying. By using R function
“kmeans( )”, we classified datasets into g groups and used the number of data
points belonging to the same cluster i division to a number of data points. For

each group, create the initial value µ̂
(0)
i and Σ̂

(0)
i as the mean and covariance

of the data, respectively. Following [29], we considered λ̂
(0)
i = 0 and ν̂

(0)
i = 1

for ErSN and MMNE distributions, ν̂
(0)
i = 0.5 for TPrSN distribution, and

(ν1, ν2) = (0.5, 1) for MMNEH distribution to near-normality.
The Bayesian Information Criterion (BIC) [28] is used to select the number

of classes and factors. We calculate as

BIC = −2`max +m log n,
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where m is the number of free parameters, and `max is the maximized log-
likelihood value.

As an alternative measure, the integrated completed likelihood (ICL) [7] is
also suitable for measuring the number of clusters, defined as

ICL = BIC + 2ENT(ẑ),

where ENT(ẑ) = −
∑g

i=1

∑n
j=1 ẑij log ẑij . Models with smaller BIC values

are generally better fitted. To measure the ability of clustering agreement, we
employ the misclassification rate (MCR), the correct classification rate (CCR),
and adjusted Rand index (ARI, [14]), which compensates for the shortcomings
of the AR due to chance agreement. The model with the highest CCR and
ARI score provides the most reliable classification accuracy.

For stopping rule of the ECME algorithm, the algorithm can be continued to
reach `(Θ̂(k);y)− `(Θ̂(k−1);y) < ε at iteration (k), where `(Θ̂(k);y) is the log-
likelihood value evaluated with parameters estimation and ε is a pre-specified
tolerance. When kmax = 2000 iterations have been performed, or when the log-
likelihood difference between two successive iterations is less than ε = 10−5,
the algorithm terminates.

4. Hepatitis disease data

We applied our method on Hepatitis Data as an example, which consists of
20 attributes with missing information: 6 are continuous, 14 are categorical
data . There are n = 205 samples in the data but no known grouping labels
of the Automobile data. The data have been previously used by [10]. Before
fitting, each attribute is normalized to have zero mean and unit variance.

Under the fact of unknown grouping labels for this data, at first, we fit
14 covariance structures the 6 continuous attributes of the data with g = 2
by finite mixture normal distribution (FM-N), finite mixture t distribution
(FM-T), finite mixture restricted skew normal distribution (FM-rSN), and FM-
MMN models and report the best BIC in Table 1. Table 1 summarizes the
maximum likelihood results, containing the number of parameters and the value
of BIC criteria. To compare clustering performance in the mentioned models,
the classification settlement obtained by CCR and ARI are also presented in
Table 1. The best value for each model is highlighted. According to this
table, the VVE structure in FM-MMNE is the best model to fit this dataset
(BIC=1851.787) and the best classification accuracy for this dataset is CCR =
0.854. Based on Figure 1, the FM-T, FM-rSN, and FM-MMN models via FM-N
provide somewhat different imputations. Therefore, the FM-MMN models via
FM-N has a different performance for analyzing missing values, but the FM-T
via FM-N has similar performance. Thus, we are interested that displayed the
scatters and contours plot of marginal bivariate fitted FM-MMN models. By
using Figure 2, the marginal contours look skewed and have bi-modal and long
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Table 1. Estimating the performance of finite mixture mod-
els for g = 2 fitted the Hepatitis disease data.

Model EII VII EEI VEI EVI VVI EEE VEE EVE EEV VVE VEV EVV VVV

FM-N nu. par. 14 15 19 20 24 25 34 35 39 49 50 40 54 55
BIC 2239.443 2129.149 2248.113 2124.229 2110.241 2018.718 2312.079 2166.883 2144.606 2175.037 2102.112 2050.155 2190.422 2096.033
CCR 0.690 0.639 0.794 0.671 0.806 0.665 0.748 0.729 0.768 0.748 0.671 0.677 0.748 0.671
ARI 0.027 0.043 0.111 0.113 0.312 0.104 0.009 0.152 0.206 0.147 0.096 0.113 0.174 0.091

FM-T nu. par. 16 17 21 22 26 27 36 37 41 51 52 42 56 57
BIC 2150.633 2115.213 2132.524 2096.465 2058.110 2014.366 2172.947 2149.686 2097.031 2118.803 2102.452 2054.736 2133.293 2099.617
CCR 0.742 0.626 0.781 0.606 0.813 0.626 0.768 0.684 0.732 0.735 0.723 0.671 0.723 0.671
ARI 0.225 0.055 0.294 0.034 0.355 0.057 0.168 0.106 0.272 0.154 0.150 0.091 0.143 0.091

FM-rSN nu. par. 26 27 31 32 36 37 46 47 41 61 62 52 66 67
BIC 2145.523 2027.592 2083.025 1956.276 1907.485 1888.259 1978.419 2018.791 1973.846 1973.253 1909.528 1906.201 1910.482 1923.768
CCR 0.755 0.613 0.826 0.723 0.677 0.658 0.794 0.806 0.761 0.748 0.703 0.652 0.748 0.716
ARI 0.240 0.046 0.341 0.193 0.107 0.085 0.278 0.271 0.157 0.157 0.118 0.075 0.189 0.134

FM-ErSN nu. par. 27 28 32 33 37 38 47 48 42 62 63 53 67 68
BIC 2131.461 2083.483 1972.711 1997.626 1897.207 1888.577 2210.075 1987.353 1916.076 1942.718 1901.420 1908.176 1912.664 1889.950
CCR 0.748 0.632 0.742 0.710 0.677 0.658 0.800 0.768 0.690 0.794 0.768 0.677 0.774 0.716
ARI 0.229 0.063 0.217 0.170 0.107 0.085 0.321 0.206 0.118 0.254 0.228 0.107 0.233 0.141

FM-MMNE nu. par. 27 28 32 33 37 38 47 48 42 62 63 53 67 68
BIC 2150.047 2122.769 2050.394 1951.412 1878.431 1880.659 2213.743 1950.240 1861.305 1888.999 1851.787 1896.631 1879.966 1854.898
CCR 0.826 0.761 0.794 0.671 0.645 0.645 0.826 0.768 0.794 0.787 0.854 0.665 0.800 0.781
ARI 0.257 0.255 0.312 0.113 0.075 0.075 0.349 0.214 0.291 0.250 0.370 0.100 0.284 0.252

FM-MMNEH nu. par. 28 29 33 34 38 39 48 49 43 63 64 54 68 69
BIC 2114.719 2136.396 2024.350 1943.354 1880.431 1882.728 2203.031 1921.970 1881.079 1933.135 1921.718 1896.068 1918.814 1906.826
CCR 0.755 0.774 0.794 0.748 0.645 0.645 0.826 0.781 0.677 0.761 0.710 0.671 0.671 0.677
ARI 0.243 0.233 0.262 0.217 0.075 0.075 0.356 0.220 0.118 0.195 0.112 0.108 0.102 0.098

FM-TPrSN nu. par. 27 28 32 33 37 38 47 48 42 62 63 53 67 68
BIC 2147.533 2102.035 1991.359 2001.968 1925.336 1892.201 2222.080 1961.113 1942.107 1961.563 1912.485 1908.932 1955.524 1914.688
CCR 0.755 0.632 0.755 0.594 0.677 0.671 0.813 0.716 0.697 0.729 0.665 0.677 0.703 0.665
ARI 0.240 0.063 0.246 0.029 0.103 0.099 0.339 0.152 0.126 0.152 0.085 0.107 0.134 0.085

tails, which indicates that the FM-MMN models may be more appropriate for
capturing this dataset.

For evaluating the performance of the asymmetric FM-MMN models in re-
vealing group structures in data, the confusion matrices of each data set are
presented in Figure 3. From Figure 3, it is clear that the asymmetric FM-MMN
models yield excellent clustering performance in the case studies considered.

5. Simulation study

In this section, simulation studies were used to investigate the parameters
estimation’s asymptotic properties according to ECME algorithm and the in-
troduced models’ robustness in dealing with non-normal and thick-tailed data.

5.1. Asymptotic properties of parameters estimation. In this experi-
ment, we obtain the performance of the proposed ML estimations based on
ECME algorithm to regain the true parameters of four specific cases of the
FM-MMN model. We consider non-normal data with n = 100, 200, 400, 800
that are generated from four special cases of FM-MMN with two components
(g = 2) and structure VEE. The common true parameters for these models are
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Figure 1. Scatter plots of imputed missing values using the
FM-T and FM-MMN models via FM-N for the Hepatitis dis-
ease data.

as follows

π1 = 0.4, π2 = 0.6, ω1 = 0.25, ω2 = 0.30,

µ1 = (µ11, µ12, µ13)> = (−1,−1,−1)>, µ2 = (µ21, µ22, µ23)> = (2, 2, 2)>,

λ1 = (λ11, λ12, λ13)> = (2, 1, 1)>, λ1 = (λ21, λ22, λ23)> = (2,−1, 2)>,

Σ = Γ∆Γ> =

 σ11 σ12 σ13
σ21 σ22 σ23
σ31 σ32 σ33

> =

 0.67 0.33 0.65
0.33 2.90 0.42
0.65 0.42 1.20

> ,
such that Σ1 = ω1Γ∆Γ>, Σ2 = ω2Γ∆Γ>. In addition, other parameters
for FM-MMN are (ν1, ν2) = (2.2, 0.25) for FM-ErSN, (ν1, ν2) = (4, 1.5) for
FM-MMNE, (ν11, ν12) = (3, 1) and (ν21, ν22) = (0.25, 0.30) for FM-MMNEH,
and (ν1, ν2) = (0.10, 0.0.86) for FM-TPrSN. We generated missing data with
10% level of missingness rate based on missing at random (MAR) mechanism.
For each replication, four special cases and missingness rate, we fitted VEE
structure FM-MMN to generated datasets.
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Figure 2. Scatter-contour plots in the Hepatitis disease data
based on fitted FM-MMN models (FM-MMNE pink line, FM-
TPrSN yellow line, FM-MMNEH black line and FM-ErSN red
line).

To measure the estimation accuracy, we compute the relative absolute bias
(RBias) and the root mean squared error (RMSE):

RBias =
1

100

100∑
i=1

|θ̂i − θtrue| and RMSE =

√∑100
i=1(θ̂i − ¯̂

θ)2

100
,
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Figure 3. The confusion matrices for clustering the Hepatitis
disease data using the FM-MMN models.

where θ̂i denotes the ML estimate of a specific parameter at the ith replication
and θtrue is its true value.

Figures 4 and 5 show the means of RBias and RMSE for every parameter
in each FM-MMN model with 10% missing rate. It should be mentioned that
the assumed parameter i differs for each model. Based on Figures 4 and 5, the
simulation experiment’s results obviously show the effectiveness of the proposed
ECME algorithm in parameter recovery of all the considered sub-models.

5.2. The performance of the proposed model via thick-tailed data. In
this simulation study, we examine the performance of the proposed model based
on heavy-tailed data in terms of clustering quality. These generated data set
are simulated from a three-component FM-MMN model that the convolutional
variable W in (3) has a Birnbaum-Saunders distribution with shape parameter
1 and scale parameter α. This model, assigned to as FM-MMNBS, is not
considered in previous section because the pdf and conditional expectations
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Figure 4. Simulation results for assessing the consistency of
parameter estimates (RBias) as a function of sample size and
10% missing data.

have not closed-form. The true parameters model are as follows

π1 = 0.27, π2 = 0.33, π3 = 0.40, α1 = 0.8, α2 = 1, α3 = 1.5,

µ1 = (9, 6)>, µ2 = (−5,−5)>, µ3 = (3, 13)>, λ1 = (1.7, 1)>,

λ2 = (2, 1.2)>, λ3 = (1,−1)>, Σ1 =

(
0.15 −0.40
−0.40 0.30

)>
,

Σ2 =

(
0.41 −0.13
−0.13 0.16

)>
, Σ3 =

(
0.70 −0.10
−0.10 0.11

)>
.
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Figure 5. Simulation results for assessing the consistency of
parameter estimates (RMSE) as a function of sample size and
10% missing data.

We generate missing data in two levels 10% and 30% missingness rates based
on MAR mechanism. For the sake of clustering comparison, we fit the full
structure FM-N, FM-T, FM-rSN and four special cases of FM-MMN considered
with g = 3 as well as missingness rates. In addition, we use the MSD to measure
for difference between the true value ym

j and the imputed value ŷm
j .

Table 2 reports the average value of BIC, ARI and MSD for the fourteen
constrained and unconstrained variants covariance structures. Focusing on the
results Table 2, the average of BIC values supports the outperformance of the
FM-MMNEH and FM-MMNE model with the EVE covariance structure in
terms of model selection for different missing rates in the strong heavy-tail and
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Table 2. The average BIC, ARI and MSD over 100 runs,
for measuring the proposed model performance in clustering
thick-tailed data.

Missing Fitted Parsimonious structure
rate model EII EEE EEI EEV EVE EVI EVV VEE VEI VEV VII VVE VVI VVV
10% FM-N BIC 2195.617 2132.347 2183.886 1930.801 1932.690 2193.265 1932.661 2131.502 2131.719 2059.704 2144.872 2037.866 2140.292 2044.935

ARI 0.291 0.239 0.699 0.690 0.291 0.681 0.255 0.270 0.175 0.238 0.241 0.250 0.256 0.291
MSD 0.422 0.326 0.414 0.262 0.262 0.412 0.256 0.339 0.373 0.276 0.359 0.275 0.376 0.268

FM-T BIC 2205.974 2126.872 2195.151 2064.972 1811.121 2204.499 1819.202 2090.044 2131.501 2062.254 2138.771 2053.134 2141.389 2059.937
ARI 0.284 0.206 0.271 0.699 0.291 0.699 0.215 0.279 0.190 0.238 0.207 0.250 0.238 0.291
MSD 0.428 0.323 0.412 0.304 0.259 0.411 0.258 0.300 0.377 0.299 0.376 0.275 0.376 0.268

FM-rSN BIC 1928.893 1931.198 1934.175 1899.864 1882.205 1927.866 1909.263 1910.699 1917.553 1897.903 1913.762 1897.670 1931.929 1906.768
ARI 0.896 0.896 0.896 0.896 0.896 0.896 0.896 0.912 0.896 0.896 0.883 0.896 0.882 0.896
MSD 0.255 0.259 0.256 0.243 0.238 0.254 0.240 0.252 0.244 0.238 0.239 0.233 0.244 0.235

FM-ErSN BIC 1923.675 1964.386 1925.582 1898.139 1876.831 1911.201 1907.922 1909.427 1905.104 1923.744 1892.717 1923.870 1915.964 1928.567
ARI 0.896 0.882 0.896 0.896 0.896 0.896 0.896 0.829 0.829 0.869 0.896 0.869 0.829 0.898
MSD 0.252 0.268 0.255 0.240 0.232 0.243 0.234 0.227 0.228 0.227 0.239 0.227 0.228 0.229

FM-MMNE BIC 1935.522 2051.146 1940.335 1933.918 1889.967 1942.938 1943.624 1972.344 1967.493 1936.994 1955.509 1943.127 1951.282 1944.082
ARI 0.905 0.868 0.847 0.868 0.890 0.868 0.868 0.863 0.863 0.863 0.877 0.863 0.868 0.863
MSD 0.356 0.408 0.351 0.361 0.340 0.385 0.359 0.383 0.385 0.360 0.372 0.354 0.384 0.357

FM-MMNEH BIC 1857.332 1899.285 1888.350 1836.403 1825.220 1873.259 1846.145 1864.948 1862.165 1846.618 1868.837 1856.547 1867.169 1858.751
ARI 0.748 0.840 0.901 0.840 0.905 0.885 0.840 0.886 0.901 0.840 0.855 0.868 0.901 0.840
MSD 0.357 0.373 0.341 0.366 0.350 0.343 0.363 0.344 0.339 0.365 0.355 0.351 0.341 0.361

FM-TPrSN BIC 1925.837 1940.009 1925.875 1897.307 1876.330 1902.048 1906.712 1902.574 1898.408 1905.750 1895.404 1905.492 1907.900 1915.452
ARI 0.896 0.896 0.896 0.896 0.896 0.896 0.896 0.896 0.896 0.896 0.896 0.896 0.896 0.896
MSD 0.254 0.254 0.256 0.237 0.231 0.243 0.234 0.236 0.238 0.238 0.241 0.234 0.241 0.235

30% FM-N BIC 1624.326 1608.665 1622.521 1598.572 1605.903 1629.217 1598.957 1601.829 1609.095 1593.288 1610.138 1596.174 1616.565 1597.642
ARI 0.549 0.536 0.573 0.543 0.544 0.583 0.543 0.552 0.531 0.543 0.536 0.552 0.541 0.544
MSD 0.375 0.365 0.378 0.353 0.352 0.379 0.349 0.366 0.384 0.365 0.372 0.353 0.376 0.356

FM-T BIC 1588.717 1581.311 1590.016 1577.450 1579.477 1599.094 1575.534 1579.041 1587.094 1579.111 1584.648 1577.432 1595.762 1584.661
ARI 0.554 0.545 0.545 0.558 0.548 0.593 0.546 0.545 0.544 0.546 0.543 0.548 0.551 0.551
MSD 0.373 0.360 0.374 0.354 0.349 0.373 0.348 0.356 0.366 0.354 0.365 0.350 0.365 0.350

FM-rSN BIC 1582.260 1581.733 1582.627 1582.727 1559.737 1580.108 1589.396 1588.795 1584.405 1586.585 1583.562 1590.684 1587.919 1595.383
ARI 0.733 0.728 0.733 0.737 0.745 0.753 0.729 0.722 0.722 0.728 0.721 0.720 0.730 0.732
MSD 0.356 0.356 0.355 0.350 0.350 0.351 0.351 0.357 0.353 0.351 0.352 0.354 0.355 0.351

FM-ErSN BIC 1583.647 1650.328 1583.532 1590.530 1567.336 1585.754 1595.993 1588.231 1583.434 1598.389 1582.192 1598.354 1591.955 1603.826
ARI 0.726 0.714 0.728 0.732 0.730 0.732 0.729 0.722 0.720 0.724 0.725 0.723 0.725 0.729
MSD 0.352 0.369 0.358 0.354 0.354 0.355 0.355 0.355 0.353 0.352 0.347 0.354 0.355 0.356

FM-MMNE BIC 1552.153 1560.035 1552.924 1546.752 1528.225 1551.782 1553.183 1557.787 1556.297 1553.767 1553.968 1559.781 1560.961 1559.585
ARI 0.794 0.794 0.792 0.769 0.812 0.792 0.805 0.799 0.795 0.798 0.799 0.797 0.796 0.806
MSD 0.339 0.348 0.340 0.345 0.332 0.338 0.338 0.339 0.339 0.336 0.338 0.336 0.337 0.337

FM-MMNEH BIC 1553.121 1568.842 1555.562 1550.258 1531.675 1558.343 1558.961 1567.709 1564.161 1560.773 1559.573 1562.641 1563.756 1568.887
ARI 0.717 0.726 0.717 0.667 0.735 0.744 0.750 0.744 0.724 0.754 0.730 0.753 0.735 0.745
MSD 0.363 0.364 0.365 0.357 0.354 0.359 0.357 0.371 0.378 0.378 0.368 0.391 0.370 0.377

FM-TPrSN BIC 1573.928 1590.364 1577.367 1581.212 1559.072 1577.360 1588.062 1580.381 1577.954 1589.903 1576.218 1589.040 1585.588 1597.319
ARI 0.686 0.687 0.693 0.691 0.698 0.698 0.698 0.687 0.692 0.688 0.694 0.699 0.694 0.681
MSD 0.365 0.369 0.368 0.365 0.366 0.365 0.365 0.370 0.362 0.367 0.364 0.365 0.362 0.369

asymmetric data sets for two levels 10% and 30% missingness rate, respectively.
Also, It can be seen that the finite mixture of mean mixture normal, FM-
MMNE, FM-ErSN, FM-MMNEH and FM-TPrSN, significantly perform better
than the FM-N, FM-T model for estimating the true clustering of data. The
clustering of datasets decreases with the increase of the missing rate in many
cases, but this amount is not very high in the FM-MMN models. However,
comparing the ARI values in Table 2 with the EVE covariance structure, we
note that FM-MMNE and FM-MMNEH models for two level missing rate can
find more than 90% of true clustering. To charily these results, Figure 6 gives
BIC, MSD and ARI for EVE structure for FM-T and four special cases of
FM-MMN all 100 replications based on 10% missing rate.

6. Conclusion

We develop a computationally feasible ECME algorithm for estimating the
parameters of the FM-MMN model under a missing-information framework as
an extended tool to accommodate incomplete data involving asymmetric shapes
and heavy tails. Two auxiliary permutation matrices are incorporated in the
procedure that can greatly simplify matrix manipulations. The performance
of the proposed finite mixture models has been investigated in missingness
and prediction applications and model-based clustering using two Monte Carlo
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Figure 6. Comparing BIC, ARI and MSD on five mixture
models over 100 FM-MMNBS samples with 10% level of miss-
ing rate.

simulation studies and a real data set. Numerical result reveal that the FM-
MMN model outperforms other competing models on the basis of model fitting
and outright clustering when data contain missing values and exhibit non-
normal features such as multimodality, asymmetry, and heavy-tailed noises or
outliers.

There are a few issues as well as possible modifications related to the pro-
posed methodology deserving further attention. As has been indicated in these
distributions, its skew factor analysis based on MMN distributions can be chal-
lenged. [5] introduced a finite mixture linear mixed model in which the multi-
variate t distribution is used for random effects and error distribution. Using
the MMN class it will then be of interest to extend the finite mixture linear
mixed model to deal with multi-modal, skewed, and heavy-tailed distributed
data. We are recently focusing working on these subjects and expect to present
the findings in the future papers. The methodology proposed in this paper can
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facilitate the development of new models for analyzing skewed data in matrix
form with censored and/or missing values ( [8]). To analyze of high-dimensional
data, we can be introduced a new mixture of factor analyzer models based on
contaminated mean-mixture of normal distributions proposed by Naderi and
Nooghabi [24].
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