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Abstract. The Restricted Mean Survival Time (RMST) serves as a

valuable and extensively utilized metric in clinical trials. However, its
application becomes intricate when dealing with data affected by length-

biased sampling, rendering traditional inference strategies inadequate. To
overcome this challenge, we advocate for the adoption of nonparametric

techniques. One notably promising approach is the Empirical Likelihood

(EL) method, which furnishes robust results without the need for strin-
gent parametric assumptions. In practical scenarios, the underlying sam-

pling distributions often remain elusive, necessitating adjustments in the

case of parametric methodologies. The EL method has demonstrated
its efficacy in addressing such complexities. Consequently, this paper

introduces the EL method for computing RMST in situations involving

both length-biased and right-censored data. Additionally, we introduce
the concept of adjusted empirical likelihood (AEL) to further enhance

the coverage probability, particularly when dealing with smaller sample

sizes. To gauge the performance of the EL and AEL methods, we con-
duct simulations and rigorously compare their results. The findings un-

equivocally demonstrate that AEL-based confidence intervals consistently

provide superior coverage probability when juxtaposed with EL-based in-
tervals. Lastly, we substantiate the practical applicability of our proposed

method by employing it in the analysis of a real dataset.

Keywords: Adjusted empirical likelihood, Empirical likelihood, Restricted

mean survival time, Non-parametric, Length-biased data.
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1. Introduction

For studies with event time endpoints, the survival function contains all
information about the temporal and stochastic profile of this target variable.
However, the survival probability at a particular point in time (such as t) does
not transparently capture the time course from that endpoint to t. Another
procedure is to summarize the profile using the RMST at time t. A useful
alternative in survival analysis is the RMST an interesting and applied function.
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In clinical studies with time-to-event outcomes, the RMST is introduced as a
useful summary measurement. When proportional hazards assumption cannot
be constructed or the event rate is low, RMST has received a lot of attention due
to its transparent and intuitive interpretation. RMST is a useful measure when
analyzing survival data and has practical applications in assessing treatment
effectiveness and making informed decisions. In a clinical trial for a new cancer
treatment, researchers want to compare two different therapies for advanced-
stage cancer patients. The study follows patients for a fixed period, say 5
years, and records the time until death or disease progression. By calculating
the RMST for each treatment group, researchers can determine the average
survival time over the 5-year period and compare which therapy provides a
longer and more sustainable survival benefit.

Let X be a continuous random variable with the cumulative distribution
function (cdf) F . The RMST is defined as:

(1) µt =

∫ t

0

S(x)dx,

where S(x) = 1 − F (x) is the survival function at time x. The empirical
estimator of µt is

(2) µn(t) =

∫ t

0

Sn(x)dx,

where Sn(x) = 1−Fn(x), and Fn(·) is an empirical distribution function based
on a random sample X1, X2, . . . , Xn of F .

There are different methods for the analysis of RMST, including techniques
based on pseudo-observations which are introduced by [4]. The area under
the survival curve up to t is considered the RMST. Due to the advantages of
using such a quantification, [37] proposed a curve based on the RMST over
time as an alternative summary to the survival function. [35] present methods
for estimating Restricted Mean Survival Time (RMST) in survival analysis,
focusing on the Kaplan-Meier method, Cox Proportional Hazards (PH) model,
flexible parametric model, and a pseudo-observation method. Comparisons in
simulated scenarios indicate that the Kaplan-Meier method is simple and fast
but lacks covariate adjustment. The unstratified Cox model suits proportional
hazards, while the stratified Cox model is effective for non-proportional haz-
ards. The flexible parametric model performs similarly to the Cox model but
is more time-consuming. Pseudo-observation methods are computationally ef-
ficient but may perform worse in specific scenarios when estimating RMST dif-
ferences for subjects with given characteristics. [12] presented the definition and
statistical properties of the RMST, adjusted analytical methods, sample size
computation, information fraction for the RMST difference, and clinical and
statistical meaning and commentary. Regarding the missingness of exact obser-
vations, nonparametric analysis is associated with problems, accordingly, [36]
proposed a model-free measure for the interval-censored RMST employing the
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linear smoothing technique. The adjusted RMST (ARMST) for covariate ef-
fects using adjusted Kaplan–Meier curves and the Kaplan–Meier Estimator
was introduced by [40]. The ARMST method combines RMST and AKME
concepts. Regression-based methods for covariate adjustments are compared
via simulation studies. They extend RMST and ARMST to settings with com-
peting risks, presenting estimates like restricted mean time lost (RMTL) and
adjusted RMTL (ARMTL).

Survival data analysis is a vital aspect in various fields, but it becomes more
complex when dealing with length-biased sampling. This phenomenon occurs
when the survival times are left-truncated, and the underlying truncation time
random variable follows a uniform distribution. Length-biased sampling intro-
duces bias in the observed survival data, favoring longer survival times. This
bias arises because individuals with longer survival times have a greater prob-
ability of being included in the sample compared to those with shorter survival
times. As a result, the collected data may not accurately represent the true
underlying distribution of survival times. Let’s consider the random variable
X, which comprises independent and identically distributed (i.i.d.) positive
random variables. The cdf of these variables is denoted by F . When a non-
negative random variable Y is observed with probability proportional to its
length, it has the length-biased cdf which is defined by

G(y) = µ−1

∫ y

0

xdF (x), y ≥ 0,(3)

where

µ =

∫ ∞
0

xdF (x).

According to (3), the distribution function F is obtained as follows:

(4) F (t) = µ

∫ t

0

y−1dG(y), t ≥ 0.

[5] introduced the Non-Parametric Maximum Likelihood Estimator (NPMLE)
for the length-biased survival function from right-censored data. Their study
demonstrated the NPMLE’s properties of uniform strong consistency, weak
convergence to a Gaussian process, and asymptotic efficiency. [15] presented
a valuable nonparametric estimator that effectively incorporates information
about the length-biased and right-censored sampling schedule. [27] introduce
expectation-maximization (EM) algorithms for estimating infinite-dimensional
parameters in three scenarios for length-biased data: estimating the nonpara-
metric distribution function, estimating the nonparametric hazard function
under an increasing failure rate constraint, and jointly estimating the baseline
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hazards function and the covariate coefficients under the Cox proportional haz-
ards model. Comprehensive empirical simulation studies demonstrate the ef-
fective performance of maximum likelihood estimators, particularly with mod-
erate sample sizes, resulting in more efficient estimates compared to estimat-
ing equation approaches. [9] made significant advancements by extending the
martingale estimating equation method and the pseudo-partial likelihood ap-
proach, enabling the handling of semiparametric transformation models with
length-biased and right-censored data. [31] proposed an innovative partially lin-
ear transformation model, offering a robust approach to address length-biased
and right-censored data. Their method involves an iterative computational
algorithm and a bootstrap resampling approach for enhanced accuracy. [29]
introduced a method for quantile function estimation under length-biased and
right-censored data, leading to the derivation of a nonparametric estimator.
Recognizing the limitations of parametric methods for estimating the RMST
under length-biased sampling, [20] introduced novel nonparametric and semi-
parametric regression methods explicitly tailored to address the challenges of
length-biased and right-censored data. These methods have proven to be highly
effective in RMST estimation in such scenarios. [14] proposed estimators for
RMST under length-biased and right-censored data, employing both nonpara-
metric and semiparametric approaches. It enhances estimation efficiency by
considering the similarity in distribution between truncation time and residual
time.

The EL approach is a powerful tool for constructing confidence regions in
nonparametric problems, offering distinct advantages over competing methods
like NA and Bootstrap. As a result, numerous researchers have extensively
explored and studied the EL method. [24] introduced the empirical likelihood
ratio as a compelling alternative to the bootstrap for constructing confidence
regions in nonparametric issues. [43] introduced a semiparametric inference ap-
proach for comparing means and survival probabilities in the presence of right-
censored data. Their work involved deriving confidence intervals based on the
EL principle. [18] endeavors to demonstrate the enhancement of current esti-
mators for error distribution in nonparametric regression models through the
incorporation of additional information using the empirical likelihood method.
They establish the weak convergence of the resultant improved estimator to a
Gaussian process. The assessment of its performance involves a comparison of
asymptotic mean squared errors and a comprehensive simulation study. [17] ad-
dressed estimation and test problems for semi-parametric two-sample density
ratio models, employing the EL approach in their analysis. [11] establishes the
asymptotic normality of indirect inference estimators, specifically simulation-
based minimum distance estimators, within a parametric model. These estima-
tors rely on auxiliary nonparametric maximum likelihood density estimators.
Furthermore, when the parametric model is correctly specified, it is demon-
strated that the asymptotic variance-covariance matrix equals the inverse of
the Fisher-information matrix. In the context of length-biased sampling, [23]
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proposed EL-based confidence intervals and thoroughly examined their behav-
ior for both large and small samples. [32] focused on comparing the difference
of quantiles in two independent samples and constructed confidence intervals
using a smoothed EL approach. Additionally, they established the limiting dis-
tribution of the empirical log-likelihood ratio as a chi-squared distribution. [28]
devised a novel EM algorithm for doubly censored data and constructed con-
fidence regions for one- or two-sample analysis of doubly censored data using
the EL method. [21] developed the EL method for inferring the mean residual
life (MRL) of naturally recorded items based on independent and identically
distributed (iid) observations from the true distribution. However, under right
censorship, the EL-based log-likelihood ratio follows a scaled chi-square distri-
bution, leading to lower confidence interval coverage when estimating the scale
parameter. To address this limitation, they devised an algorithm to directly
calculate the likelihood ratio (LR) and demonstrated that the corresponding
log-likelihood ratio converges to the standard chi-square distribution, resulting
in improved confidence interval coverage. [3] introduced the EL for an accel-
erated failure time model with length-biased data. They show that the asymp-
totic distribution of the empirical log-likelihood ratio statistic is a weighted
sum of independent chi-square distributions. They also explore the adjusted
EL approach from both theoretical and practical perspectives.

In survival analysis, overlooking length-biased sampling plans can lead to
significant overestimation. Conversely, previous investigations faced challenges
in estimating the margin of error of commonly used summary statistics for such
sampling plans. To address this gap, we adapt the EL confidence intervals to
the RMST for length-biased data. While [42] explored confidence intervals for
RMST and differences/ratios of two RMSTs using the EL method, the RMST
inference with length-biased data has not been extensively studied through the
EL method. Therefore, our aim is to obtain confidence intervals for the RMST
under length-biased data, making a valuable contribution to further exploration
in this crucial research area.

In situations where the dimension of the estimating function is high or the
sample size is small, the EL confidence regions often exhibit coverage probabili-
ties lower than the nominal value. To address this issue and achieve more accu-
rate coverage probabilities, researchers have developed the AEL approach. [8]
proposed an iterative set of rules for AEL that ensures convergence. They
demonstrated that AEL is computationally faster than EL, and the confidence
regions constructed via AEL exhibit closer-to-nominal coverage probabilities.
Utilizing the AEL approach, [22] constructed confidence regions for the dif-
ference of two d-dimensional population means in the context of two-sample
populations and established that the approach is Bartlett correctable. [38] ap-
plied the AEL method for estimating the cumulative baseline hazard function
and constructed confidence regions for the vector of regression parameters. [7]
delved into the finite-sample properties of AEL, revealing that the AEL confi-
dence region achieves higher coverage probabilities as the level of adjustment
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increases. Additionally, they demonstrated that the AEL ratio function in-
creases as the population mean deviates from the sample mean. In the analysis
of right-censored data, [39] employed the influence function method via the
AEL approach, demonstrating that the adjusted log-likelihood ratio follows an
asymptotically Chi-squared distribution. [34] explored semi-parametric trans-
formation models with length-biased sampling using both EL and AEL meth-
ods. [2] suggested comparing two means and constructing a confidence interval
for their difference with right-censored data using the EL method. To avoid
the estimation of the scale parameter in constructing confidence intervals, they
considered an EL based on the iid representation of Kaplan-Meier weights in-
volved in the empirical likelihood ratio. Additionally, they applied the AEL
method and the mean empirical likelihood approach. Despite these significant
advancements, the inference of the RMST with length-biased data using the
AEL method remains relatively unexplored. In this study, we aim to bridge
this gap by constructing a confidence interval for RMST under length-biased
data through the AEL approach.

The structure of this paper is organized as follows. In Section 2, we present
the EL and AEL methods for length-biased and right-censored data. Addition-
ally, we introduce the confidence interval for the proposed methods. In Section
3, we present the numerical results obtained from our analyses. Finally, in
Section 4, we provide the proof of the theorems presented in this paper.

2. Methodology and main result

In this section, we will cover the introduction of two essential methods for an-
alyzing length-biased and right-censored data: the EL and AEL methods. We
will also demonstrate the construction of confidence intervals for µt. Further-
more, we will explore how these methods can be applied to address the RMST
difference in a two-sample problem involving length-biased and right-censored
data.

2.1. Empirical likelihood. Suppose Y1, . . . , Yn be i.i.d. positive random vari-
ables with common cdf G, and C1, . . . , Cn be i.i.d. positive random variables
with a common cdf V . These two sets of random variables are assumed to be
independent of each other. The observations in this random censoring model
can be described as follows:

Zi = min(Yi, Ci), δi = I(Yi ≤ Ci), i = 1, · · · , n,

We employed the indicator function I(A) to represent set A. The distribution
H of Z satisfies 1 − H = (1 − G)(1 − V ). Let τG = inf{t : G(t) = 1} and
τV = inf{t : V (t) = 1}. Suppose Z1:n ≤ Z2:n ≤ · · · ≤ Zn:n be the ordered Z-
values and δ[i:n] be the concomitant of the ith order statistic, that is δ[i:n] = δi
if Zi:n = Zi.
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Under the setting of length-biased sampling, and considering Equations (1),
we have

µt = µ

∫ ∞
0

(
I(u ≤ t) +

t

u
I(u > t)

)
dG(u),

where µ−1 =
∫∞

0
1
udG(u). Therefore, we get

µt

∫ ∞
0

1

u
dG(u) =

∫ ∞
0

(
I(u ≤ t) +

t

u
I(u > t)

)
dG(u).(5)

It can be easily observed

(6) E
(
D(µt)

)
= 0,

where D(µt) = µt−Y I(Y≤t)−tI(Y >t)
Y . In the random censorship model, it is

obvious that

(7) E
((µt − ZI(Z ≤ t)− tI(Z > t)

)
δ

Z

)
= 0,

(see [30]) so, the proposed estimating equation becomes

1

n

n∑
i=1


(
µt − ZiI(Zi ≤ t)− tI(Zi > t)

)
δi

Zi

(
1− V (Zi)

)
 = 0.

For 1 ≤ i ≤ n, we define

Di(Z, µt) =

(
µt − ZiI(Zi ≤ t)− tI(Zi > t)

)
δi

Zi

(
1− V (Zi)

) .

Since V is unknown, we replace it by its Kaplan-Meier estimator which is
defined by

Vn(t) = 1−
n∏
i=1

[
n− i

n− i+ 1

]I(Zi:n≤t,δ[i:n]=0)

,

so, we have

Dni(Z, µt) =

(
µt − ZiI(Zi ≤ t)− tI(Zi > t)

)
δi

Zi

(
1− Vn(Zi)

) .

By replacing (1−Vn(Zi))
−1 in Di(Z, µt) by the i.i.d. representation from [13]

(see Lemma 3.1) and utilizing the counting process notation,

W
′

i (µt) =
D(Zi, µt)δi
1− V (Zi)

+

∫ ∞
0

∫∞
s
D(s, µt)dG(s)δi

H(x)
d(x)

−
∫ ∞

0

∫∞
s
D(s, µt)dG(s)I(Zi ≥ x)

H(x)
dν(x)
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where δi = 1 − δi, H(x) = E
(
I(Zi ≤ x

)
, H(x) = 1 − H(x), and ν(x) =

− log(1− V (x)). Estimating unknown distribution functions, we can define

W
′

ni(µt) =
D(Zi, µt)δi
1− Vn(Zi)

+

∫ ∞
0

∫∞
s
D(s, µt)dGn(s)δi

Hn(x)
d(x)

−
∫ ∞

0

∫∞
s
D(s, µt)dGn(s)I(Zi ≥ x)

Hn(x)
dνn(x),

where Gn(t) = 1−
∏n
i=1

[
n−i
n−i+1

]IZi:n≤t,δ[i:n]=1

, Hn(t) = 1
n

∑n
i=1(Zi ≤ x) and

νn = − log(1− Vn(x)).
Based on W ′ni, we define the estimated EL ratio at the value µt as follows

(8) L(µt) = sup{Πn
i=1npi :

n∑
i=1

pi = 1,

n∑
i=1

piW
′

ni = 0, pi ≥ 0}.

By the Lagrange multiplier, we have

(9) pi =
1

n
{1 + ηW

′

ni(µt)}−1, i = 1, · · · , n,

where η is the solution of

(10)
1

n

n∑
i=1

W ′ni
1 + ηW ′ni

= 0.

Note that Πn
i=1pi, subject to

∑n
i=1 pi = 1, attains its maximum n−n at pi =

n−1. The corresponding empirical log-likelihood ratio is defined as

(11) l(µt) = −2 logL(µt) = 2

n∑
i=1

log{1 + ηW ′ni}.

Theorem 2.1. Assume that the regularity conditions in the Proof hold. Then

(12) l(µt)
D−→ χ2

1, n −→∞,
where χ2

1 is a standard chi-squared random variable with one degree of freedom.

Therefore, utilizing Theorem 2.1, an asymptotic 100(1−α)% EL confidence
interval for µt is

N1 = {µt : l(µt) ≤ χ2
1,α},

where χ2
1,α is the upper α-quantile of the distribution of χ2

1.

2.2. Adjusted empirical likelihood. The AEL method, first introduced
by [8], serves a critical purpose in ensuring the well-defined nature of the EL
ratio even when an observation is added to the dataset. This feature is partic-
ularly advantageous in addressing the issue of under-coverage that may arise in
the EL method, especially for small sample sizes. The AEL approach involves
incorporating a pseudo-sample as an essential component of the data, allow-
ing for improved accuracy and reliability in statistical inference. By utilizing
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AEL, researchers can enhance the robustness of their analyses and obtain more
accurate results when dealing with complex or limited datasets. We have

W ′nn+1 = −an
n

n∑
i=1

W ′ni,

where an = max(1, log(n)/2). Based on the n + 1 observations, the adjusted
empirical log-likelihood ratio is given by

(13) LA(µt) = sup{Πn+1
i=1 npi :

n+1∑
i=1

pi = 1,

n+1∑
i=1

piW
′

ni(µt) = 0, pi ≥ 0}.

Utilizing by the Lagrange multiplier, we can define that

(14) lA(µt) = −2 logLA(µt) = 2

n+1∑
i=1

log{1 + ηAW
′

ni},

where ηA is a solution of the equation

(15)
1

n+ 1

n+1∑
i=1

W
′

ni

1 + ηAW
′
ni(µt)

= 0.

Theorem 2.2. Suppose that the regularity conditions in the Proofs hold. There-
fore

(16) lA(µt)
D−→ χ2

1, n −→∞.

So, by utilizing Theorem 2.2, an asymptotic 100(1 − α)% AEL confidence
interval for µt is given by

A1 = {µt : lA(µt) ≤ χ2
1(α)}.

3. Simulation

In this section, we present the findings of a comparative study between the
EL method and the AEL method. Our investigation focuses on two essen-
tial criteria: the average length of confidence intervals (∆) and the coverage
probability (CP).

To conduct this study, we present simulations and real data. These simu-
lations include data generated from gamma distributions, as well as real data
obtained from the Channing House dataset. Throughout our analysis, we ex-
amine two significant levels, namely α = 0.10 and α = 0.05, with three different
sample sizes: n = 50, n = 100, and n = 150. To evaluate the efficacy of the
methods, we showcase simulations involving Gamma and Exponential distri-
butions. The results of these simulations are presented in Tables 1 and 2,
showcasing the performance of both EL and AEL methods. For the purpose of
calculating average values, we perform 5000 iterations to ensure robustness in
our results.
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Table 1. 95% coverage probabilities and average lengths of
confidence intervals for RMST of Exp distribution

1− α = 0.95
censored n Time ∆.EL c.p.EL ∆.AEL c.p.AEL

2 0.606 0.779 0.637 0.801
2.5 0.686 0.794 0.726 0.815

50 3 0.731 0.809 0.770 0.812
3.5 0.778 0.810 0.796 0.822
4 0.791 0.811 0.808 0.813
2 0.545 0.802 0.560 0.805

2.5 0.605 0.806 0.612 0.816
10% 100 3 0.644 0.819 0.665 0.824

3.5 0.680 0.821 0.697 0.834
4 0.684 0.816 0.715 0.828
2 0.511 0.813 0.523 0.816

2.5 0.573 0.836 0.579 0.843
150 3 0.611 0.838 0.620 0.841

3.5 0.639 0.828 0.640 0.838
4 0.638 0.824 0.658 0.831
2 0.571 0.765 0.606 0.787

2.5 0.626 0.778 0.641 0.795
50 3 0.637 0.748 0.673 0.752

3.5 0.654 0.737 0.679 0.748
4 0.667 0.719 0.688 0.728
2 0.511 0.791 0.531 0.804

2.5 0.543 0.789 0.562 0.805
40% 100 3 0.564 0.781 0.583 0.788

3.5 0.573 0.765 0.591 0.774
4 0.589 0.755 0.596 0.762
2 0.476 0.801 0.489 0.809

2.5 0.511 0.798 0.522 0.813
150 3 0.533 0.803 0.537 0.805

3.5 0.547 0.794 0.555 0.810
4 0.541 0.788 0.556 0.800

The dataset, consisting of n observations, denoted as Y1, . . . , Yn, is gener-
ated from the Exp(2) and Gamma(4, 1) distributions. Additionally, we in-
troduce censoring time observations, C1, . . . , Cn, which are drawn from the
Gamma(2, λ1) and Gamma(5, λ2) distribution. Here, the constants λ1 and λ2

play a crucial role in determining the proportion of censoring. To explore the
impact of censoring, we examine two different values of λ resulting in 10% and
40% censoring proportions, respectively. The simulation results are summa-
rized in Tables 1 and 2, 3 and 4 providing valuable insights into the performance
of the analysis. In particular, we calculate the coverage probability and the av-
erage length of confidence intervals at t = 2, 2.5, 3, 3.5, 4, while varying the
values of λ to achieve the desired 10% and 40% censoring proportions. These
results shed light on the behaviour of the analysis under different scenarios,
aiding in the understanding of its reliability and effectiveness.

The simulation results are summarised in Tables 1 and 2 for Exp distribution,
Tables 3 and 4 for Gamma distribution. Based on the tables we can make the
following conclusions:
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Table 2. 90% coverage probabilities and average lengths of
confidence intervals for RMST of Exp

1− α = 0.9
censored n Time ∆.EL c.p.EL ∆.AEL c.p.AEL

2 0.513 0.710 0.546 0.718
2.5 0.578 0.713 0.603 0.725

50 3 0.624 0.718 0.647 0.732
3.5 0.649 0.711 0.677 0.745
4 0.667 0.724 0.686 0.749
2 0.465 0.721 0.485 0.735

2.5 0.517 0.728 0.525 0.739
10% 100 3 0.550 0.748 0.565 0.753

3.5 0.574 0.739 0.589 0.758
4 0.583 0.745 0.592 0.771
2 0.437 0.725 0.449 0.738

2.5 0.485 0.732 0.493 0.749
150 3 0.518 0.765 0.529 0.771

3.5 0.530 0.751 0.541 0.763
4 0.546 0.755 0.552 0.781
2 0.487 0.708 0.505 0.715

2.5 0.525 0.696 0.546 0.704
50 3 0.547 0.652 0.568 0.661

3.5 0.553 0.638 0.572 0.667
4 0.560 0.629 0.585 0.634
2 0.429 0.718 0.446 0.729

2.5 0.462 0.701 0.474 0.705
40% 100 3 0.477 0.682 0.499 0.704

3.5 0.488 0.646 0.498 0.675
4 0.489 0.654 0.508 0.669
2 0.404 0.721 0.414 0.732

2.5 0.428 0.717 0.439 0.733
150 3 0.439 0.725 0.455 0.732

3.5 0.452 0.684 0.465 0.721
4 0.458 0.679 0.467 0.724

• It is obvious in all of tables when the sample increases in size, the CP
increases. As expected, ∆ of two methods decreases when the sample
size grows.
• In both tables with a fixed significant level, the CP under the AEL

method is far better than the EL approach.
• For all censoring rates (10%, 40% ), AEL-based confidence intervals

perform better than those of the EL-based confidence intervals.
• In some situations (refer to Tables 2 and 4), both EL and AEL methods

exhibit low coverage probabilities. However, AEL demonstrates im-
provement in these coverage probabilities compared to the EL method.

4. Real data

To demonstrate the RMST function in the context of length-biased and
right-censored data, the Channing House dataset serves as a suitable example.
A complete description of this data set can be found [19]. Collected between
1964 and July 1, 1975, this dataset comprises 97 men and 365 women who
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Table 3. 95% coverage probabilities and average lengths of
confidence intervals for RMST of Gamma

1− α = 0.95
censored n Time ∆.EL c.p.EL ∆.AEL c.p.AEL

2 0.217 0.731 0.229 0.789
2.5 0.367 0.797 0.393 0.825

50 3 0.558 0.821 0.586 0.829
3.5 0.756 0.823 0.774 0.841
4 0.913 0.829 0.959 0.843
2 0.192 0.763 0.193 0.795

2.5 0.339 0.825 0.348 0.837
10% 100 3 0.518 0.823 0.532 0.832

3.5 0.672 0.830 0.690 0.844
4 0.819 0.837 0.855 0.848
2 0.183 0.777 0.181 0.801

2.5 0.320 0.836 0.405 0.842
150 3 0.482 0.844 0.494 0.848

3.5 0.644 0.832 0.648 0.855
4 0.784 0.848 0.793 0.851
2 0.245 0.668 0.312 0.689

2.5 0.309 0.711 0.408 0.722
50 3 0.475 0.780 0.488 0.783

3.5 0.662 0.799 0.701 0.808
4 0.837 0.818 0.852 0.835
2 0.148 0.672 0.166 0.698

2.5 0.285 0.747 0.298 0.781
40% 100 3 0.437 0.789 0.453 0.813

3.5 0.600 0.819 0.616 0.835
4 0.774 0.831 0.781 0.843
2 0.156 0.708 0.155 0.715

2.5 0.270 0.766 0.280 0.778
150 3 0.420 0.796 0.426 0.829

3.5 0.581 0.825 0.586 0.838
4 0.722 0.842 0.732 0.850

passed through the Channing House during the given period. Their ages at
entry and exit or death were recorded, with only those who lived beyond the
examination time being observed. As a result, the entry age serves as the
truncation variable. Though most subjects were still alive when the data was
collected, many were censored. Only 130 women and 46 men died at the
Channing House during the study period, making this a left-truncated and
right-censored dataset. If the truncation variable is uniformly distributed, the
left-truncated dataset is length-biased. However, while the entire dataset is
not length-biased, a subset comprising only those whose entry ages were above
786 months (65.5 years) is length-biased due to the uniform distribution of the
truncation variable. The subset comprises 448 people, with only 14 subjects
not included. Of the 173 subjects who died during the study period in the
subset, the censoring ratio is approximately 61.8%. For simplicity, we use the
year as the time unit.

We notice that, as age increases, the RMST increases overall. The AEL
confidence intervals for the RMST at selected ages are some wider than EL
confidence intervals.
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Table 4. 90% coverage probabilities and average lengths of
confidence intervals for RMST of Gamma

1− α = 0.90
censored n Time ∆.EL c.p.EL ∆.AEL c.p.AEL

2 0.187 0.667 0.193 0.701
2.5 0.312 0.707 0.329 0.732

50 3 0.484 0.733 0.500 0.757
3.5 0.645 0.721 0.676 0.743
4 0.792 0.711 0.816 0.739
2 0.169 0.668 0.165 0.711

2.5 0.289 0.736 0.303 0.740
10% 100 3 0.437 0.762 0.447 0.769

3.5 0.576 0.723 0.594 0.760
4 0.699 0.727 0.729 0.746
2 0.157 0.698 0.160 0.731

2.5 0.272 0.744 0.284 0.765
150 3 0.409 0.770 0.417 0.780

3.5 0.558 0.729 0.555 0.773
4 0.668 0.731 0.666 0.758
2 0.148 0.612 0.159 0.630

2.5 0.269 0.658 0.288 0.666
50 3 0.405 0.712 0.455 0.721

3.5 0.569 0.715 0.588 0.736
4 0.726 0.709 0.802 0.731
2 0.132 0.622 0.141 0.636

2.5 0.250 0.686 0.252 0.690
40% 100 3 0.379 0.720 0.388 0.725

3.5 0.516 0.722 0.526 0.742
4 0.648 0.717 0.671 0.738
2 0.130 0.630 0.146 0.641

2.5 0.233 0.670 0.244 0.699
150 3 0.357 0.725 0.368 0.729

3.5 0.494 0.726 0.511 0.765
4 0.616 0.729 0.617 0.742

Table 5. 95% confidence intervals for RMST at selected ages
for the Channing house data.

T=70 T=75 T=80 T=85 T=90
Lower 69.450 72.227 73.460 73.766 73.797

EL Upper 69.682 72.908 74.481 74.919 74.970
Lower 69.439 72.213 73.455 73.760 73.791

AEL Upper 69.687 72.912 74.487 74.926 74.976

Lastly, in Table 6, we compared different confidence intervals for women
against men and attained the result that men have greater RMST than women,
in other words, by considering at the same age, men tend to live longer than
women.
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Table 6. 95% confidence intervals for RMST at selected ages
for men versus women for the Channing house data.

T=70 T=75 T=80 T=85 T=90
Lower 69.386 72.044 73.143 73.395 73.420

EL Upper 69.657 72.815 74.262 74.644 74.690
Women Lower 69.385 72.039 73.136 73.387 73.412

AEL Upper 69.658 72.819 74.269 74.052 74.699
Lower 69.540 72.405 73.987 74.425 74.465

EL Upper 69.903 73.805 76.340 77.221 77.327
Men Lower 69.530 72.420 73.934 74.364 74.404

AEL Upper 69.910 73.833 76.393 77.285 77.398

5. Conclusion

This paper is devoted to the challenging realm of computing the RMST
for data affected by length-biased sampling, an issue that often perplexes tra-
ditional inference strategies. We have advocated for the utilization of non-
parametric techniques, as a robust and flexible approach for addressing this
complexity without the need for stringent parametric assumptions. Our ex-
ploration extended to the introduction of the AEL method, a novel concept
aimed at enhancing coverage probability, especially when dealing with smaller
sample sizes. Through a comprehensive set of simulations, we have provided
compelling evidence that AEL-based confidence intervals consistently outper-
form EL-based intervals, offering researchers a more reliable tool for statistical
inference in such scenarios. To solidify the practical applicability of our pro-
posed methods, we conducted an analysis of a real dataset, demonstrating their
effectiveness in a real-world context. This reaffirms the utility of the EL and
AEL methods as valuable tools for researchers and practitioners in clinical tri-
als and other fields where RMST estimation is critical. In summary, our paper
has introduced and validated the use of the Empirical Likelihood and adjusted
empirical likelihood methods for computing RMST in the presence of length-
biased and right-censored data. We hope that these methods will find wider
adoption and facilitate more accurate and robust statistical analyses in the
future.
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Appendix: Proofs of Theorems

Let us assume the following regularity conditions:
(1) G and V are distributions,
(2)

∫∞
0

1
t2(1−V (t))dG(t) <∞,

(3) P (C > τG) > 0.
Assumption 1 guarantees that the time variable is continuous. Assumption

2 makes sure that the variance of W
′

i is finite. Assumption 3 expresses that
the support of C covers the support of Y . Thus, one can estimate the RMST
at any point.

The following lemmas will be needed for the proofs of the theorems.

Lemma 5.1. Let the regularity conditions holds. So, we have

1√
n

n∑
i=1

W
′

ni(µt)
D−→ N(0, σ2),
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where σ2 = V ar(W
′

i (µt)).

Proof. Let H(x) = p(Z ≤ x) and bH = sup{x : H(x) < 1}. We get

H1
n(x) =

1

n

n∑
i=1

I(Zi ≤ x, δi = 1),

H0
n(x) =

1

n

n∑
i=1

I(Zi ≤ x, δi = 0),

Hn(x) = H0
n(x) +H1

n(x) =
1

n

n∑
i=1

I(Zi ≤ x).

We can also show Kaplan-Meier estimators with the following equations

Gn(x) = 1−Πs≤x[1− H1
n(s)

Hn(s−)
] and Vn(x) = 1−Πs≤x[1− H0

n(s)

Hn(s−)
],(17)

and also we get

Hn(x) = Gn(x)V n(x),(18)

where Hn(x) = 1−Hn(x), Gn(x) = 1−Gn(x) and V n(x) = 1−Vn(x). Applying
(17) and (18), we have

dGn(x) = Gn(x−)
dH1

n(x)

Gn(x−)V n(x−)
,

Therefore, we get

dH1
n(x) = V n(x−)dGn(x) and dH0

n(x) = Gn(x−)dVn(x).

Therefore

1

n

n∑
i=1

W
′

ni(µt) =
1

n

n∑
i=1

{D(Zi, µt)δi
1− Vn(Zi)

+

∫ ∞
0

∫∞
s
D(s, µt)dGn(s)δi

Hn(xi)
d(x)

−
∫ ∞

0

∫∞
s
D(s, µt)dGn(s)I(Zi ≥ x)

Hn(xi)
dνn(x)}

=

∫
D(s, µt)

V n(s−)
dH1

n(s) +

∫ ∫∞
s
D(s, µt)dGn(s)

Hn(s−)
dH0

n(s)

+

∫ ∫ ∞
s

D(s, µt)dGn(s)
Hn(s−)

H
2

n(s−)
dH0

n(s)

=

∫
D(s, µt)

V n(s−)
dH1

n(s) =

∫
D(s, µt)dGn(s)

=
1

n

n∑
i=1

U(µt),
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where U(µt) is asymptotically equivalent to
∑n
i=1W

′

i (µt), where W
′

i (µt) are
i.i.d. random variables with mean zero for i = 1, . . . , n in the sense that

U(µt) =

n∑
i=1

W
′

i (µt) + op(n
1/2),

(see [1]). Thus by proof of Lemma 5.1 in Appendix of Liang et al (2016),
Lemma 5.1 is valid. �

Lemma 5.2. Assume that the regularity conditions holds. Then, as n → ∞,
we have

1

n

n∑
i=1

(W
′

ni(µt))
2 P−→ σ2,

where
p−→ denotes convergence in probability.

Proof. We have to demonstrate
∣∣∣ 1
n

∑n
i=1(W

′

ni(µt))
2 − 1

n

∑n
i=1(W

′

i (µt))
2
∣∣∣ =

op(1). ∣∣∣ 1
n

∑n
i=1(W

′

ni(µt))
2 − 1

n

∑n
i=1(W

′

i (µt))
2
∣∣∣

=
∣∣∣ 1
n

∑n
i=1(W

′

ni(µt)−W
′

i (µt))(W
′

ni(µt)−W
′

i (µt) + 2W
′

i (µt))
∣∣∣

≤ 1
n

∑n
i=1(W

′

ni(µt)−W
′

i (µt))
2 +

∣∣∣ 2
n

∑n
i=1(W

′

ni(µt)−W
′

i (µt))W
′

i (µt)
∣∣∣

= I1 + I2,

We have

I1 =
1

n

n∑
i=1

(
1

(1− Vn(Zi))
− 1

(1− V (Zi))

)2(
(µt − ZiI(Zi ≤ t)− tI(Zi ≥ t))δi

Zi

)

≤ sup
u≤Z(n)

∣∣∣Vn(u)− V (u)

(1− Vn(u))

∣∣∣2 1

n

n∑
i=1

(
(µt − ZiI(Zi ≤ t)− tI(Zi ≥ t))2δi

)
(Zi(1− V (Zi)))2

,

and

I2 ≤ sup
u≤Z(n)

∣∣∣Vn(u)− V (u)

(1− Vn(u))

∣∣∣ 1
n

n∑
i=1

(
µt − ZiI(Zi ≤ t)− tI(Zi ≥ t)

)2

δi(
Zi

(
1− V (Zi)

))2 .

According to our assumption∫
(µt − yI(y ≤ t)− tI(y ≥ t))2

y2(1− V (y))
dG(y) <∞,

and the following fact due to [41]

sup
u≤Z(n)

∣∣∣Vn(u)− V (u)

(1− Vn(u))

∣∣∣ = Op(1),
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it follows that Ii = Op(1) for i = 1, 2. Hence I = I1 + I2 = Op(1).

from W
′

ni(µt)−W
′

i (µt) = op(1), we have

1

n

n∑
i=1

(W
′

ni(µt))
2 =

1

n

n∑
i=1

(W
′

i (µt))
2 + op(1).

Thus, by the law of large numbers,

1

n

n∑
i=1

(W
′

ni(µt))
2 P−→ σ2.

�

Proof of Theorem 2.1. Let t ∈ [0, τ). According to Lemmas 5.1, 5.2 and Lemma
3 of [26], we have

max
1≤i≤n

|W
′

ni(µt)| = op(n
1/2),(19)

and

1

n

n∑
i=1

∣∣∣W ′

ni(µt)
∣∣∣3 = op(n

1/2).(20)

Therefore, considering (19), (20) and applying the same argumentations used
in [25], we have ∣∣∣η∣∣∣ = Op(n

−1/2).(21)

Utilizing the Taylor expansion, it is obvious that

l(µt) = 2

n∑
i=1

log(1 + ηW
′

ni(µt))

= 2

n∑
i=1

(
ηW

′

ni(µt)−
(ηW

′

ni(µt))
2

2

)
+Rn(t),

(22)

by using Equations (20) and (21), it can be seen that

|Rn(t)| ≤ C

n∑
i=1

|ηW
′

ni(µt)|3

≤ C|η|3
n∑
i=1

|W
′

ni(µt)|3

= op(1).(23)
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Considering (22) and (10), the following result is obtained:

0 =

n∑
i=1

W
′

ni(µt)

1 + ηW
′
ni(µt)

=

n∑
i=1

W
′

ni(µt)
[
1− ηW

′

ni(µt) +
(ηW

′

ni(µt))
2

1 + ηW
′
ni(µt)

]
=

n∑
i=1

W
′

ni(µt)−
( n∑
i=1

(W
′

ni(µt))
2
)
η +

n∑
i=1

W
′

ni(µt)(ηW
′

ni(µt))
2

1 + ηW
′
ni(µt)

.(24)

Considering (19) and (21) as well as the use of Lemma 5.1, we conclude from
the equation (24) that

η =
( n∑
i=1

W
′

ni(µt)
2
)−1 n∑

i=1

W
′

ni(µt) + op(1).(25)

Now by remembering (10), we obtain

0 =

n∑
i=1

ηW
′

ni(µt)

1 + ηW
′
ni(µt)

=

n∑
i=1

(ηW
′

ni(µt))−
n∑
i=1

(ηW
′

ni(µt))
2 +

n∑
i=1

(ηW
′

ni(µt))
3

1 + ηW
′
ni(µt)

.(26)

Furthermore, having (19) and (21), we get
n∑
i=1

(ηW
′

ni(µt))
3

1 + ηW
′
ni(µt)

= op(n
−1/2).(27)

Therefore, it can be concluded from (26) and (27) that
n∑
i=1

(ηW
′

ni(µt))
2 =

n∑
i=1

ηW
′

ni(µt) + op(1).

Eventually, it follows from the equations (22) and (25) and Lemmas 5.1 and
5.2 that

l(µt) =

n∑
i=1

ηW
′

ni(µt) + op(1)

=

(∑n
i=1W

′

ni(µt)
)2

∑n
i=1W

′2
ni

+ op(1)

= [

1√
n

∑n
i=1W

′

ni(µt)√
σ2 + op(1)

]2 + op(1)

D−→ χ2
1.

�
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Proof of Theorem 2.2. By considering Lemmas 5.1 and 5.2, we have n−1
∑n
i=1W

′

ni(µt) =

Op(n
−1/2) and n−1

∑n
i=1W

′2
ni(µt) = σ2 + op(1). By Equation (19) and using

these results, we get |ηA| = Op(n
−1/2) (see [1]). Therefore, from Equation (14),

ηA =
n−1 ∑n

i=1W
′
ni(µt)

n−1
∑n
i=1W

′2
ni(µt)

+ op(n
−1/2). Then,

lA(µt) = 2

n+1∑
i=1

(ηAW
′

ni(µt)−
1

2
(ηA)2W

′2
ni(µt)) + op(1)

=
n−1(

∑n
i=1W

′

ni(µt))
2

n−1
∑n
i=1W

′2
ni(µt)

+ op(1)

D−→ χ2
1.

�
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