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ABSTRACT. In this paper, the method of Crank-Nicolson is proposed for
approximating the solution of a fuzzy parabolic PDE by applying the sub-
ject of SG-Hukuhara differentiability where the initial and boundary con-
ditions are fuzzy numbers. The consistency and stability of this method
are investigated and finally, a non-trivial example is given by this method.

Keywords: Generalized Hukuhara derivative, Fuzzy parabolic PDE, Crank-
Nicolson solution
2020 MSC': 34A07, 18A20, 35R13

1. Introduction

Since a partial differential equation (PDE) may not have an analytical solu-

tion and the initial and boundary values be random such that the base structure
does not admit probabilistic then the using of fuzzy numbers is very helpful. If
the underlying structure is appropriate to use fuzzy numbers, then the concept
of the fuzzy derivative is useful [1,2,4,8-10].
The strongly generalized differentiability introduced by Hukuhara and consid-
ered as SG-Hukuhara derivatives [12]. The advantage of SG-Hukuhara deriva-
tives of functions in comparison to other derivatives is that, other fuzzy differ-
ential equations solving methods may have not a unique solution. Recently, a
SG-Hukuhara derivative defining on interval valued functions was studied by
Bede and Stefanini [6]. They examined, effective methods for solution of fuzzy
PDE’s and gave some useful examples.

Furthermore, Allahviranloo applied some numerical methods for the solving
of fuzzy PDE, which used Seikkala derivative method [4,7]. Also, a fuzzy finite
derivative scheme for solving fuzzy heat equations which are not homogeneous
has been studied in [13]. Motivated by the above methods, we introduce the
fuzzy parabolic PDE by using the SG-Hukuhara differentiability method and
we apply the Crank-Nicolson way for finding the solution of a parabolic PDE.
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The Sections of this paper are organized in the following way: In Section
2, the basic and important results and definitions on fuzzy number systems
are presented. Also, definition of a SG-Hukuhara differentiability is given. In
Section 3, we define the fuzzy parabolic PDE by applying the SG-Hukuhara
differentiability method and we use the Crank-Nicolson way for finding the
solution of a parabolic PDE. We investigate the consistency and stability of
this method. We solve the fuzzy parabolic equation with this scheme in Section
4. Finally, a non-trivial example is given by this method.

2. Basic concepts

First of all, we briefly give some basic and important concepts and results
about the Hukuhara and generalized Hukuhara differentiability. We show the
set of fuzzy numbers by Rx. As usual, we denote for interval 8 € (0, 1], the
following sets on R™:

[a” = {y € la(y) > B},
and
a® = cl{y € R™|a(y) > 0} = supp(a).

One can write [a]® = [a(B), E(ﬁ)] For any a,b € R and k € R, the definition
of summation and scalar product are as [a + b = [a]® + [b]?, [ka]® = k[a]”.
In addition, Hausdorff distance of fuzzy numbers is defined by

pZRfXR}‘—)R+U{0}

pla,b) = supgero.d([a]’, [1]°) = suppejo.ymax{|a(8) — b(B)|, [a(B) - b))},
in which d is denoted as the Hausdorff metric. It is well known that (Rz, p)

is a complete metric space, such that satisfies the below properties:

(1) pla®c,b®c) = p(a,b), Ya,b,c € Rr;

(2) p(pa, ub) = |ulp(a,b), Vi € R,a,b, € Ry;

(3) pla®c,b®c) < pla,c)+ p(b, 2), Ya,b,c,z € Rr;

(4) placb,coz) <pla,c)+ p(b,z) as long as a © b and ¢ O z exist, where

a,b,z € Rg,

Here, © stands as Hukuhara difference and we have c6b=a iff a® b = c.

Now, we recall the basic definitions about fuzzy derivative.

Definition 2.1. [5] Let a function w be a fuzzy value and w : (a,b) — Rr.
Then at the point yg € (a,b), we define the generalized Hukuhara derivative
(gH-derivative) as follows

w(yo +h) Sem w(yo)

(1) Wyir(yo) = lim - .

Definition 2.2. [5] Suppose a fuzzy valued function w : [a,b] — Rz is differ-
entiable at yo. We define
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e w at point yo is named [(j) — gH]—diff if

(2) w;;gH(yO;ﬂ) = [(Wf)/(yo : 6)3 (w+)/(y0 : B)L ﬂ € [07 1]5
e w at point yq is called [(jj) — gH]—diff if
®3) wij o (Y0i B) = (@) (yo : B), (W) (w0 : B)], B €[0,1].

Definition 2.3. [5] We say that a point yg € (a,b), is a switching point for
the differentiability of w, if in any neighborhood V of yy there exist points
y1 < y2 < ys3 such that

type(I) at y1, (2) holds while (3) does not hold and at yo, (3) holds and
(2) does not hold, or

type(II) at y1, (3) holds while (2) does not hold and at ys, (2) holds and
(3) does not hold.

Example 2.4. Assume that we have the following initial value problem:
w (y) +w'(y) +w(y) =y, w(0) = 0,w'(0) = 1.
It is easy to see that the solution of the equation is equal to
y 3 1 3
w(y) = e_(i)(008(§y> + \/gszn(\gy)) +y—1

One can find the Fuzzy solution of this differential equation in [11]. By ana-
lyzing the solution function w and its derivatives we have w(y).w'(y) > 0 and
w'(y).w”(y) <0 for any y € [0,1.204]. So, w and w" have [(j) — gH|—diff and
[(79) — gH)—diff , respectively. Also, their types switch for any y € [1.204,5].
Thus y = 1.204 is a switching point.

In this paper we assume that there is not any switching point at the intervals
of computations.
Moreover, the second order gH-differentiability is defined as

" o wip(yo +h) Sgr w g (yo)
ng(iUO) - }lbll;% h
if wop (Yo + h) Ognr wyp(yo) € R
Also, we have
o w (y)is called [(j) — gH]-diff if gH-differentiability of w(y) and wj z (y)
are from the same type and:
Wi g (Yoi B) = [(w™)"(yo3 B), (wT)" (o3 B)], B € 10,1]
e w p(y) is called [(jj) — gH]-diff if gH-differentiability of w(y) and
wyz (y) are from different type and:

Wit gr (o3 B) = [(wWF)" (yo: B), (w™)"(yo; B)], B € [0,1]

The number ¢ of an open interval J C R is called a critical point [12] of w
if gH-derivative of w vanishes at ¢ (i.e. wyy(c) =0) or w at the point c is not
differentiable.

Now, we recall some properties of fuzzy partial derivatives.
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For a fixed a € Rz and a crisp differentiable function ¢(y, s), [gH-p]-derivative
with respect to s from y(y,s) = q(y,s) © u is as follows [12]: 0,,,V(y,s) =
05q(s,y) © u. Also the equality

(Y, s+k)Sgu7(s,y) = q(y, s+k) OuSgn q(y, s) Ou = (q(y, s+k) —q(s,y)) Ou
holds. Moreover, by using Hausdorff distance we obtain

FY(ya S+ k) @gH 7(57 y)a

lll_r%p( A 5q(s,y) © a)
_ hmp(q(y, s+k)—q(s,y)© U 0q(s,y) ©a)
k—0 k
— imp( L EFER =46V o 5 (s,4) 0 a)
k—0 k
(4) =0.

This means [gH-pl-derivative act as 0s,,7(s,y) = 0sq(s,y) © u.

Definition 2.5. [12] Suppose w(s,y) : J — Rz is a function such that
w (y,s;8), wt(y,s; B) are partial differentiable with respect to y then

e w(s,y) is called [(j) — p]—diff with respect to y at (yo,s0) if

(5) By, g1 (Yo, 50; B) = [0yw™ (Yo, s0; 8), Byw™ (y0, 503 B)]
e w(s,y) is called [(jj) — p]—diff with respect to y at (yo,s0) if
(6) Dysi g (Yo, 503 B) = [C{’ytﬁ(yoa80;5)7531007(1/0,80;5)]

If both of w(y,s) and dyw(y,s) are [gH-p]-diff at (yo,s0) € J, the second
order derivative in these senses are defined as the following cases:

o Oyy,nw(y,s)is [(j) — p]-diff with respect to z if w(y,s) and 9, ,w(y, s)
have the same type of [¢H — p|-differentiability and:

Oy, 0@ (Y0, 505 B) = [Oyew™ (W0, 503 B), Oyaw™ (Yo, S0; B)]-
® Oyrgrw(y,s) is [(jj)—pl|-diff with respect to x if w(y, s) and Oygrw(y, s)
have different [gH — pl-differentiability type and:

Ayyir o @ (05 503 B) = [Oyaw™ (Yo, 503 B), Oyew™ (Yo, 505 B)]-

3. Solution of fuzzy parabolic equations by using the method
of Crank-Nicolson

We consider fuzzy linear parabolic equations of second order by using the
generalized Hukuhara differentiable [4]:

(7) s, (5,y) Ogr 0,2, w(s,y) = G(s,y)

G(S, y) =0
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with the fuzzy initial condition
w(0,y)=wp € E, s=0,y<][0,l],
and the fuzzy boundary conditions
w(s,0)=w1 € E, y=0,5>0,
w(s,l)=w € E, y=1s>0.

In terms of the definition of generalized Hukuhara differentiable we have:

(8) 85911(")(873/) 9gH ﬁayﬁHw(s,y):G(s,y)
(j)asgyw(sa y) :6ay§Hw(87 y)"—G(Sa y)>
(9) < or,

(17)B0y2, w(s,y) = 0s, (s, y) +(=1)G(s,y).
Let G(s,y) = 0, then we have :
Os,qw(s,y) = B0, w(s,y).

By using Definition (2.2), suppose w(s,y) =: J = Rz, (s0,%0) € J and JJ,I; are
partial differentiable with respect to y then
Os, 1w (50, Y0) is called (j-gH)-diff:

8Si_gHw(SOa yO) = lasgyw(507 Yo, l)7 angw(S()y Yo, l)‘| .

05,1 W (50, Y0) is called (j-gH)-diff:

asii.gHw(SO7 yO) =

angw(so’ Yo, l)a angQ(SOa Yo, l)] .
Also, let w(s,y) : J = RF, Ows,, (s,y) be gH-diff at (so,y0), then

ayngw(s, y) is called |(j) —gH |-diff if w(s,y) and 9, ,w(s,y) have same type

of gH-differentiability and

ayZi_gHw(807 yO) = [angW(SO, Yo, l), angg(‘gO? Yo, l)] le [07 1]
Oy, w(s,y) is named [(jj) - gH] -diff if w(s,y) and 9y, ,w(s,y) have different
type of gH-differentiability and

ay2ii_gHw(507 yO) = langHw(SO’ Yo, l)a 8y2gH£(50, Yo, l)] le [07 1]
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Theorem 3.1. The solution of the fuzzy parabolic PDE (7) by SG-Hukuhara
differentiability method is as follows:

Case(1): If both Os,,w(s,y) and O,z ,w(s,y) be considered (j-gH)-differentiability,
or Os,,w(s,y) and dy2  w(s,y) be considered (jj-gH)-differentiability, then

(10)  Os,yw(s,y,1) = PO, f(s,y,l) and asyH w(s,y,l) = 0,2 D2, u w(s,y,1).
Case(2): If0s,,w(s,y) and 0,2 Hw(s,y) have different type of gH-differentiability:

(11) Os,yw(s,90) = O,z ,w(s,9.1) and Oy, ,w(s,y,0) = By, w(s,y,1),
such that initial conditions are

w(0,y,1) =wu(l) and @(0,y,1) =wo(l),
and boundary conditions are

w(s,0,1) =wy () and w(s,0,1) =w1(l)

w(s,l,1) =wy(l) and @(s,l,1) =wa(l)

w(0,y,1) =wo(l) and @(0,y,1) =wo(l),
where Os,,w(s,y,1) = min{0s,,w(s,y,1),0 s, mw(s,y,0)} and O, w(s,y,1) =
max{0s,,w(s,y,1),0 s, (s,y, D)}
Proof. Since the parametric form of the fuzzy number w(m, j) is as follows:

w(m, j) = (w(m, j,1),w0(m, j,1)),

Ds,nw(s,y) = B0y, w(s,y),
fuzzy parabolic PDE in grid point (s,,y;) is designated as:

(12) [angw](5m+%,yi) = [ﬁangHw](str%,yi)
1 Nw(m+lajal)9 Hw(maj7l)
Qs pw(m + 30 l) = Asg )

Also, the variable y can be kept constant when we compute the partial deriva-
tive of the function w w.r.t. the variable s, so:

859Hw(maj) = [as g% (m ]al) a w(ma.]al)]

or

Os,uw(m, j) = [0s,5,w0(m, J,1), 05, yw(m, j,1)].

Thus we can state the following cases in different types of integrability.

Case I : If 9, ,w(m + 5, ) is considered as (j — gH)-diff and we get:
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1 . W(m—f—l,j,l) egHw(majvl)
aSgHw(m+ 2?]70 - At )

(13)

1
Ds,yw(m + 57]',1) ~ (

At ’ At '

Case II : If we consider s, w(m + %, j) is differentiable in the first form (jj —
gH)-diff and so we can write

w(m,j,l) - 9gHW("n + 17.7?1)

1.
8SgHw(m+§7.7al) - At
(14)
1 . ~ w(m+1vj7l)_w(m7]7l) ﬂ(m—’—la%l)_ﬂ(mujvl)
Os,pw(m+ =,7,1) ~ ( A7 , A7 ).

2

The variables can be kept constant when we compute the second-order par-
tial derivative of the function w w.r.t. the variable y. It should be noted that,
the counter m is used for the s-direction derivative and j for the y-direction
derivative.

Case I : If both of 0, ,w(s,y) and 9,2 ,w(s,y) are considered as (j-gH)-diff
or (jj-gH)-diff, then
1 .
8yngw(m + 57])
(15)
1 l(w(m,j—l,l)—2w(m,j,l)+W(m-,j+1,l) + w(m+1,j—1J)—2w(m+1,j7l)+W(m+1,j+17l)]
2

~ Y (Ay)2 _ ] Ay ]
— 9 |@mg=1,D=20(m,5,D)+w(m,j+1,1) | @(m+1,j-1,0)=20(m+1,5,)+0(m+1,5+1,0)
+ Ay )

(Ay)?

Case II : If both of 0, ,w(s,y) and 0,2

Y g

form of (gH)-differentiability, then we put:

w(s,y) are considered as different

1 .
8yngw(m )

2
(16)
w(m,j—1,1)—2w(m,j,l)+w(m,j+1,1) w(m+1,5—1,1)-20(m+1,5,0)+w(m+1,j+1,0)
~ 1 Ay)2 + Ay 2 )
~ 5 (g(m,jf1,l)f2g(m,j,l)+£(m,j+1,l) + w(m—+1,j—1,)—2w(m+1,j,0)+w(m+1,j+1,1)
(Ay)? (Ay)?

For the solution of fuzzy parabolic PDE’s by applying the explicit method,
we replace each first-order and second-order partial derivative in (12) by its
approximation in forward and central differences and by (13), (14),(15) and
(16) we obtain the following recursive equations.
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Case(I):
At 2 (Ay)?
+ 2
(Ay)
(17)
wim+1,5,1) —w(m, j,1) lﬁw(m’j —1,1) = 2w(m, j,l) + w(m,j + 1,1)
At 2 (Ay)?
+ 2
(Ay)
Case(II):
Q(m_'_ 17]7l) —g(m,],l) _ lﬁw(mvj - lal) — 2@(77’7,,],[) +w(m7j + lal)
At 2 (Ay)?
+ 2
(Ay)
(18)
w(m+1,5,1) —w(m, j, 1) _ lﬁ(g(m,j = 1,0 = 2w(m,j,1) + w(m,j +1,1)
At 2 (Ay)?
i (Ay)? )

where, they leads to a recursive equation expressed as follows:

Case(I):

2+ 2d)w(m + 1,5,1) — dw(m + 1,5 + 1,1) — dw(m + 1,5 — 1,1)
= (2 —2d)w(m, j,1) + dw(m,j + 1,1) + dw(m,j — 1,1)

(19) 2+2d)w(m+1,4,1) —do(m+1,7+1,1) —do(m+1,j — 1,1)
= (2 —2d)w(m, j,1) + dw(m,j + 1,1) + dw(m, j — 1,1)
Case(II):
2dw(m +1,4.1) — dw(m + 1, + 1,1) — dw(m + 1,j — 1,) + 2@(m + 1, j,1)
= —2dw(m, j,1) + dw(m, j + 1,1) + dw(m,j — 1,1) + 2w(m, j,1)

(20)
= —2dw(m, j,1) + dw(m, j + 1,1) + dw(m, j — 1,1) + 2w(m, j, 1)
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where d = %,le 0,1],m=1,...N—land j=1,...m—1,

and also w(m, j,{) and w(m, j,1) at j =1 and j = m, for m > 1 and w(m, j,1)
and @w(m,j,1) at m =1, for 1 < j < m, are known.
So, the proof is completed. O

4. On the stability of numerical methods

Here, the Von-Neumann method for the stability analysis of numerical meth-
ods are considered. In this method, solutions of Eq.(19) and (20) are written
as follows:

w(m, j,1) =U™D)e'P2*D, w(m,j,1) =T (1)er40)

where I = y/—1 and p is the wave number in the z-direction. If the phase angle
is 2 = pAx, then we have

w(m, j, 1) = Um0, G(m,j,1) =T (1)’
wim+1,5,1) = Qm+1(l)em(j)7 G(m+1,5,1) = U (l)eIQ(j)
wim,i+1,1) = Q’”(l)em(jﬂ)7 o(m,i+1,0) = Um(l)eIQ(jil)

First, we replace each relation above in Eq. (19) to obtain (m,1:1,1):
_1—2dsin®*(9)
14 2dsin®($)

m—+1

u(l)

_ 1 — 2dsin?($
o) = 2 ),
1+ 2dsin”(5)
for proving the stability of the method in case (I), it is sufficient to show the

— +
absolute value of U(l) and U(l) is less than or equal to one.
Therefore Equation (19) will be stable when

(U |<1 and |UQ1)|<1

i.e.

1 — 2dsin?(Q/2)
—— 3. =1
1+ 2dsin*(%)
Then the method is stable.
Or we replace each relation above in Eq. (20) to obtain:

(21)
{ 2d(1 — cos(Q)) U™ (m +1,1) + 20" (1) = 2d(cos(Q) — 1)U™ (m, 1) + 20" (1)

2d(1 — cos(Q))ﬁm—H(m +1,1) +20™ (1) = 2d(cos(Q) — 1)U (1) + 20™(1).
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from (21) we have:

(22)
[ st [0 H 0 b ]
we denote a = [ o —1COS ? d(1 —1cos Q) ] and b = [ d(COS? Y d(cosél -1 ] ’
and G =a'b

For proving the stability of the method, it is sufficient to show the absolute
value of the eigenvector of matrix G is less than or equal to one.
G is a (2 x 2) matrix whose eigenvalues p1, o are given by

11— 2dsin®*(9)

M1 = :
1+ 2d51n2(%)
1+ 2dsin®($)
M2 :
1-— 2d51n2(%)

Therefore the Equation (20) will be stable when sin*($) = 0 then the method
is stability is for

sin(%) =0=sinkr,k€Z and Q=2knw

4.1. Investigating the consistency. For determining the consistency and
scheme order of fuzzy partial differential equation (FPDE), w and @ in (19)
and (20) are replaced with exact solutions G and G of (7) to give truncation
€ITors.

The local truncation errors are defined as operators which map the actual
solutions of the FPDE to the corrections required to make them satisfy the
scheme at any time step:

Case(I):
= (2 - Qd)g(mujal) - dﬂ(ma.] + 171) - d@(mvj - lvl)

2+ 2d)w(m +1,j,1) —dw(m+ 1,5+ 1,1) — do(m +1,j — 1,1)
= (2 - 2d)@(m,j,l) - dw(ma] + 1?1) - dw(mvj - 1al)

rAt
(Ay)?

— (2= 2d)G(m, j,1) + dG(m, j + 1,1) + dG(m, j — 1,1)

where d =

E(m,j,0) = (2+2d)G(m+1,5,0) + dG(m + 1,5 + 1,1) + dG(m +1,j — 1,1)
—(2-2d)G(m, j,1) — dG(m,j + 1,1) — dG(m,j — 1,1)
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Case(II):

2dw(m +1,5,0) —dw(m+ 1,7+ 1,1) —dw(m + 1,5 — 1,1) + 2w(m + 1, 4,1)
= —2dw(m, j,1) + dw(m,j+ 1,1) + dw(m, j — 1,1)

2dm(m +1,5,1) — dw(m + 1,5 + 1,1) — dw(m +1,§ — 1,1) + 2w(m + 1, 4,1)
= —2dw(m, j,1) + dw(m,j + 1,1) + dw(m,j — 1,1) + 2w(m, j,1)

where d = (22352

+2dG(m, 5,1) +dG(m, j +1,1) —dG(m,j — 1,1) + dG(m, j,1)

E(m,j,1) = 2dG(m+1, j,1)—dG(m+1, j+1,1)—dG(m+1, j—1,1)+2G (m+1, j,1)
+2dG(m, j,1) + dG(m, j + 1,1) + dG(m,j — 1,1) + dG(m, j,1)

We begin by taking the Taylor expansion of functions G and G in s and y about
(Snv yi)'

k2 k3
Q(m+17.77 l) = Q(m7j7 l)+kangQ(m7 j7 l)+?at§HQ(m7 j7 l)+€8t3Hg(majv l)+ o

o o o k2 o k3
G(m+17]7 l) = G(mvjv l)+kaSgHG(m7j7 l)+?6t§HG(mvjv l)+EatgHw(m7jv l)+ o

. . . h? . h3 .
Q(ma 1:F13 l) = Q(mvja l):Fhangg(ma I l)—'_?angQ(ma I l):Fgangﬂ(ma I l)+ o

_ _ R, R
G(m,Z:FLl) :G(m ]7 ):Fhay uW (m ]a )+?ay§Hw(m7]al):FFangw(m7]al)+'"

G(m+1,iF1,0) = G(m, j,1) F hdy,,w(m, j,1) + ks, (m, j, 1)

1 h?
2( 5 8ysz(m,y, I) F 2hk0y, 0, G(m, j,1)
h? . 1 h3 .
+ kz(?atgl_l&(mvjvl)) + E(FaySHg(m"% l)

h3
+ 3h2kgay§HangQ(m7j7 l)

+ 3hk28y atgHQ(maj7 l) + k?’atgHg(m,j, l)) + e

gH
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é(m+ 1a2:F lal) :é(m ]a ):Fhay W (m ]a )+kangé(m7jal)

1 h?
+ 2( 5 0,2, w(m, j, I) F 2hkd,,,, 0s,,, G(m, j,1)
h o 3
+k2f8tz G(m, 5. 1) + 5 (% Oz, @(m, ,1)
3G
2 , 2
+3h k a W Doyu Gm,3,1) F 30 0

(m7 j’ l)

R @gHG(m,j,l) o
So, by replacing (11) and (12) by their Taylor expansion about the (m, j), im-
plies:

case(I)

K3 k*
E(m7ja l) = Zk(aSgHQ(maj7 l) - ayf]HQ(majv l)) + kzat?]HQ(maj7 l) + ?atz;H + E

1
+ 0y, G(m, . 1) = K0y2,, 05,y G(m, ,1) = Sk O,2,, Oz G(m, j,1)
1., .
_ 8h k@ngQ(m,],l)

E(m, j,1) = 2k(s,,G(m, j,1) = 9,2, G(m, j,1)) + k*2 G(m, j,1)
k3 k4 — —
+ ?ang + ﬁ + 8S§HG(m,j, l) — kzayngatgHG(m, j, l)
1 — 1 —
— 5Kz, 0,2,Gm.0,1) = Wk, Clm, j. 1)

lim E(m,j1) = lim B(m, 1) =
i, Em 3 ) =0 T B(m, j,1) =0

case(II)
E(m, j,1) = 2k(0s,,G(m, j,1) — 02, G(m, j,1)) — k:28 L 0s,n G(m, 4,1)
1 . 1 — . .
_ éthangQ(m,], ) — §k36yngG(m,], l)@tgHQ(m,], 1)
+ k3852H§(m, 3, 0) + k4853Hé(m, 3,0)
E(m,j,l) = 2k(0s,,G(m, j,1) — 695116(”1’]’ ) — k> 8 GSQHG(m,j, 1)
1 — . 1 . .
- 6h2k8y3HG(m,], ) — ikgﬁyngQ(m,j, l)atgHG(m,j, l)

+ k3as3 LG(m,j,1) + ko, 1, G(m,j,1)

lim E )= lim E l
i, E (m,j,1) =0 i (m,j,1) =0

So, we declare the method accuracy to be O(k? + kh?).
Thus, E(m,j,1) — 0 and E(m,j,1) — 0 as (k,h) — 0
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5. Numerical example

Example 5.1. We consider the heat equation such that its initial and boundary
conditions are fuzzy valued and :

as_qu(sv y) = 58ngw(Sa y)

T(0,y) = 1sin(ry) at s = 0,0 <y < 1 (initial condition)

T(S,O):% aty=0,8>0

T(s,l) = % aty =1, >0 (boundary condition)

where w(m, m,l) = %r, wim,m,l) = 1— %r,g(m,o,l) = %T, w(m,0,1) =

1— 1 w(0,4,1) = rsin(ry) andw(0,4,1) = (2 — l)sin(wy) the following cases
are possible:

Case(I):

— (2 = 2d)w(m, j,1) + des(m, j +1,0) + dao(m, j — 1,1)

(2 4 2d)@(m + 1, 4,1) — do(m + 1,5 + 1,1) — dw(m + 1,5 — 1,1)
= (2 = 2d)@(m, j,1) + dw(m, j + 1,1) + dw(m, j — 1,1)

wherey € [0,1], As =45, B=1, Ay=3%,d= 1 andl €[0,1], m=0,..,N-1
and j =0,...m—1,

and also w(m,j,1) and w(m,j,l) at 5 = 0 and j = m, for m > 0 and
w(m,j,1) and @(m, j,1) at m =0, for 0 < j < m, are known.

The approzimated solutions are compared forl =0,0.1,...;1 in the following
Tables 1, 2, 3.

J | w(3,7,0) | @(3,7,0) | w(3,7,0.1) | @(3,7,0.1) | £(3,7,0.2) | ©(3,4,0.2) | w(3,7,0.3) | @(3,7,0.3)
0 0 1 0.05 0.95 0.1 0.9 0.15 0.85

1 0 1.2156 0.06078 1.1548 0.1256 1.094 0.1823 1.0338
2 0 1.2156 0.06078 1.1548 0.1256 1.094 0.1823 1.0333
3 0 1 0.05 0.95 0.1 0.9 0.15 0.85

Table (1).

7 [w(3,5,0.4) [5(3,5,0.4) [ w(3,7,0.5) | (3,4,0.5) | £(3,5,0.6) | &(3,7,0.6) | w(3,5,0.7) | @(3,5,0.7)
0] 02 0.8 0.25 0.75 0.3 0.7 0.35 0.65

1| 0.24312 0.9725 0.5039 0.9117 0.56468 0.8509 0.4255 0.7901
2| 0.24312 | 0.9725 0.3039 0.9117 | 0.36468 | 0.8509 0.4255 0.7901
3| 02 0.8 0.25 0.75 0.3 0.7 0.35 0.65

Table (2).
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J [2(3,5,08) [©(3,5,08) | €(3,,09) | ©(3,4,09) | £3,5,1) | 56,4, 1)
0 0.4 0.6 0.45 0.55 0.5 0.5
1 0.4862 0.7293 0.547 0.6686 0.6078 0.6078
2 0.4862 0.7298 0.547 0.6686 0.6078 0.6078
3 0.4 0.6 0.45 0.55 0.5 0.5
Table (3).

09

08

0.7

06

05

04

03

0.2

0.1

5’.35 04 045 05 0.55 06 085 07

ulu2
FIGURE 1. Fuzzy PDE answer at t =2/3 and y = 1
2
s=0.08, y= 3
Case(II):

2dw(m +1,7,1) —dw(m+ 1,5+ 1,1) — dw(im+1,j — 1,1) + 2@(m + 1, 1,1)
—2dw(m, j,1) 4+ dw(m, j + 1,1) + dw(m, j — 1,1) + 2(m, j,1)

2dw(m +1,7,1) —dw(m+ 1,7 + 1,1) —dao(m + 1,5 — 1,1) + 2w(m + 1, 4,1)
= —2dw(m, j,1) + da(m, j + 1,1) + dw(m,j — 1,1) 4 2w(m, j,1)

wherey € [0,1], As =35, =1, Ay=3%,d=Fandl €[0,1], m=0,..,N-1
and 7 =0,....,m —1, and also w(m, j,1) and W(m,j,1) at 5 =0 and j = m, for
m > 0 and w(m, j,1) and W(m, j,1) at m =0, for 0 < j < m, are known.

The approzimated solutions are compared for r = 0,0.1,...;1 in the following
Tables 4, 5, 6.
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Jw(3,4,0) [ @(3,4,0) | w(3,5,0.1) | @(3,5,0.1) | £(3,4,0.2) | w(3,4,0.2) | w(3,4,0.3) | &(3,4,0.3)
0 0 1 0.05 0.95 0.1 0.9 0.15 0.85
1] -1.5256 | 2.5544 -1.3122 2.3597 -1.0988 2.1651 -0.8855 1.9704
2| -1.5255 | 2.5544 -1.3122 2.3597 -1.0988 2.1651 -0.8855 1.9704
3 0 1 0.05 0.95 0.1 0.9 0.15 0.85
Table (4).
J | w(3,5,0.4) [©(3,5,04) | w(3,4,0.5) | @(3,5,0.5) | £(3,4,0.6) | ©(3,4,0.6) | w(3,4,0.7) | @(3,5,0.7)
0 0.2 . 0.25 0.75 0.3 0.7 0.35 0.65
1| -0.6721 1.7757 -0.4588 1.581 0.2455 1.3864 -0.0521 1.1917
2| -0.6721 1.7757 -0.4588 1.581 0.2455 1.3864 -0.0521 1.1917
3 0.2 0.25 0.75 0.3 0.7 0.35 0.65
Table (5).
j | w(3,5,0.8) | @(3,4,0.8) | w(3,5,0.9) | ©(3,5,0.9) | £(3,5,1) | ©(3,5,1)
0 0.4 0.6 0.45 0.55 0.5 0.5
1 0.1812 0.997 0.3946 0.8024 0.6078 0.6078
2 0.1812 0.997 0.3946 0.8024 0.6078 0.6078
3 0.4 0.6 0.45 0.55 0.5 0.5
Table (6).
07
0§
04
03
02
01
0.8 1 12 14 16 18
2

FIGURE 2. Solution of fuzzy PDE at the point y = 1,s = 0.08
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