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Abstract. In this article, we introduce a new estimator of entropy of

continuous random variables. Bias, variance and the mean squared error
of the new estimator are obtained and compared with the other existing

estimators. The results show that the proposed estimator has a lower

mean squared error than its competitors. Then, we propose some good-
ness of fit tests for Weibull distribution based on the entropy estimators.

To assess the effectiveness of the proposed tests, we utilize Monte Carlo

simulation to evaluate their power against eighteen different alternatives
with varying sample sizes. The results show that the tests are powerful

and we can use them in practice. Finally, two real datasets are considered

and modeled by the Weibull distribution.
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1. Introduction

Goodness-of-fit (GOF) tests are a class of nonparametric statistical tests
that measure how an observed dataset fits a theoretical or expected distri-
bution. It is used to determine whether the observed data are significantly
different from the expected values under a given hypothesis, (see Cirrone et
al. [1]). The application of the GOF test is in various fields such as economics,
finance, engineering, and medicine. For more information and details about the
GOF tests, please refer to D’Agostino and Stephens [2]. Also, the GOF tests
have been widely used in genetic, quality control, epidemiology, psychology,
social sciences, and marketing (see Huber Carol et al. [3]).
Entropy is a frequently employed concept for quantifying the uncertainty or
randomness within a dataset. It provides a numerical measurement of the in-
formation or disorder presenting within a probability distribution or random
variable. Initially introduced as a foundational concept in thermodynamics,
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entropy was used to characterize the level of disorder or randomness in a phys-
ical system. Nevertheless, it has subsequently been adopted and applied in
numerous disciplines, such as statistics Cover and Thomas [4].
The concept of entropy has been wildly applied in different areas such as
physics, probability and statistics, communication theory, economics, signal
processing and machine learning. Specifically, in information theory, entropy is
a measure of the uncertainty linked to the random variable. Shannon [5], first
introduced this concept as follows

(1) H(f) = −
∞∫
−∞

f(x) log f(x)dx ,

where f represents the probability density function (pdf) of the random
variable X.
Many authors have considered the issue of estimating H(f). For absolutely
continuous random variables, Vasicek [6], Joe [7], Hall and Morton [8], Van
Es [9], Correa [10] and Alizadeh [11] have studied this problem. Among the
numerous entropy estimators available, Vasicek’s [6] sample entropy has been
the most extensively used in the development of statistical methods based on
entropy. His estimate is founded on the basis of equation 1 which can be written
as

(2) H (f) =

1∫
0

log

{
d

dp
F−1 (p)

}
dp.

In order to estimate H(f), one can substitute the distribution function F by
its empirical distribution function Fn and use the difference instead of the
differential operator. Hence, given a sample X1, ..., Xn the estimator H(f) is
given by

(3) HVmn =
1

n

n∑
i=1

log
{ n

2m

(
X(i+m) −X(i−m)

)}
,

where m is a positive integer, m ≤ n/2 and X(1) ≤ X(2) ≤ ... ≤ X(n) are
the order statistics and X(i) = X(1) if i < 1, X(i) = X(n) if i > n. Vasicek [6]

proved that HVmn
Pr .−−→ H (f) as n→∞, m→∞, m/n→ 0. In the following

estimators, m is a positive integer, m ≤ n/2. An estimator for Shannon entropy
proposed by Van Es [9] is as follows.

HV Emn =
1

n−m

n−m∑
i=1

(
n+ 1

m

(
X(i+m) −X(i)

))
+

n∑
k=m

1

k
+ log(m)− log(n+ 1),
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Correa [10] presented a variation of the Vasicek entropy estimator that yields
a reduced mean squared error (MSE). The estimator is given by

HCmn = − 1

n

n∑
i=1

log


i+m∑
j=i−m

(
X(j) − X̄(i)

)
(j − i)

n
i+m∑
j=i−m

(
X(j) − X̄(i)

)
,

where

X̄(i) =
1

2m+ 1

i+m∑
j=i−m

X(j).

Alizadeh [11] introduced a kernel method for estimating entropy. The estimator
is given by

HAmn = − 1

n

n∑
i=1

log

{
f̂y
(
X(i+m)

)
+ f̂y

(
X(i−m)

)
2

}
,

where

f̂ (Xi) =
1

nh

n∑
j=1

k

(
Xi −Xj

h

)
The function K(.) is called the kernel function, and h is the smoothing

parameter or the bandwidth. One of the commonly used kernel functions is
the standard normal density while its optimal smoothing bandwidth is h =

1.06 sn−
1
5 ,where s is the sample standard deviation. Alizadeh [11] discovered

that HAmn
Pr.−−→ H (f) as n→∞, m→∞, m/n→ 0.

Entropy estimators are used in hypothesis testing to assess the randomness or
information gain when comparing different groups or variables. It helps de-
termine if there are significant differences between data distributions, aiding
in making statistical inferences. So, we propose a new entropy estimator and
compare it with other existing entropy estimators.
In Section 2, we propose a new entropy estimator and compare it with the
other estimators in terms of RMSE. In Section 3, we suggest some goodness of
fit tests for Weibull distribution based on the entropy estimators. In Section 4,
through a Monte Carlo simulation, we compute the critical values, type I error
and power of the tests. In Section 5, the applicability of the tests in real data
are shown. Finally, a brief conclusion is given.

2. The new entropy estimator and RMSE comparison

2.1. The proposed estimator. Suppose X1, ..., Xn is a random sample from
an unknown continuous distribution F with a probability density function f(x).
Suppose X(1) ≤ X(2) ≤ .... ≤ X(n) are the order statistics of the sample. We
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want to estimate the entropy H(f).
We can write

H (f) = −E (log (f (x)))

and consequently an estimator is as

Ĥ (f) = − 1

n

n∑
i=1

log (f (xi))

Now we use the equality [12]

log x = 2

[(
x− 1

x+ 1

)
+

1

3

(
x− 1

x+ 1

)3

+
1

5

(
x− 1

x+ 1

)5

+ ...

]
and propose the following estimator for H(f).

HSn = − 1

n

n∑
i=1

2

( f̂ (xi)− 1

f̂ (xi) + 1

)
+

1

3

(
f̂ (xi)− 1

f̂ (xi) + 1

)3

+ ....


= − 2

n

n∑
i=1

∞∑
j=1

1

(2j − 1)

(
f̂ (xi)− 1

f̂ (xi) + 1

)2j−1

where f̂ is the kernel density estimator and can be described by

f̂ (xi) =
1

nh

n∑
j=1

k

(
xi − xj
h

)
,

where h represents the bandwidth, and k signifies a kernel function which
satisfies

∞∫
−∞

k (x) dx = 1

In most cases, k is expected to be a probability density function that is sym-
metric. Here, we assume that it is the normal density function.

2.2. Comparison of the entropy estimators. To analyze the performance
of the new entropy estimator in comparison with the other existing estimators a
simulation study is conducted. This study includes comparisons between HSn
and several other estimators, namely, estimators of Vasicek [6], Correa [10], Van
Es [9] and Alizadeh [11]. To facilitate this analysis, 50,000 samples are gen-
erated for each sample size and the estimators are computed along with their
bias, variance and root mean squared error (RMSE). In our simulation study,
we consider three distributions; Normal, Exponential and Uniform, which are
the same distributions considered in Correa [10] and Alizadeh [11] works.
Tables 1-3 display the values of the absolute bias, variance and RMSE for the
five entropy estimators. These values are provided at different sample sizes for
each three considered distributions.
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Table 1. Absolute bias, variance and root of mean squared
error of the estimators in estimating H(f) for the standard
normal distribution.

n HV mn HV Emn HCmn HAmn HSn
Absolute bias

10 0.5599 0.2318 0.3807 0.1003 0.1280
20 0.3292 0.2080 0.1947 0.0716 0.0786
30 0.2440 0.1931 0.1281 0.0596 0.0603
50 0.1652 0.1812 0.0735 0.0458 0.0447

Variance
10 0.0711 0.0797 0.0717 0.0659 0.0644
20 0.0319 0.0344 0.0330 0.0301 0.0287
30 0.0206 0.0214 0.0212 0.0196 0.0183
50 0.0119 0.0122 0.0123 0.0115 0.0106

RMSE
10 0.6202 0.3652 0.4654 0.2757 0.2842
20 0.3745 0.2787 0.2662 0.1876 0.1866
30 0.2830 0.2423 0.1939 0.1521 0.1481
50 0.1981 0.2123 0.1330 0.1168 0.1122

Table 2. Absolute bias, variance and root of mean squared
error of the estimators in estimating H(f) for the exponential
distribution

n HV mn HV Emn HCmn HAmn HSn
Absolute bias

10 0.4384 0.1153 0.2427 0.0986 0.0988
20 0.2568 0.1119 0.1134 0.1042 0.1383
30 0.1887 0.1061 0.0685 0.1070 0.1464
50 0.1289 0.1014 0.0327 0.1060 0.1481

Variance
10 0.1287 0.1388 0.1315 0.1372 0.1413
20 0.0582 0.0622 0.0601 0.0629 0.0641
30 0.0377 0.0397 0.0390 0.0411 0.0414
50 0.0222 0.0228 0.0229 0.0244 0.0237

RMSE
10 0.5665 0.2164 0.4363 0.3833 0.3887
20 0.3524 0.2733 0.2701 0.2715 0.2885
30 0.2707 0.2258 0.2090 0.2292 0.2507
50 0.1970 0.1820 0.1548 0.1887 0.2137
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Table 3. Absolute bias, variance and root of mean squared
error of the estimators in estimating H(f) for the uniform
distribution (0,1).

n HV mn HV Emn HCmn HAmn HSn
Absolute bias

10 0.4215 0.0004 0.2413 0.0908 0.0693
20 0.2607 0.000007 0.1295 0.1071 0.0963
30 0.2018 0.000005 0.0928 0.1121 0.1012
50 0.1507 0.00034 0.0651 0.1142 0.1024

Variance
10 0.0274 0.0468 0.0278 0.0303 0.0305
20 0.0075 0.0145 0.0077 0.0106 0.0101
30 0.0035 0.0075 0.0037 0.0058 0.0056
50 0.0013 0.0034 0.0015 0.0027 0.0027

RMSE
10 0.4529 0.2164 0.2933 0.1962 0.1881
20 0.2747 0.1206 0.1566 0.1487 0.1392
30 0.2104 0.0864 0.1111 0.1354 0.1258
50 0.1552 0.0581 0.0758 0.1254 0.1148

According to the results, the proposed estimator shows strong performance
in comparison with other estimators. Additionally, the new estimator shows
superior behavior compared to Vasicek [6], Correa [10], Van Es [9] and Al-
izadeh [11] which are significant entropy estimators. In Table 4, we conduct a
comparison of entropy estimators for both small and large sample sizes. The re-
sults show that, for small sample sizes, the new estimator performs better than
Van Es [9] and Correa [10] estimators. Additionally, for large sample sizes, the
new estimator exhibits superior performance when compared to Alizadeh [11]
estimator.

3. Goodness-of-fit tests for Weibull distribution based on the
entropy estimators

In this study, we will employ the entropy estimators to assess how well the
sample conforms to the Weibull distribution. Since the exponential distribution
shares a unique property with entropy, we transform the Weibull distribution
into the exponential one.

Suppose we have a random variable X with a probability density function
f(x) and a cumulative distribution function F (x). We are interested to test
the following hypotheses.

H0 : f (x) = f0 (x) against H1 : f (x) 6= f0 (x)



A new entropy estimator and its application to goodness... – JMMR Vol. 14, No. 2 (2025) 7

Table 4. Summary of comparisons of the estimators in terms
of RMSE.

Sample size
All sample sizes Small Large

HSn is better
than:

HVmn Almost for all the considered
distributions

HV Emn Normal Exponential,
Uniform

HCmn Normal Exponential,
Uniform

HAmn Uniform Normal

where f0(x) is the density function of the Weibull distribution given by

f0 (x) =
β

η

(
x

η

)β−1
exp

{
−
(
x

η

)β}
, x > 0, η > 0, β > 0.

If X is an exponential random variable with mean λ, then the entropy of X can
be calculated as H(X) = logλ+1, and the entropy of the exponential distribu-
tion is maximum among all distributions with nonnegative support and mean
λ. Therefore, this property of maximum entropy is utilized for the exponential
distribution.
Substituting V = Xβ in Weibull density, we have

f (v) =
1

ηβ
exp

(
− v

ηβ

)
, v > 0.

Clearly the random variable V has the exponential distribution with the scale
parameter θ = ηβ and its entropy is

ln θ + 1.

Therefore, for all nonnegative random variables X with mean θ, we have

H (X; θ) ≤ ln θ + 1,

and hence
exp {H (X; θ)}

θ
≤ e.

Consequently, Kang and Lee [13] proposed the test statistic provided below.

T =
exp

{
Ĥ
(
X; θ̂

)}
θ̂

,

where Ĥ is an estimator of entropy and θ̂ is the maximum likelihood estimators.
Here, we examine the different entropy estimators and construct the following
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test statistics. If we substitute the aforementioned entropy estimators in place
of Ĥ (X; θ) in the proposed test statistic, the following test statistics can be
obtained.

TV mn =
exp {HV mn}

θ̂
,

TCmn =
exp {HCmn}

θ̂
,

TV Emn =
exp {HV Emn}

θ̂
,

TAmn =
exp {HAmn}

θ̂
,

TSn =
exp {HSn}

θ̂
.

Clearly, the test statistic T is invariant with respect to the scale transformation.
The critical values Tα of T at the significance level α are defined by the equation

P [T ≤ Tα] = α.

In the next section, we compute the critical points and power of the above
tests.

4. Simulation study

4.1. Critical points. The proposed test statistics are complicated to provide
the possibility of extracting its exact distribution under the null hypothesis
analytically. We used Monto Carlo methods with 50,000 replicates to obtain
critical values and power of the proposed tests.
The critical values of the proposed test statistics are determined by the follow-
ing steps:

(1) Generate a sample of size n from the Weibull distribution with param-
eters 1 and 1.

(2) Compute the proposed test statistics using the provided sampleX1, ..., Xn.
(3) Perform steps 1 and 2 numerous times, followed by calculating the αth

percentile of the test statistic.

The critical value C(α) is calculated from α-quantile of the distribution of the
test statistics under H0. If the value of the test statistic is smaller than C(α),
the null hypothesis H0 at the significance level α is rejected.
We obtain the critical values of the test statistics TVmn, TCmn, TV Emn, TAmn
and TSn for different values of m and n at the significance level α = 0.05. These
values are presented in Tables 5-9. Since α = 0.05 = 2500/50000, we evaluated
the 2500th order statistic to find the value of C(α). Moreover, Table 10 shows
the type I error of the tests for different values of n and m and we can see
that these values are acceptable. Therefore, we can use the proposed tests
confidently in practice.
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Table 5. Critical values of the TVmn statistic for α = 0.05.

m
n 1 2 3 4 5 6 7 8 9 10
5 0.8596 1.3593
6 0.9462 1.3973 1.5073
7 1.0199 1.4250 1.5866
8 1.0952 1.4656 1.6311 1.6240
9 1.1549 1.5059 1.6612 1.6962
10 1.2146 1.5468 1.6770 1.7416 1.7009
15 1.3987 1.7226 1.8156 1.8613 1.8842 1.8787 1.8428
20 1.5053 1.8322 1.9289 1.9664 1.9752 1.9789 1.9738 1.9580 1.9313 1.9003
25 1.5780 1.9137 2.0147 2.0468 2.0571 2.0567 2.0539 2.0439 2.0304 2.0152
30 1.6333 1.9668 2.0688 2.1062 2.1187 2.1221 2.1148 2.1093 2.1014 2.0874
40 1.7094 2.0445 2.1513 2.1923 2.2068 2.2149 2.2098 2.2037 2.1982 2.1887
50 1.7551 2.0919 2.2003 2.2476 2.2698 2.2746 2.2773 2.2728 2.2689 2.2618

Table 6. Critical values of the TCmn statistic for α = 0.05.

m
n 1 2 3 4 5 6 7 8 9 10
5 1.0556 1.8030
6 1.1376 1.8186 1.9263
7 1.2120 1.8073 2.0284
8 1.2872 1.8212 2.0663 2.0380
9 1.3508 1.8380 2.0698 2.1172
10 1.4120 1.8637 2.0607 2.1641 2.1148
15 1.6005 2.0174 2.1287 2.1942 2.2411 2.2699 2.2516
20 1.7115 2.9536 2.2171 2.2564 2.2773 2.2972 2.3176 2.3265 2.3255 2.3128
25 1.7855 2.1957 2.2906 2.3169 2.3290 2.3373 2.3485 2.3558 2.3621 2.3710
30 1.8417 2.2440 2.3347 2.3631 2.3710 2.3797 2.3800 2.3868 2.3929 2.3962
40 1.9206 2.3180 2.4066 2.4322 2.4373 2.4447 2.4426 2.4418 2.4429 2.4438
50 1.9666 2.3602 2.4504 2.4750 2.4875 2.4871 2.4868 2.4864 2.4870 2.4853

Table 7. Critical values of the TV Emn statistic for α = 0.05.

m
n 1 2 3 4 5 6 7 8 9 10
5 1.5708 2.0141
6 1.5935 1.9931 2.1821
7 1.6302 1.9833 2.0695
8 1.6759 1.9821 2.0405 2.1700
9 1.7040 2.0017 2.0476 2.1177
10 1.7466 2.0125 2.0505 2.0889 2.1655
15 1.8745 2.1003 2.1211 2.1103 2.1002 2.1165 2.1557
20 1.9562 2.1522 2.1829 2.1732 2.1513 2.1375 2.1289 2.1372 2.1574 2.2015
25 2.0272 2.2022 2.2262 2.2113 2.1970 2.1751 2.1556 2.1540 2.1535 2.1492
30 2.0823 2.2457 2.26288 2.2543 2.2332 2.2160 2.1969 2.1765 2.1731 2.1686
40 2.1538 2.2978 2.3197 2.3127 2.2917 2.2769 2.2583 2.2379 2.2224 2.2157
50 2.2058 2.3414 2.3557 2.3512 2.3386 2.3196 2.3018 2.2865 2.2680 2.2539
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Table 8. Critical values of the TAmn statistic for α = 0.05.

m
n 1 2 3 4 5 6 7 8 9 10
5 2.8985 3.0185
6 2.9070 3.0381 3.2044
7 2.9287 3.0111 3.1815
8 2.9386 3.0105 3.1543 3.2999
9 2.9451 2.9981 3.1259 3.2680
10 2.9519 2.9912 3.0985 3.2338 3.3625
15 2.9717 2.9522 2.9883 3.0603 3.1597 3.2754 3.3852
20 2.9982 2.1227 2.9402 2.9660 3.0159 3.0875 3.1776 3.2773 3.3818 3.4851
25 3.0257 2.9700 2.9364 2.9289 2.9461 2.9844 3.0349 3.1028 3.1846 3.2718
30 3.0403 2.9887 2.9433 2.9220 2.9189 2.9288 2.9574 2.9969 3.0509 3.1136
40 3.0653 3.0199 2.9745 2.9432 2.9167 2.9009 2.8976 2.9057 2.9231 2.9491
50 3.0776 3.0395 3.0016 2.9651 2.9377 2.9148 2.8981 2.8881 2.8841 2.8900

Table 9. Critical values of the TSn statistic for α = 0.05.

n 5 6 7 8 9 10 15 20 25 30 40 50
TSn 2.9163 2.9512 2.9868 3.0071 3.0223 3.0395 3.0613 3.0688 3.0784 3.0817 3.0868 3.0863

Table 10. The actual size of the tests at α = 0.05.

W (β, η) n m TVmn TCmn TV Emn TAmn TSn
W(0.5,1) 10 3 0.0497 0.0489 0.0495 0.0457 0.0474
W(0.5,1) 20 4 0.0507 0.0507 0.0500 0.0493 0.0513
W(0.5,1) 30 5 0.0482 0.0480 0.0498 0.0509 0.0484
W(0.5,1) 40 6 0.0502 0.0505 0.0489 0.0509 0.0501
W(0.5,1) 50 7 0.0504 0.0508 0.0515 0.0494 0.0481
W(1,1) 10 3 0.0529 0.0505 0.0513 0.0511 0.0502
W(1,1) 20 4 0.0552 0.0520 0.0552 0.0502 0.0543
W(1,1) 30 5 0.0499 0.0505 0.0498 0.0514 0.0517
W(1,1) 40 6 0.0473 0.0528 0.0486 0.0457 0.0502
W(1,1) 50 7 0.0527 0.0509 0.0498 0.0475 0.0504
W(2,1) 10 3 0.0504 0.0501 0.0513 0.0488 0.0487
W(2,1) 20 4 0.0488 0.0497 0.0476 0.0466 0.0475
W(2,1) 30 5 0.0502 0.0510 0.0497 0.0509 0.0513
W(2,1) 40 6 0.0492 0.0496 0.0509 0.0479 0.0493
W(2,1) 50 7 0.0488 0.0497 0.0453 0.0486 0.0492
W(4,1) 10 3 0.0514 0.0501 0.0516 0.0497 0.0491
W(4,1) 20 4 0.0505 0.0513 0.0498 0.0494 0.0513
W(4,1) 30 5 0.0490 0.0485 0.0486 0.0501 0.0513
W(4,1) 40 6 0.0473 0.0478 0.0487 0.0482 0.0495
W(4,1) 50 7 0.0490 0.0493 0.0508 0.0514 0.0508
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4.2. Power study. Practically, it is useful for the researchers to have a general
recommendation for choosing the parameter m when the parameter n is fixed.
Our simulations indicate that the ideal value of m (based on power) varies
depending on the sample size and the alternative hypothesis. However, there
is no single value of m that can be considered optimal in all scenarios. Hence,
if one aims to protect against all potential alternative scenarios, a compromise
needs to be reached.
The power values of the tests against different alternatives are computed using
Monte Carlo simulations. For each alternative 50,000 samples are generated
with size 10, 20, 30, 40 and 50 with m = [

√
n+ 0.5]. We use m = 3 for n = 10,

m = 4 for n = 20, m = 5 for n = 30, m = 6 for n = 40 and m = 7 for n = 50
to achieve good power against all alternatives. Typically, as n increases, the
optimal value of m also increases, as the ratio m/n tends to zero.

To compare power, we examine the following alternatives, each of which
possesses varying hazard rates: increasing hazard rate (IHR), decreasing hazard
rate (DHR), bathtub-shaped hazard rate (BT), and upside-down hazard rate
(UBT) (see Krit et al. [14]). The common distributions considered are gamma
(G), lognormal (LN), inverse-gamma (IG), and inverse-gaussian (IS). Several
distributions with cumulative distribution function (cdf) denoted as F (x) are
outlined below.

• Exponentiated Weibull distribution EW (θ, η, β) (Mudholkar and Sri-
vastava [15]).

F (x) =
[
1− e−(

x/η)
β
]θ
, θ, η, β > 0.

• Generalized Gamma distribution GG (κ, η, β) (Stacy [16]).

F (x) =
1

Γ (κ)
γ
(
κ, (x/η )

β
)
, κ, η, β > 0,

where γ (s, x) =
x∫
0

vs−1e−vdv.

• Distribution I of Dhillon [17] D1 (β, b) with cdf:

F (x) = 1− e−
[
e(βx)

b−1
]
, b, β > 0.

• Distribution II of Dhillon [17] D2 (λ, b) with cdf:

F (x) = 1− e−(ln(λx+1))b+1

, λ > 0, b ≥ 0.

• Hjorth [18] distribution H (β, δ, θ) with cdf:

F (x) = 1− e−
δx2

2

(1 + βx)
θ/β

, β, δ, θ > 0.
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• Chen [19] distribution C (λ, β) with cdf:

F (x) =

[
1− eλ

(
1−ex

β
)]
, λ, β > 0.

Under the above alternatives the power values of the tests are obtained by
means of Monte Carlo simulations. Under each alternative 50,000 samples
of size 10, 20, 30, 40 and 50 are generated and the test statistics (TVmn,
TCmn, TV Emn, TAmn and TSn) are calculated. Then power value of the
corresponding test is computed by the frequency of the event “the statistic is
in the critical region”. The power values of the tests against various alternatives
at the significance level 0.05 are presented in Tables 12-16. In these tables, the
tests with the highest power are shown in bold type for each sample size and
alternative.

Table 11. Alternative distributions

IHR g (2) ≡ g (2, 1) g (3) ≡ g (3, 1) EW1 ≡ EW (6.5, 20, 6)
D2 (2) ≡ D2 (1, 2)

UBT LN (0.8) ≡ LN (0, 0.8) Ig (3) ≡ Ig (3, 1) EW4 ≡ EW (4, 12, 0.6)
IS (0.25) ≡ IS (1, 0.25) IS (4) ≡ IS (1, 4)

DHR g (0.2) ≡ g (0.2, 1) EW2 ≡ EW (0.1, 0.01, 0.95) H (0) ≡ H (0, 1, 1)
D2 (0) ≡ D2 (1, 0)

BT EW3 ≡ EW (0.1, 100, 5) gg1 ≡ gg (0.1, 1, 4) gg2 ≡ gg (0.2, 1, 3)
C (0, 4) ≡ C (2, 0.4) D1 (0.8) ≡ D1 (1, 0.8)

Tables 12-16 indicate that the TSn statistic is powerful compared to other
test statistics for two groups of hazard rates IHR and BT. These tables show
that TSn is powerful for the alternative hypotheses gamma(2), gamma(3) and
exponentiated weibull distributions (EW) in the IHR group, and for all alter-
native hypotheses in the BT group with n = 10, 20, 30, 40 and 50.
Also, in the IHR group, the TV Emn statistic is powerful for Dhillon type
II distribution. Additionally, these tables show that in the UBT group, the
TEmn statistic is powerful for all values of n, with exception for the alterna-
tive hypothesis of the exponentiated Weibull distributions EW, where TSn is
powerful. The tests TSn and TV Emn are more powerful than the other tests
against IHR and UBT alternatives. In the end, the TSn and TV Emn statistics
in DHR group for g(0.2), H(0), D2(0) alternatives, are powerful, and TCmn
and TAmn are powerful in this group only for EW2 alternative hypothesis for
n = 20 and n = 10, 30, 40, 50, respectively.

5. Application to the real data

In this section, we illustrate the application of the tests for Weibull distri-
bution in the real cases. We consider two real data sets as follows.
The first collection of data represents the duration of patient’s survival times.
The data show the duration of times, the patients from the time admitted
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Table 12. Power comparisons of the tests based TVmn,
TCmn, TV Emn, TAmn and TSn statistics for sample size
n = 10 under different alternatives at level 0.05.

Alternative TVmn TCmn TV Emn TAmn TSn
Increasing Hazard Rate

g(2) 0.0555 0.0504 0.0712 0.0278 0.1650
g(3) 0.0622 0.0539 0.0853 0.0209 0.7509
EW1 0.0753 0.0617 0.1242 0.0108 1.0000
D2(2) 0.0542 0.0476 0.0920 0.0278 0.0257

Upside-down bathtub Hazard
LN(0.8) 0.0955 0.0758 0.1657 0.0061 0.0093
Ig(3) 0.1928 0.1490 0.3031 0.0022 0.0018
EW4 0.0554 0.0602 0.0335 0.0831 1.0000

IS(0.25) 0.1867 0.1483 0.2547 0.0019 0.0018
IS(4) 0.1010 0.0803 0.1634 0.0053 0.0057

Decreasing Hazard Rate
g(0.2) 0.0893 0.1066 0.0191 0.1732 0.1761
EW2 0.0516 0.0510 0.0482 0.0530 0.0523
H(0) 0.0500 0.0495 0.0493 0.0504 0.0811
D2(0) 0.1071 0.0832 0.2172 0.0100 0.0131

Bathtub Hazard Rate
EW3 0.0746 0.0621 0.1247 0.0110 0.9607
gg1 0.1219 0.1489 0.0190 0.2235 0.2573
gg2 0.0884 0.1058 0.0208 0.1693 0.2056

C(0.4) 0.0570 0.0637 0.0304 0.0858 0.0863
D1(0.8) 0.0628 0.0730 0.0245 0.1127 0.1140

to the hospital until death due to COVID-19. There are 53 cases of patients
in China during the initial two months of 2020 (see Liu et al. [20]). Among
them, 37 patients (70%) were men and 16 women (30%). 40 patients (75%)
were diagnosed with chronic disease, especially including high blood pressure,
and diabetes, 47 patients (88%) had common clinical symptoms of the flu, 42
patients (81%) were coughing, 37 (69%) were short of breath, and 28 patients
(53%) had fatigue. 50 (95%) patients had bilateral pneumonia showed by the
chest computed tomographic scans. The observed data are (time is per 24
hours):

0.054, 0.064, 0.087, 0.087, 0.235, 0.352, 0.364, 0.421, 0.437, 0.458, 0.479,
0.548, 0.568, 0.704, 0.787, 0.796, 0.816, 0.865, 0.976, 0.976, 0.978, 1.756, 1.978,
2.089, 2.643, 2.869, 3.079, 3.348, 3.543, 3.646, 3.867, 3.890, 4.092, 4.093, 4.190,
4.237, 5.028, 5.083, 6.174, 6.743, 7.058, 7.274, 8.273, 9.324, 10.827, 11.282,
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Table 13. Power comparisons of the tests based TVmn,
TCmn, TV Emn, TAmn and TSn statistics for sample size
n = 20 under different alternatives at level 0.05.

Alternative TVmn TCmn TV Emn TAmn TSn
Increasing Hazard Rate

g(2) 0.0605 0.0566 0.0927 0.0389 0.2059
g(3) 0.0676 0.0624 0.1179 0.0363 0.9296
EW1 0.0973 0.0827 0.2075 0.0347 1.0000
D2(2) 0.0543 0.0473 0.1454 0.0487 0.0349

Upside-down bathtub Hazard
LN(0.8) 0.1541 0.1239 0.3116 0.0329 0.0345
Ig(3) 0.3846 0.3116 0.5841 0.0427 0.0087
EW4 0.0557 0.0575 0.0259 0.0668 1.0000

IS(0.25) 0.3922 0.3315 0.5108 0.0350 0.0065
IS(4) 0.1730 0.1407 0.3111 0.0297 0.0190

Decreasing Hazard Rate
g(0.2) 0.1267 0.1379 0.0110 0.1310 0.2422
EW2 0.0499 0.0513 0.0457 0.0519 0.0513
H(0) 0.0503 0.0509 0.0497 0.0495 0.0892
D2(0) 0.1684 0.1242 0.4132 0.0515 0.0766

Bathtub Hazard Rate
EW3 0.0974 0.0823 0.2097 0.0342 0.9992
gg1 0.2314 0.2440 0.0154 0.1915 0.3779
gg2 0.1284 0.1372 0.0115 0.1305 0.2706

C(0.4) 0.0654 0.0701 0.0194 0.0630 0.0910
D1(0.8) 0.0738 0.0785 0.0151 0.0831 0.1345

13.324, 14.278, 15.287, 16.978, 17.209, 19.092, 20.083

The second dataset is a COVID-19 collection of data belonged to Italy and
spans 172 days from the first of March to the twentieth of August, 2020, (see
Alshanbari et al. [21]). These data constituted of mortality rate and the data
are as follows.

0.0107, 0.0490, 0.0601, 0.0460, 0.0533, 0.0630, 0.0297, 0.0885, 0.0540, 0.1720,
0.0847, 0.0713, 0.0989, 0.0495, 0.1025, 0.1079, 0.0984, 0.1124, 0.0807, 0.1044,
0.1212, 0.1167, 0.1255, 0.1416, 0.1315, 0.1073, 0.1629, 0.1485, 0.1453, 0.2000,
0.2070, 0.1520, 0.1628, 0.1666, 0.1417, 0.1221, 0.1767, 0.1987, 0.1408, 0.1456,
0.1443, 0.1319, 0.1053, 0.1789, 0.2032, 0.2167, 0.1387, 0.1646, 0.1375, 0.1421,
0.2012, 0.1957, 0.1297, 0.1754, 0.1390,0.1761, 0.1119, 0.1915, 0.1827, 0.1548,
0.1522, 0.1369,0.2495, 0.1253, 0.1597, 0.2195, 0.2555, 0.1956, 0.1831,0.1791,
0.2057, 0.2406, 0.1227, 0.2196, 0.2641, 0.3067, 0.1749, 0.2148, 0.2195, 0.1993,
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Table 14. Power comparisons of the tests based TVmn,
TCmn, TV Emn, TAmn and TSn statistics for sample size
n = 30 under different alternatives at level 0.05.

Alternative TVmn TCmn TV Emn TAmn TSn
Increasing Hazard Rate

g(2) 0.0620 0.0593 0.1083 0.0547 0.2909
g(3) 0.0746 0.0667 0.1468 0.0583 0.9869
EW1 0.1213 0.1009 0.2890 0.0768 1.0000
D2(2) 0.0565 0.0466 0.1899 0.0829 0.0517

Upside-down bathtub Hazard
LN(0.8) 0.2155 0.1706 0.4438 0.0915 0.0854
Ig(3) 0.5586 0.4664 0.7669 0.1531 0.0587
EW4 0.0576 0.0607 0.0198 0.0472 1.0000

IS(0.25) 0.5798 0.5011 0.7090 0.1173 0.0236
IS(4) 0.2404 0.1931 0.4419 0.0865 0.0491

Decreasing Hazard Rate
g(0.2) 0.1812 0.1860 0.0087 0.0778 0.2700
EW2 0.0498 0.0499 0.0435 0.0491 0.0460
H(0) 0.0488 0.0491 0.0502 0.0490 0.1017
D2(0) 0.2281 0.1660 0.5612 0.1507 0.2009

Bathtub Hazard Rate
EW3 0.1221 0.1019 0.2899 0.0758 1.0000
gg1 0.3586 0.3658 0.0145 0.1314 0.4653
gg2 0.1823 0.1879 0.0093 0.0789 0.3087

C(0.4) 0.0712 0.0750 0.0144 0.0407 0.0825
D1(0.8) 0.0871 0.0901 0.0105 0.0499 0.1343

0.2421, 0.2430, 0.1994, 0.1779, 0.0942, 0.3067, 0.1965, 0.2003, 0.1180, 0.1686,
0.2668, 0.2113, 0.3371, 0.1730, 0.2212, 0.4972, 0.1641, 0.2667, 0.2690, 0.2321,
0.2792, 0.3515, 0.1398, 0.3436,0.2254, 0.1302, 0.0864, 0.1619, 0.1311, 0.1994,
0.3176, 0.1856, 0.1071, 0.1041, 0.1593, 0.0537, 0.1149, 0.1176, 0.0457, 0.1264,
0.0476, 0.1620, 0.1154, 0.1493, 0.0673, 0.0894, 0.0365, 0.0385, 0.2190, 0.0777,
0.0561, 0.0435, 0.0372, 0.0385, 0.0769, 0.1491, 0.0802, 0.0870, 0.0476, 0.0562,
0.0138, 0.0684, 0.1172, 0.0321, 0.0327, 0.0198,0.0182, 0.0197, 0.0298, 0.0545,
0.0208, 0.0079, 0.0237,0.0169, 0.0336, 0.0755, 0.0263, 0.0260, 0.0150, 0.0054,
0.0375, 0.0043, 0.0154, 0.0146, 0.0210, 0.0115, 0.0052,0.2512, 0.0084, 0.0125,
0.0125, 0.0109, 0.0071.

Now, using the proposed tests, we test whether the data come from a Weibull
distribution. The value of the proposed test statistic and the critical points are
computed and presented in Table 17. According to the results presented in
Table 17, the value of each test statistics is greater than the corresponding
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Table 15. Power comparisons of the tests based TVmn,
TCmn, TV Emn, TAmn and TSn statistics for sample size
n = 40 under different alternatives at level 0.05.

Alternative TVmn TCmn TV Emn TAmn TSn
Increasing Hazard Rate

g(2) 0.0628 0.0585 0.1252 0.0668 0.3946
g(3) 0.0782 0.0692 0.1820 0.0792 0.9983
EW1 0.1397 0.1137 0.3672 0.1152 1.0000
D2(2) 0.0552 0.0451 0.2337 0.1148 0.0609

Upside-down bathtub Hazard
LN(0.8) 0.2679 0.2111 0.5631 0.1558 0.1453
Ig(3) 0.6846 0.5854 0.8847 0.2792 0.1056
EW4 0.0624 0.0637 0.0162 0.0369 1.0000

IS(0.25) 0.7114 0.6296 0.8414 0.1960 0.0422
IS(4) 0.3037 0.2472 0.5651 0.1435 0.0810

Decreasing Hazard Rate
g(0.2) 0.2384 0.2362 0.0075 0.0530 0.3013
EW2 0.0502 0.0510 0.0428 0.0477 0.0400
H(0) 0.0484 0.0497 0.0469 0.0499 0.1244
D2(0) 0.2848 0.2106 0.6851 0.2694 0.3390

Bathtub Hazard Rate
EW3 0.1416 0.1161 0.3644 0.1154 1.0000
gg1 0.4898 0.4886 0.0163 0.1077 0.5517
gg2 0.2410 0.2402 0.0071 0.0531 0.3555

C(0.4) 0.0819 0.0846 0.0109 0.0289 0.0772
D1(0.8) 0.1023 0.1042 0.0074 0.0334 0.1343

critical value. As a result, the Weibull hypothesis cannot be rejected at the
significance level of 0.05. Consequently, we can conclude that the probability
density of these data sets follows a Weibull distribution.

6. Conclusions

In this paper, we have presented a new estimator for the entropy of a contin-
uous random variable and then computed its RMSE to conduct a comparison
with the other estimators. We found that the new entropy estimator outper-
forms the others in situations where the sample size is small for exponential
and uniform distributions, as well as in cases where the sample size is large for
normal distribution.
Moreover, we have proposed some GOF tests for Weibull distribution based
on the entropy estimators. The proposed test statistics were easy to compute.
Percentage points and power of the proposed tests against various alternatives
for different sample sizes were reported. Power of the tests showed that this
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Table 16. Power comparisons of the tests based TVmn,
TCmn, TV Emn, TAmn and TSn statistics for sample size
n = 50 under different alternatives at level 0.05.

Alternative TVmn TCmn TV Emn TAmn TSn
Increasing Hazard Rate

g(2) 0.0652 0.0600 0.1486 0.0774 0.5082
g(3) 0.0847 0.0764 0.2212 0.0932 0.9999
EW1 0.1604 0.1309 0.4500 0.1551 1.0000
D2(2) 0.0586 0.0478 0.2876 0.1500 0.0744

Upside-down bathtub Hazard
LN(0.8) 0.3155 0.2512 0.6723 0.2156 0.2225
Ig(3) 0.7753 0.6791 0.9453 0.3956 0.1613
EW4 0.0648 0.0669 0.0142 0.0319 1.0000

IS(0.25) 0.8052 0.7303 0.9261 0.2794 0.0687
IS(4) 0.3620 0.2952 0.6800 0.1994 0.1247

Decreasing Hazard Rate
g(0.2) 0.3103 0.3054 0.0073 0.0398 0.3346
EW2 0.0491 0.0492 0.0447 0.0475 0.0383
H(0) 0.0495 0.0509 0.0498 0.0491 0.1473
D2(0) 0.3326 0.2449 0.7814 0.3752 0.4809

Bathtub Hazard Rate
EW3 0.1633 0.1327 0.4549 0.1556 1.0000
gg1 0.6156 0.6065 0.0197 0.0967 0.6273
gg2 0.3079 0.3022 0.0069 0.0389 0.4000

C(0.4) 0.0921 0.0944 0.0101 0.0230 0.0694
D1(0.8) 0.1276 0.1295 0.0058 0.0236 0.1317

Table 17. Results for Examples 1 and 2.

Example 1 Example 2
Value of the Critical Decision Value of the Critical Decision
test statistic value test statistic value

TVmn 2.5500 2.2929 Not rejected H0 2.5409 2.5175 Not rejected H0

TCmn 2.9277 2.4997 Not rejected H0 2.6717 2.6414 Not rejected H0

TV Emn 2.2859 2.3084 Not rejected H0 2.4944 2.4507 Not rejected H0

TAmn 3.1446 2.8967 Not rejected H0 3.0073 2.9531 Not rejected H0

TSn 3.1034 3.0864 Not rejected H0 3.1211 3.0532 Not rejected H0

GOF tests are viable for testing the hypothesis of Weibull. Generally, we ob-
served that the tests TEmn and TSn have the most power for the Weibull
distribution.
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