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Abstract. In this paper, we consider large-scale low-rank Sylvester dif-

ferential matrix equations. We present two iterative methods for the

approximate solution of such differential matrix equations. The first ap-
proach is based on the integral expression of the exact solution which

exploits an extended block Krylov subspace method to compute the expo-

nential of a matrix times a block of vectors. In the second method, we first
project the initial value problem onto an extended block Krylov subspace

and acquire a low-dimensional Sylvester differential matrix equation with
a low-rank constant term. Then the reduced Sylvester differential matrix

equation is solved by the backward differentiation formula method (BDF)

and the derived solution is used to construct the low-rank approximate
solutions of the original initial value problem. The iterative approaches

are followed until some certain accuracy is obtained. We give some theo-

retical results and some numerical examples to show the efficiency of the
proposed methods.

Keywords: Sylvester differential matrix equations, Extended block Hes-
senberg, Low-rank.
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1. Introduction

This paper presents two iterative methods for the numerical solutions of the
low-rank Sylvester differential matrix equation (in-short LR-SDE) of the form{

Ẋ(t) = AX(t) +X(t)B + EF>, t ∈ [t0, T ]

X(t0) = X0,
(1)

where A ∈ Rn×n, B ∈ Rs×s are nonsingular matrices and E ∈ Rn×r, F ∈ Rs×r
are full of rank with r � min(n, s). The low-rank Lyapunov differential matrix
equation corresponds to the symmetric case when B = A> and F = E.

Differential Sylvester and Lyapunov equations come into view in different
fields of applied mathematics, for instance, control theory, design theory, model
reduction problems, and robust control problems [3, 6, 7].
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As far as we know, although these differential matrix equations are impor-
tant especially when their matrix coefficients are large-scale, few numerical
methods have been proposed to find their approximate solution. To obtain
the approximate solution of such differential matrix equations, methods such
as backward differentiation formula (BDF) and/or Rosenbrock have been pre-
sented in [11, 12]. These methods usually suffer from a problem of storage.
To overcome this problem, the authors in [10, 19] combined Krylov subspace
methods with Taylor series expansion or BDF methods. Bouhamidi et al. [15]
combined the constant solution approach with Krylov subspace methods to
achieve an approximate solution of the Sylvester algebraic equation, and then
form an approximate solution of the large-scale Sylvester differential matrix
equation. Moreover, there is a large variety of methods to approximate the so-
lution of large-scale matrix differential equations such as differential Lyapunov,
Sylvester, and Riccati matrix equations, for further details see [19, 20, 28, 29].
The basic idea used in these methods is to apply an extended Krylov subspace
and then utilize the Galerkin-type orthogonality condition.

In [20], M. Hached et al. introduced some numerical methods for computing
approximate solutions to some large differential linear matrix equations. They
solved differential generalized Sylvester matrix equations with full-rank right-
hand sides using global Galerkin and norm-minimization approaches. In addi-
tion, they examined large differential Lyapunov matrix equations with low-rank
right-hand sides and applied the extended global (or extended block) Arnoldi
process to generate low-rank approximate solutions, see [19,20]. In [28], E. M.
Sadek et al. proposed iterative methods based on the global extended Krylov
subspace method to solve large-scale differential Sylvester matrix equations
with low-rank right-hand sides. In [29], L. Sadek et al. studied the extended
block Arnoldi-based algorithms for solving low-rank large-scale differential non-
symmetric Stein matrix.

In this paper, motivated by the merits of the extended block Krylov sub-
spaces, we present some numerical methods based on the block Hessenberg
process to solve the large-scale Sylvester differential matrix equation with the
low-rank constant term (1). The extended block Krylov subspace contains
more information than the classical block Krylov subspace because it is en-
riched by A−1. This is due to the fact that extended block Krylov subspaces
can enlarge the search space, which makes all Krylov subspaces associated with
each right-hand side contained. To generate a basis of the subspace, we should
apply a process for constructing a basis. Since the extended block Hessenberg
process requires less arithmetic operations and storage than the extended block
Arnoldi process, we use it.

Herein, we give two approaches based on the extended block Hessenberg
process. The first is based on approximating the exponential matrix in the
exact solution exploiting the extended block Krylov method named the expo-
nential Hessenberg method (EHess-exp). The other is based on a low-rank
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approximation of the solution of the corresponding Sylvester differential ma-
trix equation using the extended block Hessenberg algorithm, which is called
the low-rank Sylvester differential extended block Hessenberg method (LRSD-
EBHess). These approaches are based on the extended block Hessenberg pro-
cess have been developed for the first time and have had a very good perfor-
mance for large-scale problems.

The rest of the paper is structured as follows. First, we give some defi-
nitions and notations and recall some properties. Then, we describe and give
some properties of the extended block Hessenberg process with maximum strat-
egy in Section 2. In Section 3, we define the EHess-exp method based on the
extended block Krylov subspace and a quadrature method to approximate ma-
trix exponential and compute the numerical solution of the Sylvester differential
matrix equation (1). In Section 4, we show how to project the initial Sylvester
differential matrix equation onto an extended block Krylov subspace to get low-
rank approximate solutions in a factored form. Then, we solve the obtained
low-dimensional Sylvester differential equation using the backward differentia-
tion formula (BDF). We also establish some theoretical results on the residual
and the error norm provided by the two approaches. In the last section, we
report the experimental results and conclude this paper.

Throughout this work, the following definitions and notations will be used.

Definition 1.1. Assume that A is an m × n and B is p × q matrix. The
Kronecker product of two matrices A and B is denoted by A ⊗ B and is the
pm× qn block matrix:

(A⊗B) = (ai,jB),

where ai,j denotes the (i, j)-th element of the matrix A.

The properties of the Kronecker product incorporated in Proposition 1.2
follow immediately from the definition.

Proposition 1.2. If A,C ∈ Rn×n and B,D ∈ Rm×m. Then

1 . (A⊗B)> = A> ⊗B>.
2 . (A⊗B)(C ⊗D) = (AC ⊗BD).

The following definition introduces the notion of a left inverse for a non-
square matrix.

Definition 1.3. ( [30]) Suppose A,B ∈ Rn×r and let B>A be a nonsingular
matrix. Then the left inverse of the matrix A is denoted by AL and defined as

AL = (B>A)−1B>.

Observe that this left inverse satisfies ALA = Ir. Note that the left inverse of
a matrix is not unique. For instance, if A has full column rank, a left inverse of
a matrix A is AL = (A>A)−1A>. This is the same as pseudo-inverse, denoted
by A†.
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The Frobenius norm of a matrixA ∈ Rm×n is defined by ‖A‖2F = trace(A>A),
where trace(Z) denotes the sum of the diagonal elements of the matrix Z.

Definition 1.4. Let the matrices Vm ∈ Rn×m and Wm ∈ Rs×m that have
left inverses be given. In addition, let A ∈ Rn×s. Then the semi-norm of the
matrix A is denoted by |A|(Vm,Wm) and is defined as

|A|2(Vm,Wm) = ‖VLmA(WL
m)>‖2F ,

where VLm and WL
m are the left inverses of the matrices Vm and Wm, respec-

tively.

Furthermore, we will refer to the maximum norm of a matrix A ∈ Rm×n in
the form

‖A‖max = max
1≤i≤m
1≤j≤n

|ai,j |.

For a bounded matrix valued function R(t) defined on the interval [t0, T ], the
uniform convergence norm

‖R‖∞ = max
t∈[t0,T ]

‖R(t)‖F ,

is considered.

2. The extended block Hessenberg process

In this section, we represent the extended block Krylov subspace and use the
extended block Hessenberg process with the maximum strategy to construct a
basis for it.

Before describing the extended block Hessenberg process with the maximum
strategy, let us first introduce the projection subspace that is considered herein.
Let A ∈ Rn×n be a nonsingular matrix and V ∈ Rn×r be a block vector. The
extended block Krylov subspace associated with pairs (A, V ) is denoted by
Kem(A, V ) and is defined as

Kem(A, V ) = blockSpan
{
V,A−1V,AV,A−2V, . . . , Am−1V,A−mV

}
.

It should be noted that it can be written as a sum of two classical block Krylov
subspaces Km(A, V ) and Km(A−1, A−1V ). The block extended Krylov sub-
space Kem(A, V ) contains more information than the classical block Krylov
subspace because it is enriched by A−1. To construct a basis of Kem(A, V ), we
can apply the extended block Hessenberg process with the maximum strategy
that is summarized in Algorithm 1. This procedure is similar to the block
Hessenberg method with maximum strategy which was introduced in [4].

If the upper triangular matricesHj+1,j , j = 1, 2, . . . ,m are not rank-deficient,
Algorithm 1 generates an n × 2mr matrix Vm = [V1, V2, . . . , Vm] with Vj ∈
Rn×2r and block upper Hessenberg matrix Hm ∈ R2mr×2mr with Hi,j ∈ R2r×2r

such that the block vectors V1, V2, . . . , Vm form a basis of the extended block
Krlov subspace Kem(A, V ).
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Input: A an n× n matrix, V an n× r matrix and m an integer.
Output: The matrix Vm+1 ∈ Rn×2(m+1)r with column block vectors

V1, V2, . . . , Vm+1 and the semi-block upper-Hessenberg
Hm ∈ R2(m+1)r×2mr.

1: Compute the partial LU factorization of [V,A−1V ]:

[V1,Λ] = lu([V,A−1V ]); [∼, p1] = max(V1);

2: for j = 1, . . . ,m do

3: Set V
(1)
j = Vj(:, 1 : r), and V

(2)
j = Vj(:, r + 1 : 2r);

4: Set Vj = [Vj−1, Vj ], and Û
(0)
j+1 = [AV

(1)
j , A−1V

(2)
j ];

5:

6: for i = 1, . . . , j do

7: Hi,j = (Vi(pi, :))
−1Û

(i−1)
j+1 (pi, :);

8: Û
(i)
j+1 = Û

(i−1)
j+1 − VjHi,j ;

9: end for
10: end for
11: Compute the partial LU factorization of Û

(i)
j+1 and the (j + 1)th

permutation vector pj+1:

[Vj+1, Hj+1,j ] = lu(Û
(i)
j+1); [∼, pj+1] = max(Vj+1);

=0
Algorithm 1: The extended block Hessenberg process with maximum
strategy (EBHess).

It is worth mentioning that the matrix Vm has a left inverse. To this

end, let pj = [i
(j)
1 , i

(j)
2 , . . . , i

(j)
2r ] be the permutation vectors that are gener-

ated by Algorithm 1, for j = 1, 2, . . . ,m. We define the n × 2r matrices
Pj = [e

i
(j)
1
, e
i
(j)
2
, . . . , e

i
(j)
2r

] such that P>j Vj = I2r, P
>
j Vi = 0, for i = 1, 2, . . . , j−1

and ej is the j-th column of the identity matrix In. With regard to these defi-
nitions, we get

P>mVm = Lm,

where Lm ∈ R2mr×2mr is a unit lower-triangular matrix and Pm = [P1, P2, . . . , Pm].
As a result of this discussion, we can see that the left inverse of Vm (namely
VLm) is given by

VLm = (P>mVm)−1P>m.

For more details please refer to [1].
Let Tm ∈ R2mr×2mr be the restriction of the matrix A to the extended block

Krylov subspace Kem(A, V ), that is Tm = VLmAVm, where VLm is the left inverse
of the matrix Vm. If the matrix Vm is an orthonormal matrix, it is shown
in [2, 31] that the matrix Tm = V>mAVm is an upper-Hessenberg matrix. With
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a process similar to what was said in [1], it can be proved that the matrix
Tm = VLmAVm is also a block upper-Hessenberg matrix with 2r × 2r blocks.
Moreover, the following Hessenberg relations blue are satisfied for A:

AVm = Vm+1T m,(2)

= VmTm + Vm+1Tm+1,mE>m,(3)

VLmAVm = Tm,(4)

where T m =

[
Tm

Tm+1,mE>m

]
and Em ∈ R2mr×2r denotes the last 2r columns of

the identity matrix I2mr. Since the proof of these relations is similar to the
proof of block Arnoldi relations given in [2,21], therefore, their proof is omitted.

The next proposition shows that the block columns of T m can be derived
recursively from Hm without requiring matrix-vector products with A. Before
we discuss how the recursive relations can be obtained, let us partition the
matrices T m and Hm in this way

T m = [T1, T2, . . . , T2m−1, T2m],Hm = [H1, H2, . . . ,H2m−1, H2m],

where T2j−1 = T mE2j−1, T2j = T mE2j , H2j−1 = HmE2j−1, H2j = HmE2j ,
(j = 1, 2, . . . ,m) with Ei = [0r×(i−1)r, Ir, 0r×(2m−i)r]

>, (i = 1, 2, . . . ,m). In
addition, let the matrix Λ in Line 1 and Hj+1,j in Line 11 of Algorithm 1 are
partitioned as follows

Λ =

[
Λ1,1 Λ1,2

0 Λ2,2

]
, Hj+1,j =

[
H

(1,1)
j+1,j H

(1,2)
j+1,j

0 H
(2,2)
j+1,j

]
,

in which Λi,k, H
(i,k)
j+1,j ∈ Rr×r.

Proposition 2.1. Suppose that T m and Hm are the block upper Hessenberg
matrices as defined above. Then the odd and even block columns of T m satisfy
recursive relations:

(1) T2j−1 = H2j−1, for j = 1, 2, . . . ,m.

(2) T2 =
(
E1Λ11 −H1Λ1,2

)
Λ−12,2.

(3) T2j+2 =
(
E2j − T:,1:2j+1H1:2j+1,2j

)
(H

(2,2)
j+1,j)

−1, for j = 1, 2, . . . ,m− 1.

where Ei ∈ R2mr×r is the i-th block column of the identity matrix I2mr with
r × r blocks.

Proof. To prove the first part (1), we consider the relation

[AV
(1)
j , A−1V

(2)
j ] =

j+1∑
i=1

ViHi,j ,(5)
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where is derived from Lines 4 - 11 of Algorithm 1. If we block matrices Vi ∈
Rn×2r and Hi,j ∈ R2r×2r as follows:

Vi = [V
(1)
i , V

(2)
i ], Hi,j =

(
H

(1,1)
i,j H

(1,2)
i,j

H
(2,1)
i,j H

(2,2)
i,j

)
,

for i = 1, 2, . . . , j + 1 with H
(2,1)
j+1,j = 0, then the relation (5) transforms to

AV
(1)
j =

j∑
i=1

Vi

(
H

(1,1)
i,j

H
(2,1)
i,j

)
+ V

(1)
j+1H

(1,1)
j+1,j ,

A−1V
(2)
j =

j+1∑
i=1

Vi

(
H

(1,2)
i,j

H
(2,2)
i,j

)
.

(6)

From the first equation (6), we have

AV
(1)
j = Vm+1H2j−1.(7)

On the other side, by considering the block Hessenberg relation (2), AV
(1)
j can

be written as

AV
(1)
j = Vm+1T2j−1.(8)

Putting relations (7) and (8) together gives the first part.
According to line 1 of Algorithm 1, and the partitioning of the matrix Λ,

V = V
(1)
1 Λ1,1,(9)

A−1V = V
(1)
1 Λ1,2 + V

(2)
1 Λ2,2.(10)

Then premultiplying (10) by A and using (9), it obtains

AV
(2)
1 Λ2,2 = V

(1)
1 Λ1,1 −AV (1)

1 Λ1,2.(11)

Since V
(1)
1 = Vm+1E1, VLm+1Vm+1 = I2(m+1)r, and Λ2,2 is invertible, then the

second block column of the matrix T m can be expressed as

T2 =
(
E1Λ11 −H1Λ1,2

)
Λ−12,2.

where E1 is the 2mr × r corresponding to the first r columns of the identity
matrix I2mr.

In the sequel, the main goal is to find a recursive relation for the even block
columns of T m in terms of the block columns of Hm. To this end, we consider
the second equation of (6) and multiply it from the left by A it can be seen
that

AV
(2)
j+1H

(2,2)
j+1,j = V

(2)
j −AVjH1:2j,2j −AV (1)

j+1H
(1,2)
j+1,j

= Vm+1E2j − Vm+1T:,1:2jH1:2j,2j − Vm+1T:,2j+1H
(1,2)
j+1,j

= Vm+1

(
E2j − T:,1:2j+1H1:2j+1,2j

)
.
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It should be noted that VLm+1AV
(2)
j+1 = T2j+2 and H

(2,2)
j+1,j is a full rank matrix.

Therefore, this completes the proof of the third part. �

3. An approximation of the matrix exponential

This section’s primary goal is briefly reviewing two approaches for computing
approximate solutions to large-scale Sylvester differential matrix equations (1).
Let us first recall the following proposition which gives the exact solution of
(1).

Proposition 3.1. ( [3]) Let A(t), B(t) and C(t) be the continuous matrix
functions on R. Then the Sylvester differential matrix equation

Ẋ(t) = A(t)X(t) +X(t)B(t) + C(t), X(t0) = X0,(12)

has a unique solution as

X(t) = ΦA(t, t0)X0Φ>B>(t, t0) +

∫ t

t0

ΦA(t, τ)C(τ)Φ>B>(t, τ)dτ, t, t0 ∈ R,

where the transition (or evolution) matrix ΦA(t, t0) is the unique solution of
the following problem

∂

∂ t
ΦA(t, t0) = A(t)ΦA(t, t0), ΦA(t0, t0) = In.

In the special case when the matrix functions A(t) and B(t) are constant,
ΦA(t, t0) = e(t−t0)A for t, t0 ∈ R, see Theorem 1.1.1 in [3]. In this case, the exact
solution of the Sylvester differential matrix equation (12) can be expressed as

X(t) = e(t−t0)AX0e
(t−t0)B +

∫ t

t0

e(t−τ)AC(τ)e(t−τ)Bdτ.(13)

From now on, return to the case where the matrix functions A(t), B(t), and
C(t) are assumed to be constant functions on R. According to what has been
said and (13), the exact solution of the Sylvester differential matrix equation
(1) is as follows

X(t) = e(t−t0)AX0e
(t−t0)B +

∫ t

t0

e(t−τ)AEF>e(t−τ)Bdτ.(14)

Note that choosing X0 = 0 in the initial condition X(t0) = X0 does not cause
any restriction. Let X(t) be the exact solution of the Sylvester differential
matrix equation (12), then the matrix function Z(t) = X(t)−X0 is the unique
solution of the following initial value problem

Ż(t) = AZ(t) + Z(t)B + C0, Z(t0) = 0,(15)

where C0 = AX0 + X0B + C. To obtain X(t), we first solve the initial value
problem (15) and acquire Z(t) and then conclude X(t) = Z(t) +X0.
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Assuming that X0 = 0 and C = EF>, the exact solution (13) can be written
as follows

X(t) =

∫ t

t0

e(t−τ)AEF>e(t−τ)Bdτ =

∫ t−t0

0

esAEF>esBds.(16)

To integrate formula (16), we follow two approaches: In the first approach, we

approximate factors e(t−τ)AE and e(t−τ)B
>
F and then compute the desired

approximation through a quadrature method. In the second approach, we
project the initial value problem (1) onto an extended block Krylov subspace
and then obtain the low-rank approximate solutions.

In the first, consider the expression of the exact solution

X(t) =

∫ t

t0

e(t−τ)AEF>e(t−τ)Bdτ.(17)

To approximate e(t−τ)AE and e(t−τ)B
>
F , we use an extended block Krylov

subspace method. By Algorithm 1, we compute the left invertible matrices
Vm and Wm whose columns form a basis of the subspaces Kem(A,E) and
Kem(B>, F ), respectively. Following the idea in [26, 27], an approximation to

ZA(τ) = e(t−τ)AE and ZB(τ) = e(t−τ)B
>
F can get as

ZAm(τ) = Vme(t−τ)T
A
m VLmE, ZBm(τ) =Wme

(t−τ)T B
mWL

mF,

where T Am = VLmAVm and T Bm = WL
mB
>Wm. Thus, the term in front of the

integral in the exact solution (17) can be approximated as follows

ZA(τ)(ZB(τ))> = e(t−τ)AEF>e(t−τ)B ≈ ZAm(τ)(ZBm(τ))>

= Vm
(
e(t−τ)T

A
m Em

)(
e(t−τ)T

B
m Fm

)
W>m,(18)

in which Em = VLmE and Fm = WL
mF . It should be noted that the matrices

Em and Fm can be written in a simpler form. For this reason, consider the LU
decomposition with partial pivoting (PLU decomposition) of [E,A−1E] and
[F, (B>)−1F ], i.e.,

[E,A−1E] = V1ΛA, [F, (B>)−1F ] = W1ΛB ,

where ΛA =

(
ΛA1,1 ΛA1,2
0r ΛA2,2

)
and ΛB =

(
ΛB1,1 ΛB1,2
0r ΛB2,2

)
with ΛAi,j ,Λ

B
i,j ∈ Rr×r.

These PLU decompositions imply

(19) Em = VLmE = E1ΛA1,1, Fm =WL
mF = E1ΛB1,1,

where E1 is the 2mr × r matrix corresponding to the first r columns of the
identity matrix I2mr.

Setting Z̃Am(τ) = e(t−τ)T
A
m E1ΛA1,1, Z̃

B
m(τ) = e(t−τ)T

B
m E1ΛB1,1 and using (18),

the exact solution (17) can be approximated as

X(t) ≈ Xm(t) = VmYm(t)Wm,(20)

where Ym(t) =
∫ t
t0
Z̃Am(τ)

(
Z̃Bm(τ)

)>
dτ .
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Since m is generally very small (m� n), the factors Z̃Am(τ) and Z̃Bm(τ) can
be calculated via the expm function of Matlab, and the approximation of Ym(t)
can be computed by Gauss quadrature formula.

Next, to present the second approach, we follow a process similar to the one
described in [26] in brief. Again, consider the integral (16).

It is worth noting that it should be integrated from a function of the form

ZA(s)(ZB(s))> where ZA(s) = esAE and ZB(s) = esB
>
F . These matrix

functions in the interval [0, t− t0] must be approximated as ZA(s) ≈ ZAm(s) =
pm(sA)E and ZB(s) ≈ ZBm(s) = qm(sB>)F , in which pm and qm are polyno-
mials of degree m− 1. Therefore, the approximation of X(t) is a form of

Xm(t) =

∫ t−t0

0

ZAm(s)(ZBm(s))>ds.(21)

To make the approximation Xm(t) of X(t) as precise as desired, we should
increase the degree of polynomials pm and qm enough.

Let Vm =
[
E AE · · · Am−1E

]
,Wm =

[
F B>F · · · (B>)m−1F

]
,

pm(s) = α0+α1 s+· · ·+αm−1 sm−1, and qm(s) = β0+β1 s+· · ·+βm−1 sm−1.Then
the matrix function ZBm(s)(ZAm(s))> can be presented as

ZAm(s)(ZBm(s))> = Vm
(
zm(s)⊗ Ir

)(
z̃m(s)> ⊗ Ir

)
W>m

= Vm
(
zm(s)z̃m(s)> ⊗ Ir

)
W>m,

in which zm(s)> = (α0, α1 s, . . . , αm−1 s
m−1) and z̃m(s)> = (β0, β1 s, . . . , βm−1 s

m−1).
Substituting this in (21) yields,

Xm(t) = Vm
(∫ t−t0

0

(
zm(s)z̃m(s)> ⊗ Ir

)
ds
)
W>m ≡ VmYm(t)W>m,

where Ym(t) =
∫ t−t0
0

(
zm(s)z̃m(s)> ⊗ Ir

)
ds. As a result, the approximate

solutions of the Sylvester differential matrix equation (1) are of the form

Xm(t) = VmYm(t)W>m,

where Ym(t) is a matrix function of size mr ×mr.
It is worthy of note that the approximations pm(sA)E and qm(sB>)F of

esAE and esB
>
F are elements of the matrix Krylov subspace Km(A,E) and

Km(B>, F ), respectively, where

Km(A,E) = Span
{
E,AE, . . . , Am−1E

}
=

{
m∑
i=1

αi−1A
i−1E|αi ∈ R, i = 0, 1, . . . ,m− 1

}
.

In this approach, to generate the approximate solution Xm(t), we should build
the block Krylov matrices Vm and Wm. These would entail some additional
matrix-matrix products. To avoid computing the matrix-matrix products, we
should construct a basis of Km(A,E) and Km(B>, F ) via the well-known global
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Arnoldi or the global Hessenberg algorithm starting with E and F , respec-
tively. But we consider the extended block Krylov subspace instead of the
matrix Krylov subspace because it contains more information than the block
and matrix Krylov subspace. In this case, the approximate solution Xm(t) can
be expressed as

Xm(t) = VmYm(t)W>m,(22)

in which Ym(t) ∈ R2mr×2mr and the matrices Vm ∈ Rn×2mr, Wm ∈ Rs×2mr
are generated by Algorithm 1. These matrices are left invertible.

From (20) and (22), it can be seen that the approximate solutions of the
Sylvester differential matrix equation (1) in both viewpoints are the same,
while the matrix Ym(t) is calculated differently.

Since the matrices Vm and Wm are left invertible, it can be shown that the
matrix function Ym(t) is the solution of a low-dimensional Sylvester differential
matrix equation. This is discussed in the following Proposition.

Proposition 3.2. Let the matrices Vm and Wm be left invertible with the left
inverse VLm and WL

m, respectively. In addition, let Xm(t) be the approximate
solution of the initial value problem (1). Then the matrix function Ym(t) is the
approximate solution of the reduced Sylvester differential equation

Ẏ (t) = T Am Y (t) + Y (t)(T Bm )> + EmF
>
m ,(23)

with the initial condition Y (t0) = 0, T Am = VLmAVm, T Bm = WL
mBWm, Em =

VLmE and Fm =WL
mF .

Proof. By premultipling and postmultipling (1) by VLm and (WL
m)>, respec-

tively, and using the fact that Xm(t) is the approximate solution of it, we
have

VLmẊm(t)(WL
m)> ≈ VLmAXm(t)(WL

m)> + VLmXm(t)B(WL
m)> + VLmEF>(WL

m)>.

Since Xm(t) = VmYm(t)W>m, VLmVm = I2mr and W>m(WL
m)> = I2mr, then the

desired result can be acquired. �

An immediate corollary of the above result is that the residual matrix func-
tion associated with the approximate solution Xm(t) satisfies the following
condition

VLmRm(t)(WL
m)> = VLm

(
AXm(t) +Xm(t)B + EF> − Ẋm(t)

)
(WL

m)>

= VLmAVmYm(t) + Ym(t)(WL
mB
>Wm)>

+ VLmEF>(WL
m)> − V>mẊm(t)(WL

m)>

= 0.

In the following Proposition, we gain an expression of the residual norm of
Rm(t) to avoid computing matrix products with the large matrices A and B.
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This result shows how to calculate the norm of Rm(t) without using the ap-
proximation Xm(t) that is computed in a factored form only when convergence
is gained.

Proposition 3.3. Let Ym(t) be the exact solution of (23) and let Xm(t) =
VmYm(t)W>m be the approximate solution of the Sylvester differential equation
(1) achieved after m iterations of the extended block Hessenberg Algorithm.
Then, the residual semi-norm Rm(t) corresponding to Xm(t) satisfy

rm(t) = |Rm(t)|(Vm+1,Wm+1) =
√
αm(t) + βm(t),(24)

where αm(t) = ‖TAm+1,mE>mYm(t)‖2F and βm(t) = ‖Ym(t)(TBm+1,mE>m)>‖2F .

Proof. We start with Rm(t) = Ẋm(t) − AXm(t) − Xm(t)B + EF> that is
the residual matrix function corresponding to the approximate solution Xm(t).
SinceAVm = VmT Am+Vm+1T

A
m+1,mE>m andB>Wm =WmT Bm +Wm+1T

B
m+1,mE>m,

then Rm(t) can be reformulated as

Rm(t) = Ẋm(t)−AXm(t)−Xm(t)B + EF>

= VmẎm(t)W>m −AVmYm(t)W>m − VmYm(t)W>mB + EF>

= Vm
(
Ẏm(t)− T Am Ym(t)− Ym(t)(T Bm )> + (E1ΛA1,1)(E1ΛB1,1)>

)
W>m

− Vm+1T
A
m+1,mE>mYm(t)W>m − VmYm(t)(Wm+1T

B
m+1,mE>m)>.

According to Ym(t) that is the exact solution of (23), we have

Rm(t) = Vm+1

(
02mr×2mr −Ym(t)(TBm+1,mE>m)>

−TAm+1,mE>mYm(t) 02r×2r

)
W>m+1,(25)

where Vm+1 = [Vm, Vm+1] and Wm+1 = [Wm,Wm+1]. By Definition 1.4, the
semi-norm of the residual matrix function Rm(t) is written as follows

|Rm(t)|2(Vm+1,Wm+1)
= ‖VLm+1Rm(t)(WL

m+1)>‖2F
= ‖TAm+1,mE>mYm(t)‖2F + ‖Ym(t)(TBm+1,mE>m)>‖2F .

�

The following proposition establishes an upper bound for the residual matrix
function Frobenius norm of the approximate solution Xm(t).

Proposition 3.4. Let Xm(t) be the approximate solution obtained from the
m-th iteration of the extended block Hessenberg algorithm, and let Rm(t) be
the residual matrix function associated with Xm(t). Then the residual norm
satisfies the inequality

‖Rm(t)‖F ≤
√

2(m+ 1)r max(n, s)
√
αm(t) + βm(t) = r̃m(t),(26)

where αm(t) = ‖TAm+1,m(Ym(t))mr,:‖2F , βm(t) = ‖(Ym(t)):,mr
(TBm+1,m)>‖2F ,

with mr = 2(m− 1)r + 1 : 2mr.
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Proof. It was seen in Proposition 3.3 that

Rm(t) = Vm+1

(
02mr×2mr −Ym(t)(TBm+1,mE>m)>

−TAm+1,mE>mYm(t) 02r×2r

)
W>m+1.(27)

Taking the norm of both sides of (27), and using ‖AB‖F ≤ ‖A‖F ‖B‖F , gives
the following inequality

‖Rm(t)‖F ≤ ‖Vm+1‖F ‖Gm‖F ‖W>m+1‖F ,

in which Gm(t) =

(
02mr×2mr −Ym(t)(TBm+1,mE>m)>

−TAm+1,mE>mYm(t) 02r×2r

)
.

Now, recall that the matrices Vm+1 ∈ Rn×2(m+1)r and Wm+1 ∈ Rs×2(m+1)r

are produced by permutation matrices. These matrices are lower triangular
trapezoidal and their elements are less than or equal to one. Therefore, the
Frobenius norm of the matrices Vm+1 and Wm+1 are bounded as follows

‖Vm+1‖F ≤
√

2(m+ 1)nr ‖Vm+1‖max ≤
√

2(m+ 1)nr,

‖Wm+1‖F ≤
√

2(m+ 1)sr ‖Wm+1‖max ≤
√

2(m+ 1)sr.

From these inequalities, it follows that

‖Rm(t)‖F ≤
√

2(m+ 1)r max(n, s)
√
αm + βm,

where

αm = ‖TAm+1,mE>mYm(t)‖2F = ‖TAm+1,m(Ym(t))mr,:‖2F ,

βm = ‖Ym(t)(TBm+1,mE>m)>‖2F = ‖(Ym(t)):,mr
(TBm+1,m)>‖2F ,

and mr = 2(m− 1)r + 1 : 2mr. �

We sum up the above method for solving the large-scale Sylvester differential
matrix equations in Algorithm 2.

4. Low-rank approximate solutions to the large-scale Sylvester
differential equations.

In this section, we show how to obtain low-rank approximate solutions to
the Sylvester differential equation (1) by projecting directly the initial problem
onto the extended block Krylov subspace. We first apply the extended block
Hessenberg process with maximum strategy Algorithm 1 to the pairs (A,E)
and (B>, F ), respectively, to get the matrices Vm, Wm, T Am = VLmAVm, and
T Bm = WL

mB
>Wm. Let Xm(t) be low-rank approximate solutions of (1) that

have the form

Xm(t) = VmYm(t)W>m,(28)

where Vm = [V1, V2, · · · , Vm], Wm = [W1,W2, · · · ,Wm] with Vi ∈ Rn×2r, Wi ∈
Rs×2r and Ym(t) is a matrix function of size 2mr × 2mr. Moreover, suppose
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Input: The matrices A ∈ Rn×n, B ∈ Rs×s, E ∈ Rn×r, F ∈ Rs×r, the initial
and final times t0, T , a tolerance tol > 0, mmax a maximum number of
iterations, k a step-size parameter and N the number of mesh points in
the time partioning, τ the tolerance for the truncated SVD.

Output: The approximate solution Xm(tN ).
1: Compute h = T−t0

N .
2: for m = 1, . . . ,mmax do
3: Use the extended block Hessenberg Algorithm 1 to the pairs (A,E) and

(B>, F ) to compute the bases Vm = [V1, · · · , Vm] and
Wm = [W1, · · · ,Wm] and also the the block upper-Hessenberg matrices
T Am and T Bm .

4: if rem(m, k) = 0 then
5: for i = 1, . . . , N do
6: Compute ti = t0 + i h;

7: Compute the factors Z̃Am(τ) = e(ti−τ)T
A
mEm and

Z̃Bm(τ) = e(ti−τ)T
B
m Fm with Em = VLmE and Fm =WL

mF using
the Matlab function expm;

8: To obtain Ym(ti), apply a quadrature formula to compute

the integral
∫ ti
t0
Z̃Am(τ)

(
Z̃Bm(τ)

)>
dτ ;

9: Compute the SVD of Ym(ti): Ym(ti) = Û ŜV̂ >,

where Ŝ = diag(σ1, . . . , σ2mr), and σ1 ≥ . . . ≥ σ2mr;
Find the scalar ` such that σ` > τ and let Ŝ` = diag(σ1, . . . , σ`);

Form ZAm = VmÛ`Ŝ1/2
` and ZBm =WmV̂`Ŝ

1/2
` , then compute

the approximate solution Xm(ti) ≈ ZAm(ZBm)>;
10: end for
11: if ‖Rm(t)‖F < tol then
12: Stop;
13: end if
14: end if
15: end for=0

Algorithm 2: The extended block Hessenberg (EBHess-exp) method.

that the residual Rm(t) = AXm(t) +Xm(t)B −EF> − Ẋm(t) associated with
the approximate solution Xm(t) satisfies the Petrov-Galerkin condition

VLmRm(t)(WL
m)> = 0,(29)

in which VLm and WL
m are the left inverses of the matrices Vm and Wm, respec-

tively. Then regarding (28) and the Petrov-Galerkin condition (29) and using
the fact that VLmVm = I2mr andWL

mWm = I2mr, we obtain the low-dimensional
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Sylvester differential equation

Ẏm(t) = VLmAVmYm(t) + Ym(t)(WL
mB
>Wm)> + EmF

>
m

= T Am Ym(t) + Ym(t)(T Bm )> + EmF
>
m .(30)

Using (19), the low-dimensional Sylvester differential equation can be expressed
as

Ẏm(t) = T Am Ym(t) + Ym(t)(T Bm )> + (E1ΛA1,1)(E1ΛB1,1)>.(31)

The approximate solution of the aforementioned low-dimensional Sylvester dif-
ferential equation can be computed by some integration method for instance
the Rosenbrock method [16, 18, 25] or the backward differentiation formula
(BDF) [16,18]. When these two methods are used, we will face a Sylvester ma-
trix equation in each iteration, if the coefficients of the Sylvester matrix equa-
tion are large-scale, we can use the Krylov methods mentioned in [2,5,9,21,22],
and for moderate size, the Bartels-Stewart [13] and the Hesenberg-Schur [17]
methods are suitable. In this work, we have computed the approximate so-
lutions of the low-dimensional Sylvester differential equation (31) using BDF
which is stated in [18].

Similar to what is said in Proposition 3.4, the following proposition gives
a result that allows us the computation of an upper bound of the Frobenius
norm of the residual matrix function.

Proposition 4.1. The upper bound of the Frobenius norm of the residual
Rm(t) associated with the approximation solution Xm(t) obtained after m iter-
ations of the LRSD-EBHess Algorithm satisfies the following relation

‖Rm(t)‖F ≤
√

2(m+ 1)r max(n, s)
√
αm(t) + βm(t) = r̃m(t),(32)

where αm(t) = ‖TAm+1,m(Ym(t))mr,:‖2F , βm(t) = ‖(Ym(t)):,mr
(TBm+1,m)>‖2F ,

with mr = 2(m− 1)r + 1 : 2mr.

In addition, we consider the error matrix function Em(t) given by

Em(t) = X∗(t)−Xm(t), t ∈ [t0, T ],

where X∗(t) and Xm(t) are the exact solution and approximate solution of the
Sylvester differential matrix equation (1), respectively.

The following proposition gives an upper bound for the error matrix function
norm Em(t).

Proposition 4.2. Assume that Xm(t) is the approximate solution of the Sylvester
differential matrix equation (1) obtained after m iterations of the LR-SDE-
EHess algorithm. Then the error matrix function Em(t) associated with Xm(t)
satisfies

‖Em‖∞ ≤
√

2(m+ 1)r max(n, s)

1− e(T−t0)
(
‖A‖F+‖B‖F

)
‖A‖F + ‖B‖F

√α̂m + β̂m,
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where α̂m = ‖TAm+1,m‖2F ‖(Ym)mr,:‖2∞, β̂m = ‖(Ym):,mr‖2∞‖(TBm+1,m)>‖2F .

Proof. From (1), we have

Ėm(t) = Ẋ∗(t)− Ẋm(t)

= A(X∗(t)−Xm(t)) + (X∗(t)−Xm(t))B +Rm(t),

where Rm(t) = AXm(t)+Xm(t)B+EF>−Ẋm(t) and Em(t0) = 0. Therefore,
the matrix error function Em(t) is the exact solution of the following initial
value problem{

Ėm(t) = AEm(t) + Em(t)B +Rm(t), t ∈ [t0, T ],

Em(t0) = 0.

In view of relation (13), Em(t) can be written as the following integral formula

Em(t) =

∫ t

t0

e(t−τ)ARm(τ)e(t−τ)Bdτ.

Passing to the norm and using the fact that ‖MN‖F ≤ ‖M‖F ‖N‖F and
‖eβM‖F ≤ eβ‖M‖F for β ≥ 0, we get

‖Em(t)‖F ≤
∫ t

t0

‖e(t−τ)A‖F ‖Rm(τ)‖F ‖e(t−τ)B‖F dτ

≤
∫ t

t0

‖Rm(τ)‖F e(t−τ)
(
‖A‖F+‖B‖F

)
dτ

≤ max
τ∈[t0,t]

‖Rm(τ)‖F
∫ t

t0

e(t−τ)
(
‖A‖F+‖B‖F

)
dτ

≤

1− e(t−t0)
(
‖A‖F+‖B‖F

)
‖A‖F + ‖B‖F

 max
τ∈[t0,t]

‖Rm(τ)‖F ,(33)

for all t ∈ [t0, T ].
According to Proposition 3.4,

‖Rm‖∞ := max
τ∈[t0,T ]

‖Rm(τ)‖F

≤
√

2(m+ 1)r max(n, s)

√
α̂m + β̂m

where α̂m = ‖TAm+1,m‖2F ‖(Ym)mr,:‖2∞, β̂m = ‖(Ym):,mr
‖2∞‖(TBm+1,m)>‖2F . This

provides the bound for ‖Em‖∞. �

The results described in this Section allow us to give Algorithm 3 of the
LRSD-EBHess method.

In Algorithms 2 and 3, we first divided into the time interval [t0, T ] into
N sub-intervals of length h. Then we compute Ym(ti), with ti = t0 + i h, for
i = 0, 1, . . . , N and so the approximate solutions Xm(ti) that can be writ-
ten as products two low-rank matrix functions. In the next, we calculate
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Input: The matrices A ∈ Rn×n, B ∈ Rs×s, E ∈ Rn×r, F ∈ Rs×r, the initial
and final times t0, T , a tolerance tol > 0, mmax a maximum number of
iterations, k a step-size parameter and N the number of mesh points in
the time partioning, τ the tolerance for the truncated SVD.

Output: The approximate solution Xm(tN ).
1: Compute h = T−t0

N .
2: for m = 1, . . . ,mmax do
3: Use the extended block Hessenberg algorithm to the pairs (A,E) and

(B>, F ) to compute the bases Vm = [V1, · · · , Vm] and
Wm = [W1, · · · ,Wm] and also the the block upper-Hessenberg matrices
T Am and T Bm ;

4: if rem(m, k) = 0 then
5: for i = 1, . . . , N do
6: Compute ti = t0 + i h;
7: To obtain Ym(ti), apply the BDF method to solve the reduced

Sylvester differential equation (31) with the step-size h, see [18];
8: Compute rm(ti) that is given as (24);

9: Compute the SVD of Ym(ti): Ym(ti) = Û ŜV̂ >,

where Ŝ = diag(σ1, . . . , σ2mr), and σ1 ≥ . . . ≥ σ2mr;
Find the scalar ` such that σ` > τ and let Ŝ` = diag(σ1, . . . , σ`);

Form ZAm = VmÛ`Ŝ1/2
` and ZBm =WmV̂`Ŝ

1/2
` , then compute

the approximate solution Xm(ti) ≈ ZAm(ZBm)>;
10: end for
11: if max{rm(t1), . . . , rm(tN )} < tol then
12: Stop;
13: end if
14: end if
15: end for

=0
Algorithm 3: The low-rank Sylvester differential extended block Hessen-
berg method (LRSD-EBHess).

the residual associated with the approximate solution Xm(ti), i.e., Rm(ti),
for i = 1, 2, . . . , N . If ‖Rm(TN )‖F < tol ‖E‖F ‖F‖F , the aforementioned algo-
rithms will be stopped. In such situations, Xm(TN ) computed by Algorithms
2 and 3 is the reasonable approximate solution of the Sylvester differential
equation.

5. Numerical results

In this section, some numerical examples are given to examine the efficiency
and potential of our proposed method. We compare Algorithms 2 and 3 with
the ones presented in [18].
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It should be pointed out that the initial condition matrix X0 is a zero matrix
in all examples. Moreover, different time intervals [t0, T ] are considered and
t0 = 0 is fixed, while T is specified in each example. The time interval [0,T] is
divided into N sub-intervals of length h = T−t0

N .
All the numerical examples were implemented in MATLAB and have been

performed on an Intel(R) Core(TM) i5 with 2.67 GHz processing speed and
8 GB memory. The following Matlab functions are applied to execute the
different algorithms used in this work.

• expm : This function allows us to compute the exponential of a square
matrix. It is based on a scaling and squaring algorithm with a Padè
approximation [23].

• lyap : This allows us to obtain the solution of Sylvester and Lyapunov
matrix equations. The MATLAB command is as follows:

X = lyap(A,B,C),

whereX is the solution of the Sylvester matrix equation AX+XB = C.
• rand : This allows us to create a random matrix.

Furthermore, when the extended block Hessenberg process is used to obtain an
approximate solution to the low-rank Sylvester differential equation, the iter-
ations are stopped just after the dimension of the extended block Krylov sub-
space produced by the extended block Hessenberg process or the extended block
Arnoldi process reaches a maximum value m = mmax = 200 or instantly when
the Frobenius norm of the true residual norm at the final time, i.e., ‖Rm‖F
calculated by the algorithm is lower than 10−10α, where α = ‖E‖F ‖F‖F . Also,
the factors of the right-hand side matrix, E, and F were generated randomly.
Also, it is worth noting that we obtain W = A−1V by solving the matrix equa-
tion AW = V in Algorithm 1 via the block GMRES method with the block
Krylov subspace of dimension 5.

Example 5.1. The main aim of this example is to compare the solution esti-
mated by Algorithm 3 with the one acquired via the integral formula (14) and
some classical ordinary differential equation’s solvers, such as ode23s, ode15s,
ode45, ode23tb and the algorithm based on the extended block Arnoldi pro-
cess [19]. To this end, we consider the benchmark described in [15] that is
briefly explained here.

Assume that

P =

 3 8 −19
−1 −5 11
0 −1 2

 , Q =

0 1 0
0 0 1
0 0 0

 ,

are two nilpotent matrices of the index I0 = 3 and P0 ∈ Rp0×p0 , Q0 ∈ Rq0×q0
are given. In this example, we select the matrices

P0 = gallery(′leslie′, p0), Q0 = gallery(′minij′, q0).
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Moreover, assume that the coefficient matrices A and B are defined as

A = α In + P0 ⊗ P, B = β Is +Q0 ⊗Q,
where n = 3p0, s = 3q0 and the real numbers α, β satisfy α+ β < 0.

In view of (14), the unique solution of the Sylvester differential matrix equa-
tion {

Ẋ(t) = AX(t) +X(t)B + EF>,

X(t0) = X0,

is given by

X∗(t) = e(t−t0)AX0e
(t−t0)B +

∫ t

t0

e(t−u)AEF>e(t−u)Bdu.

According to [15], it can be shown that X∗(t) is as

X∗(t) =

I0−1∑
i=0

I0−1∑
j=0

(
(t− t0)i+je(α+β)(t−t0)Mi,j(X0) + Ji+j(t)Mi,j(EF

>)
)
,

(34)

where J`(t) =
∫ t
t0

(t−u)`e(α+β)(t−u)du and Mi,j(C) = 1
i!j! (P

i
0⊗P i)C(Qj0⊗Qj),

for i, j = 0, 1, . . . , I0 − 1. Note that the integral formula J`(t) can be obtained
by the following recursion

J`(t) =
1

α+ β

(
(t− t0)ke(α+β)(t−t0) − ` J`−1(t)

)
, ` ≥ 1,

in which J0(t) = 1
α+β

(
e(α+β)(t−t0) − 1

)
.

It is necessary to point out that the methods mentioned in this example com-
pare from the perspective of the run time, the absolute error, and the relative
error. As you observed from Table 2, the execution in seconds is denoted by
the CPU, and the absolute error of the final time is denoted by er(tN ), that is

er(tN ) = ‖Xm(tN )−Xm(tN−1)‖F .
The numerical results reported in Tabel 2 show that the Algorithms based on
extended block Krylov subspace have more speed convergence and are more ac-
curate. In addition, we depict the behavior of the relative error norm

‖Xm(ti)−X∗(ti)‖F
‖X∗(ti)‖F

,

with ti = t0 + i h, for i = 1, 2, . . . , N . Note that X∗(ti) indicates the exact
solution computed (34) in time ti.

In Fig. 1, to compare the relative error Frobenius norm convergence, the
log10 plot of the relative error norms in terms of the number of iterations are
depicted for two different time intervals. As seen in this figure, the solutions
obtained by the LRSD-EBHess and LRSD-EBA are more accurate than those
given by ode15s, ode23s, ode45 and ode23tb. Also, it should be highlighted
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Table 1. The CPU-time and the absolute error norm of Example
5.1 with r = 3, k = 5, α = −20, β = −6 and t0 = 0. To obtain
Ym(ti) in the LRSD-EBHess and LRSD-EBA methods, the BDF3
method is used

T = 2, N = 10 T = 10, N = 20
Method CPU(s) er(tN ) CPU(s) er(tN )
LRSD-EBHess 0.0468 3.1569e-03 0.0625 7.2656e-08
LRSD-EBA 0.0781 1.5958e-02 0.0156 1.2320e-10
ode15s 32.406 2.3385e-02 30.906 1.3620e-01
ode23s 2639.3 3.8844e-02 3066.0 2.4417e-01
ode45 1.8438 2.7184e-02 7.5625 8.2308e-02
ode23tb 41.609 3.1969e-02 93.562 1.0938e-01

that the convergence curves of the ode15s, ode23s, ode45 and ode23tb methods
are overlapped with each other.
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Figure 1. Example 5.1: Comparison between the relative er-
ror norms of the different methods. Left figure: T = 2, N = 10.
Right figure: T = 10, N = 20.

Example 5.2. In this example, we examine the performances of LRSD-EBHess,
LRSD-EBA, EBHess-EXP, and EBA-EXP in two cases. In these cases, the
coefficients matrices of the Sylvester differential matrix equation (1) are de-
fined as different forms. In addition, using the MATLAB function rand, the
right-hand side matrix is set to be EF> = rand(n, r) ∗ rand(r, s).

Note that these methods compare from the viewpoint of the CPU time, the
residual norm, the upper bound of the true residual norm r̃m(T ) and the semi-
norm rm(T ) at the final time. As it is observed from Tables 2 and 3, the CPU
time in seconds is denoted by the CPU, and the true residual norm of the final
time is denoted by ‖Rm(T )‖F .

Case 1 : In this case, the matrix A is selected from the Matrix Market
web server [14]. Again, the matrix B is derived from the discretization
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of the operator

LB(u) = ∆u− fB1 (x, y)
∂u

∂x
− fB2 (x, y)

∂u

∂y
− fB3 (x, y)u,

on the unit on the unit square Ω = [0, 1] × [0, 1] with homogeneous
Dirichlet bonudary conditions. The functions fB1 (x, y), fB2 (x, y) and
fB3 (x, y) are determined in Table 2.

To produce the coefficient matrix B, we applied the fdm 2d matrix

function from the LYAPACK toolbox [24] in the form

B = fdm 2d matrix(s0, f
B
1 (x, y), fB2 (x, y), fB3 (x, y)),

where s0 is the number of inner grid points in each direction when
discretizing the operators LB. This results B ∈ Rs×s with s = s20. We
point out that in this case, we consider the parameter values r = 3,
k = 1, n ∈ {1104, 4960, 17758}, and s = 400. Furthermore, we take the
time interval [t0, T ] = [0, 2] with the step-size h = 0.2.

In Table 2, the number of iterations, CPU time, the true residual
norm, the upper bound of the true residual norm and the semi-norm
are displayed. As seen from Table 2, when we use the BDF1 method
to obtain Ym(ti), for i = 1, 2, . . . , N , the LRSD-EBHess method is
superior to the LRSD-EBA method in terms of CPU time for all test
problems. Moreover, it can be seen from Table 3 that the EBHess-EXP
works better than EBA-EXP in CPU times except for the test problem
memplus.

Table 2. The number results for Case 1 of Example 5.2 with
r = 3 and k = 1.

Test Problem Method BDF iter. CPU(s) ‖Rm(T )‖F r̃m(T ) rm(T )
A = sherman4 1 9 1.2188 5.9687e-08 5.9687e-08 1.7387e-09

B = fdm(cos(xy), ey
2x, 100) LRSD-EBHess 2 9 1.5313 1.7284e-08 1.7284e-08 4.9755e-10

n = 1104, s = 400 3 9 1.1875 5.9700e-08 5.9700e-08 1.7391e-09
1 9 1.3281 1.1697e-08 1.1697e-08 1.1697e-08

LRSD-EBA 2 9 1.4531 5.2516e-09 5.2516e-09 5.2516e-09
3 9 2.1719 1.1370e-08 1.1370e-08 1.1370e-08

A = add32 1 3 1.4063 2.3150e-09 2.3150e-09 2.0904e-11

B = fdm(10xy, eyx
2

, 20y) LRSD-EBHess 2 7 2.8281 5.1348e-09 5.1348e-09 1.8025e-11
n = 4960, s = 400 3 6 2.8750 1.5951e-08 1.5951e-08 8.0691e-11

1 3 1.5156 4.8819e-10 4.8819e-10 4.8819e-10
LRSD-EBA 2 6 2.7969 8.7041e-09 8.7041e-09 8.7041e-09

3 6 3.1250 1.9173e-08 1.9173e-08 1.9173e-08

A = memplus 1 4 4.6406 8.6898e-11 8.6898e-11 2.4696e-11
B = fdm(100y, yx2, xy) LRSD-EBHess 2 6 6.5000 9.6854e-09 9.6854e-09 3.0161e-11
n = 17758, s = 400 3 5 6.2813 7.9811e-08 7.9811e-08 2.2549e-10

1 3 5.3125 3.6381e-08 3.6381e-08 3.6381e-08
LRSD-EBA 2 5 8.0313 3.1467e-08 3.1467e-08 3.1467e-08

3 5 9.7656 5.0977e-08 5.0977e-08 5.0977e-08
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Table 3. The number results for Case 1 of Example 5.2 with
r = 3 and k = 1.

Test Problem Method iter. CPU(s) ‖Rm(T )‖F r̃m(T ) rm(T )
A = sherman4 EBHess-EXP 3 7.0781 2.2875e-10 2.2875e-10 2.9277e-12

B = fdm(cos(xy), ey
2x, 100)

n = 1104, s = 400 EBA-EXP 4 17.688 5.9382e-09 5.9382e-09 5.9382e-09

A = add32 EBHess-EXP 3 7.6094 2.0922e-09 2.0922e-09 1.0296e-11

B = fdm(10xy, eyx
2

, 20y)
n = 4960, s = 400 EBA-EXP 4 17.922 5.2030e-08 5.2030e-08 5.2030e-08

A = memplus EBHess-EXP 3 9.3438 1.0541e-10 1.0541e-10 3.0370e-13
B = fdm(100y, yx2, xy)
n = 17758, s = 400 EBA-EXP 2 9.2188 4.1887e-13 4.1887e-13 4.1887e-13

In Fig. 2, log10 plot of the true residual norm and upper bound of the
true residual norm in terms of the number of iterations are represented
at the final time when the matrix A is sherman4. As shown in Fig. 2,
we see that the upper bound r̃m(T ) given by (32) enables us to mimic
the true residual norm ‖Rm(T )‖F .

Fig. 3 depicts log10 plot of the true residual norm and the relative
true residual norm in terms of the number of iterations at the final
time when the matrix A is sherman4. As observed from Fig. 3, the
EBHess-EXP outperforms the other methods, and the LRSD-EBHess
and LRSD-EBA methods have the same convergence behavior.

Case 2 : In this case, the matrices A and B are generated by the opera-
tors

LA(u) = ∆u− fA1 (x, y)
∂u

∂x
− fA2 (x, y)

∂u

∂y
− fA3 (x, y)u,

LB(u) = ∆u− fB1 (x, y)
∂u

∂x
− fB2 (x, y)

∂u

∂y
− fB3 (x, y)u,

where

fA1 (x, y) = (x+ 10y2), fA2 (x, y) =
√

2x2 + y2, fA3 (x, y) = x2 − y2,

fB1 (x, y) = 10x y, fB2 (x, y) = e−x
2−y2 , fB3 (x, y) =

1

1 + x2 + y2
.

Herein, the main goal is to verify the numerical behavior of the LRSD-
EBHess, LRSD-EBA, EBHess-EXP, and EBA-EXP, when the param-
eter values r and T increase. To do these, we report two types of
numerical results. The first is when r ∈ {1, 2, 3} and T is fixed and the
second is when the final time T ∈ {5, 10, 50, 100} and r is fixed. Also,
we use BDF1 in the LRSD-EBHess, LRSD-EBA methods to obtain
Ym(ti), for i = 1, 2, . . . , N .
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Figure 2. Example 5.2: Comparison between the true resid-
ual norm and the corresponding upper bound of the different
methods for the first test problem.

1 2 3 4 5 6 7 8 9

The number of iterations

10-10

10-8

10-6

10-4

10-2

100

102

104

lo
g

1
0
 o

f 
re

s
.n

o
rm

s

LRSD-EBHess

LRSD-EBA

EBHess-EXP

EBA-EXP

1 2 3 4 5 6 7 8 9

The number of iterations

10-14

10-12

10-10

10-8

10-6

10-4

10-2

100

lo
g

1
0
 o

f 
re

la
ti

v
e
 r

e
s
.n

o
rm

s

LRSD-EBHess

LRSD-EBA

EBHess-EXP

EBA-EXP

Figure 3. Example 5.2: Comparison between the true resid-
ual norm and the relative true residual norm of the different
methods for the first test problem.

The numerical results listed in Table 4 demonstrate that when the
rank of the matrices E and F increase, the run time of the LRSD-
EBHess, LRSD-EBA, EBHess-EXP and EBA-EXP methods also in-
crease.
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Table 4. The numerical results for Case 2 of Example 5.2 with
n = 1600, s = 400, k = 5, N = 10, T = 2. To obtain Ym(ti) in
the LRSD-EBHess and LRSD-EBA methods, the BDF1 method is
used.

Method r iter. CPU(s) ‖Rm(T )‖F r̃m(T ) rm(T )
1 20 0.6250 2.2209e-08 2.2209e-08 2.8013e-10

LRSD-EBHess 2 10 0.4593 4.8700e-06 4.8700e-06 8.9718e-08
3 10 0.5468 5.0479e-06 5.0479e-06 7.7234e-08

1 15 0.5937 3.8052e-10 3.8052e-10 3.8052e-10
LRSD-EBA 2 10 0.5000 3.4696e-06 3.4696e-06 3.4696e-06

3 10 0.5937 2.7033e-06 2.7033e-06 2.7033e-06

1 5 2.5625 4.4018e-10 4.4018e-10 3.6135e-12
EBHess-EXP 2 5 5.6094 2.8866e-09 2.8866e-09 2.1051e-11

3 5 9.1406 2.8782e-09 2.8782e-09 2.3186e-11

1 5 5.0156 1.1875e-11 1.1875e-11 1.1875e-11
EBA-EXP 2 5 6.6563 1.2436e-11 1.2436e-11 1.2436e-11

3 5 11.641 1.6606e-11 1.6606e-11 1.6606e-11

In Table 5, we report the numerical results of different methods when the final
time T increases. It can be viewed that when T becomes large, the run time of
the EBHess-EXP and EBA-EXP will be large. However, this is not true for
methods LRSD-EBHess and LRSD-EBA.

Table 5. The numerical results for Case 2 of Example 5.2 with
n = 1600, s = 400, k = 5, N = 10. To obtain Ym(ti) in the LRSD-
EBHess and LRSD-EBA methods, the BDF1 method is used.

Method T iter. CPU(s) ‖Rm(T )‖F r̃m(T ) rm(T )
5 15 1.0938 7.1378e-10 7.1378e-10 1.5690e-11

LRSD-EBHess 10 15 1.0938 5.8743e-09 5.8743e-09 8.6202e-11
50 15 1.0781 1.3136e-09 1.3136e-09 3.4556e-11
100 15 1.0938 6.5172e-08 6.5172e-08 1.1966e-09

5 15 1.6563 1.7615e-10 1.7615e-10 1.7615e-10
LRSD-EBA 10 15 1.5313 1.2181e-10 1.2181e-10 1.2181e-10

50 15 1.5469 1.6575e-10 1.6575e-10 1.6575e-10
100 15 1.7344 2.1776e-10 2.1776e-10 2.1776e-10

5 5 9.0938 1.6097e-09 1.6097e-09 1.2535e-11
EBHess-EXP 10 5 8.8906 2.6451e-10 2.6451e-10 2.1459e-12

50 5 12.938 1.6224e-09 1.6224e-09 1.3135e-11
100 5 13.813 5.6878e-10 5.6878e-10 6.4169e-12

5 5 15.234 1.5331e-11 1.5331e-11 1.5331e-11
EBA-EXP 10 5 16.203 1.5993e-11 1.5993e-11 1.5993e-11

50 5 18.984 1.4434e-11 1.4434e-11 1.4434e-11
100 5 19.859 1.7531e-11 1.7531e-11 1.7531e-11

Example 5.3. Here, we consider the time interval [0, T ] for T = 1 in which the
number of sub-intervals is N = 10. The matrix A is selected from the Matrix
Market web server [14]. We consider the particular case B = A> and F = E
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and report the results obtained when solving low-rank differential Lyapunov
equations. The obtained results for r = 5 are listed in Table 6.

Table 6 shows that CPU time in the EBHess-EXP method is less than the
other methods. Moreover, its number of iterations is far less than the number
of iterations of the LRSD-EBHess and LRSD-EBA iterative methods. If we
compare the numerical behavior of the LRSD-EBHess and LRSD-EBA itera-
tive methods, we can see that the proposed method LRSD-EBHess needs less
execution time.

Table 6. The numerical results of Example 5.3 with r = 5, k =
2, N = 10. To obtain Ym(ti) in the LRSD-EBHess and LRSD-EBA
methods, the BDF1 method is used.

Test Problem Method iter. CPU(s) ‖Rm(T )‖F r̃m(T ) rm(T )
A = plat1919 LRSD-EBHess 14 9.3750 1.0677e-08 1.0677e-08 8.5437e-10
B = A> LRSD-EBA 14 11.313 6.3409e-09 6.3409e-09 6.3409e-09
n = 1919, s = 1919 EBHess-EXP 4 9.6875 1.8054e-11 1.8054e-11 7.1955e-14

EBA-EXP 4 13.953 2.1612e-14 2.1612e-14 2.1612e-14

A = psmigr 3 LRSD-EBHess 10 13.922 3.4190e-09 3.4190e-09 8.7934e-12
B = A> LRSD-EBA 10 13.922 2.6176e-10 2.6176e-10 2.6176e-10
n = 3140, s = 3140 EBHess-EXP 4 12.500 2.8748e-16 2.8748e-16 6.8842e-19

EBA-EXP 4 16.609 4.4529e-20 4.4529e-20 4.4529e-20

A = add32 LRSD-EBHess 6 22.031 7.7184e-12 7.7184e-12 3.6201e-14
B = A> LRSD-EBA 6 22.438 3.5309e-12 3.5309e-12 3.5309e-12
n = 4960, s = 4960 EBHess-EXP 2 11.016 9.6317e-09 9.6317e-09 3.4505e-11

EBA-EXP 2 13.875 1.6893e-10 1.6893e-10 1.6893e-10

6. Conclusion

We have developed two techniques to solve the Sylvester differential matrix
equation as well these methods can be used for solving the Lyapunov differ-
ential matrix equation. The first one is related to the exponential expression
of the exact solution which can be derived by the Matlab function expm and
a quadrature formula. The second approach is based on projecting the initial
value problem onto an extended block Krylov subspace. In this approach, a
low-dimensional Sylvester differential matrix equation which is solved using the
BDF method is derived. This method is based on extended block Hessenberg
with maximum strategy. we have also established a representation of the resid-
ual norm. Numerical test examples show that these methods in comparison
with the method based on the extended block Arnoldi is more effective. In the
future, our main goal is to estimate the approximate solution of these initial
value problems exploiting deflation techniques, see [8, 9, 32].
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