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Abstract. The aim of this paper is to introduce the cyclic-Fibonacci

hybrid sequence and give some properties. By taking into account the
cyclic-Fibonacci hybrid sequence modulo m, the method will be given to

determine the period lengths of this sequence according to the different m

values. In the final part of this paper, we study the cyclic-Fibonacci hy-
brid sequence in groups and then we calculate the cyclic-Fibonacci hybrid

lengths of polyhedral groups (2, 2, 2), (2, n, 2) and (n, 2, 2) as applications

of the results produced.
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1. Introduction

There is a long history of studying sequences of numbers greater than one
dimensional, such as, 2-dimensional, 4-dimensional and so on. Complex, dual
and hyperbolic numbers are well-known two dimensional number systems. Es-
pecially in recent years, a lot of researchers deal with the geometric, algebraic
and physical applications of these numbers. In 1998, the authors generalized
the 2-dimensional number systems to higher dimensions using a very natural
way [10]. In [18], Ozdemir introduced a hybrid number as a generalization of
the complex (i2 = −1), dual (ε2 = 0) and hyperbolic (h2 = 1) numbers. The
set of hybrid numbers denoted by K, is defined as

K =
{
u+ vi + wε+ zh : i2 = −1, ε2 = 0,h2 = 1, u, v, w, z ∈ R

}
.

For any two hybrid numbers K1 = u1 + v1i + w1ε+ z1h and K2 = u2 + v2i +
w2ε+ z2h, it write

• K1 = K2 only if u1 = u2, v1 = v2, w1 = w2, z1 = z2 (equality),
• K1 +K2 = (u1 + u2) + (v1 + v2)i + (w1 +w2)ε+ (z1 + z2)h (addition),
• K1−K2 = (u1−u2)+(v1−v2)i+(w1−w2)ε+(z1−z2)h (substraction),
• sK1 = su1 + sv1i + sw1ε+ sz1h (the multiplication by scalar),
• K1 = u1 − v1i− w1ε− z1h (the conjugate of a hybrid number).

The addition operation in the hybrid numbers is both associative and com-
mutative. The multiplication of hybrid numbers is not commutative, but it has
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the property of associativity. The product table of the basis of hybrid numbers
are as Table 1.

Table 1. The product table for the basis of K

. 1 i ε h

1 1 i ε h

i i −1 1− h ε+ i

ε ε h + 1 0 −ε
h h −ε− i ε 1

For n ≥ 2, the Fibonacci number is defined as Fn = Fn−1 + Fn−2, F0 =
0, F1 = 1. There are lots of astonishing identities belonging to the Fibonacci
number in [15]. In recent years, Fibonacci, Lucas and Pell hybrid numbers
cover a wide range of interests in modern mathematics as they appear in the
comprehensive works of [4, 5, 16, 17, 19–24]. Kızılateş gave the generalizations
of the Fibonacci and Lucas hybrid numbers, see [12,13]. In [23], the Fibonacci
hybrid numbers are defined as

FHn = Fn + Fn+1i + Fn+2ε+ Fn+3h.

On the other hand, in [11], Kalman derived several closed-form formulas for
the generalized sequence by companion matrix method.

For a finitely generated group G = 〈A〉, where A = {a1, a2, · · · , an}, the
sequence xi = ai+1, 0 ≤ i ≤ n − 1, xn+i =

∏n
j=1 xi+j−1, i ≥ 0, is called the

Fibonacci orbit of G with respect to the generating set A, denoted FA(G),
see [1–3].

Definition 1.1. For k, l,m > 1, the polyhedral (triangle) group presented by〈
x, y | xk = yl = zm = xyz = 1

〉
,

or 〈
x, y | xk = yl = (xy)m = 1

〉
.

The polyhedral group (k, l,m) is finite if and only if the number

µ = klm

(
1

k
+

1

l
+

1

m
− 1

)
is positive, that is, in the cases (2, 2, n), (2, 3, 3), (2, 3, 4) and (2, 3, 5). Its order
is 2klm/µ. By thinking in Combinatorial Group theory Tietze transformations,
we can obtain that (l,m, n) ∼= (m,n, l) ∼= (n, l,m). For more information on
these groups, see [6, 7].

If a sequence consists only of repetitions of a fixed subsequence after a
certain point, it is periodic. The period of the sequence is the number of
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elements in the shortest repetition subsequence. For instance, the sequence
k, l,m, n, o, l,m, n, o, . . ., is periodic after the first element k and has period 4.
As a special case, a sequence is simply periodic with period m if the initial m
elements in the sequence form a repeating subsequence. For instance, the se-
quence k, l,m, n, o, k, l,m, n, o, k, l,m, n, o, . . ., is simply periodic with period 5.
Recently, many authors have studied some special linear recurrence sequences
in groups; see for example, [8, 9, 14,26].

In Section 2, we define the cyclic-Fibonacci hybrid sequence and then we
present some properties. In Section 3, we study the cyclic-Fibonacci hybrid
sequence modulo m and then we give the relationships among the lengths of
periods of the cyclic-Fibonacci hybrid sequences according to the different m
values. In Section 4, we introduce the cyclic-Fibonacci hybrid sequence in
groups. Finally, we calculate the cyclic-Fibonacci hybrid length in some finite
polyhedral groups.

2. The Cyclic-Fibonacci Hybrid Sequence

In this section, we will introduce cyclic-Fibonacci hybrid sequence for n ≥ 2
any positive integer numbers. Then, we will present the miscellaneous proper-
ties of these sequences.

Definition 2.1. The cyclic-Fibonacci hybrid sequence is defined as follows:

xn =

 hxn−1 + εxn−2 if n ≡ 0 (mod3),
ixn−1 + hxn−2 if n ≡ 1 (mod3),
εxn−1 + ixn−2 if n ≡ 2 (mod3)

with initial conditions x0 = 0 and x1 = 1.

The first eleven terms of the cyclic-Fibonacci hybrid sequence are as follows:
x0 = 0,
x1 = 1,
x2 = ε,
x3 = 2ε,
x4 = 2 + ε− 2h,
x5 = 2 + 4ε− 2h,
x6 = −2 + 8ε+ 2h,
x7 = 6 + 6ε− 6h,
x8 = 8 + 14ε− 8h,
x9 = −8 + 26ε+ 8h,
x10 = 18 + 22ε− 18h.
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We will give the property x3n−1 =
[
(3n−1 − 1)i + 5.3n−2 − 1

]
ε

x3n =
[
(1− 3n−1)i + 3n − 1

]
ε

x3n+1 =
[
2.3n−1i + 8.3n−2 − 2

]
ε

where n ≥ 2. We can write for the cyclic-Fibonacci hybrid sequence

(1) G =

[
2 + ε− 2h −i− ε+ h

2ε −i− ε

]
.

By mathematical induction on n, we find

(2) Gn =

[
x3n+1 gn12
x3n gn22

]
,

where n ≥ 1, gn12 = (2 + ε − 2h)gn−112 + (−i − ε + h)gn−122 and g22 = 2εgn−112 +
(−i− ε)gn−122 .

Lemma 2.2. We give the recurrence relation for the cyclic-Fibonacci hybrid
sequence as follows:

xn = 4xn−3 − 3xn−6,

where n ≥ 11.

Proof. Let us use the principle of mathematical induction on n. For n = 11, it
is easy to see that

x11 =4x8 − 3x5

=4(8 + 14ε− 8h)− 3(2 + 4ε− 2h)

=26 + 44ε− 26h.

As the usual next step of inductions, let us assume that it is true for all
positive integers k ≤ n. In other words, xk = 4xk−3 − 3xk−6.

Finally, we need to show that it is true for k+1. There are three conditions.
Firstly, if k + 1 ≡ 0 (mod3), we can write from Definition 2.1

xk+1 =hxk + εxk−1

=h(4xk−3 − 3xk−6) + ε(4xk−4 − 3xk−7)

=4xk−2 − 3xk−5.

Secondly, if k + 1 ≡ 1 (mod3), we can obtain again from Definition 2.1

xk+1 =ixk + hxk−1

=i(4xk−3 − 3xk−6) + h(4xk−4 − 3xk−7)

=4xk−2 − 3xk−5.

Eventually, if k+ 1 ≡ 2 (mod3), the result can be obtained with similar opera-
tions. Hence the proof is complete. �
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In the following Theorem, we develop the generating function for the cyclic-
Fibonacci hybrid sequence.

Theorem 2.3. The generating function of the sequence {xn} is

∞∑
n=0

xnt
n

=
t + εt2 + 2εt3 + (−2 + ε− 2h)t4 + (2− 2h)t5 + (−2 + 2h)t6 + (1 + 2ε + 2h)t7 + εt8 + εt10

1− 4t3 + 3t6
.

Proof. Assume that f(t) is the generating function of {xn}. Then we have

f (t) =

∞∑
n=0

xnt
n

From Lemma 2.2, we obtain

f (t) =

10∑
n=0

xnt
n +

∞∑
n=11

(4xn−3 − 3xn−6) tn

=

10∑
n=0

xnt
n + 4

(
f(t)−

7∑
n=0

xnt
n

)
t3 − 3

(
f(t)−

4∑
n=0

xnt
n

)
t6 .

Now rearrangement of the equation implies that

f(t) =

x1t + x2t
2 + x3t

3 + (x4 − 4x1) t
4 + (x5 − 4x2) t

5 + (x6 − 4x3) t
6 +

10∑
n=7

(
xn − 4xn−3 + 3xn−6

)
tn

1− 4t3 + 3t6
,

which is equal to the
∞∑
n=0

xnt
n in Theorem. �

3. The Cyclic-Fibonacci Hybrid Sequence Modulo m

In this section, we study the cyclic-Fibonacci hybrid sequence modulo m.
Then, we obtain the length of the period of the cyclic-Fibonacci hybrid sequence
for modulo m.

Let fn denote the nth member of the Fibonacci sequences f0 = a, f1 = b,
fn+1 = fn + fn−1 (n ≥ 1).

Theorem 3.1. (Wall [25]) fn (modm) forms a simple periodic sequence. That
is, the sequence is periodic and repeats by returning to its starting values.

The length of the period of the ordinary Fibonacci sequence {Fn} modulo
m was denoted by k(m).

If we reduce the cyclic-Fibonacci hybrid sequence of modulo m, taking the
smallest nonnegative residues, then we get the following recurrence sequences:

{xn (m)} = {x1 (m) , x2 (m) , . . . , xu (m) , . . .}

where xu (m) is used to mean the uth element of the cyclic-Fibonacci hybrid
sequence when reading modulo m. We note here that the recurrence relations
in the sequences {xn (m)} and {xn} are the same.
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Theorem 3.2. The sequence {xn (m)} is periodic and the length of its period
is divisible by 3.

Proof. Consider the set

H =
{
(H1, H2) | Hj ’s are hybrid numbers uj + vj i + wjε + zjh where

uj , vj , wj and zj are integers such that 0 ≤ uj , vj , wj , zj ≤ m− 1 and j ∈ {1, 2}
}
.

Suppose that the cardinality of the set H is denoted by the notation |H|. Since
the set H is finite, there are |H| distinct 2-tuples of the cyclic-Fibonacci hybrid
sequence {xn} modulo m. Thus, it is clear that at least one of these 2-tuples
appears twice in the sequence {xn (m)}. Let xα (m) ≡ xβ (m) and
xα+1 (m) ≡ xβ+1 (m). If β − α ≡ 0 (mod3), then we get xα+2 (m) ≡

xβ+2 (m), xα+3 (m) ≡ xβ+3 (m), . . .. So, it is easy to see that the subsequence
following this 2 -tuple repeats; that is, the sequence {xn (m)} is a periodic
sequence and the length of its period must be divisible by 3. �

We next denote the length of the period of the sequence {xn (m)} by hxn (m) .
Consider the matrices

A1 =

[
ε i
1 0

]
, A2 =

[
h ε
1 0

]
and A3 =

[
i h
1 0

]
.

Suppose that G = A3A2A1. Using the above, we define the following matrix:

Mn =


G
n
3 if n ≡ 0 (mod3),

A1G
n−1
3 if n ≡ 1 (mod3),

A2A1G
n−2
3 if n ≡ 2 (mod3).

Then we get

Mn

[
1
0

]
=

[
xn+1

xn

]
.

Therefore, we immediately deduce that hxn (m) is the smallest positive integer
β such that Mβ ≡ I(mod m).

4. The Cyclic-Fibonacci Hybrid Sequence in Groups

In this subsection, we extend the concept to groups and then we examine the
periods the cyclic-Fibonacci hybrid sequences in finite groups. Additionally, for
a better understanding of the idea, we calculate the lengths of the periods of
the cyclic-Fibonacci hybrid sequences in the polyhedral groups (2, 2, 2), (2, n, 2)
and (n, 2, 2) with respect to the generating pair (x, y).

Let G be a 2-generator group and let

X = {(x1, x2) ∈ G×G | 〈{x1, x2}〉 = G} .

We call (x1, x2) a generating pair for G.
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Definition 4.1. Let G be a 2-generator group. For the generating pair (x, y),
we define the cyclic-Fibonacci hybrid orbit as follows:

an =

 (an−2)ε(an−1)h if n ≡ 0 (mod3),
(an−2)h(an−1)i if n ≡ 1 (mod3),
(an−2)i(an−1)ε if n ≡ 2 (mod3)

for n ≥ 2, with initial conditions a0 = x and a1 = y, where the following
conditions hold for every x, y ∈ G:

(i). Let q = a+ bi + cε+ dh such that a, b, c and d are integers and let e be
the identity of G, then
∗ xq = xa(mod|x|)+b(mod|x|)i+c(mod|x|)ε+d(mod|x|)h = xa(mod|x|)xb(mod|x|)ixc(mod|x|)εxd(mod|x|)h.
∗ (xu)a = (xa)u, where u ∈ {i, ε,h} and a is an integer.
∗ eq = e and x0+0i+0ε+0h = e.

(ii). Let q1 = a1 + b1i + c1ε+ d1h and q2 = a2 + b2i + c2ε+ d2h such that
a1, b1, c1, d1, a2, b2, c2, d2 are integers, then (xq1xq2)−1 = x−q2x−q1 .

(iii). If xy 6= yx, then xuyu 6= yuxu for u ∈ {i, ε,h}.
(iv). (xy)

u
= yuxu for u ∈ {i, ε,h}.

(v). (xu1yu2)
u3 = xu3u1yu3u2 for u1, u2, u3 ∈ {i, ε,h}.

(vi). For u1, u2 ∈ {i, ε,h} such that u1 6= u2, xu1yu2 = yu2xu1 , xyu1 = yu1x,
xu1y = yxu1 .

Let the notation FH(x,y) (G) denote the cyclic-Fibonacci hybrid orbit of
the group G for the generating pair (x, y). From the definition of the orbit
FH(x,y) (G) it is clear that the length of the period of this sequence in a finite
group depends on the chosen generating pair.

Theorem 4.2. Let G be a finite 2-generator group. The cyclic-Fibonacci hybrid
orbit of the sequence an is periodic and the length of its period is divisible by 3.

Proof. We take into account the sequence an the cyclic-Fibonacci hybrid orbit
of the group G. Consider the set

S =
{

(s1)
a1(mod|s1|)+b1(mod|s1|)i+c1(mod|s1|)ε+d1(mod|s1|)h ,

(s2)
a2(mod|s2|)+b2(mod|s2|)i+c2(mod|s2|)ε+d2(mod|s2|)h :

s1, s2 ∈ G and a1, a2, b1, b2, c1, c2, d1, d2 ∈ Z} .

Since the group G is finite, S is a finite set. Then for any u ≥ 0, there exists
v > u such that a2u = a2v and a2u+1 = a2v+1. If v − u ≡ 0 (mod3), then we get
a2u+2 = a2v+2, a2u+3 = a2v+3, . . .. Because of the reduplicating, for all generating
pairs, the sequence FH(x,y) (G) is periodic and the length of its period must
be divisible by 3. �

We next denote the length of the period of the orbit CFH(x,y) (G) by
LCFH(x,y) (G).
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We shall now address the lengths of the periods of the orbits CFH(x,y) ((2, 2, 2)),
CFH(x,y) ((2, n, 2)) and CFH(x,y) ((n, 2, 2)). Now we compute the polyhedral
groups (2, 2, 2), (2, n, 2) and (n, 2, 2) for the generating pair (x, y).

Theorem 4.3. The group defined by the presentation
〈
x, y | x2 = y2 = 1, (xy)2 = 1

〉
has the cyclic-Fibonacci hybrid length LCFHx,y((2, 2, 2)) = 6.

Proof. By a simple calculation, we obtain the cyclic-Fibonacci hybrid orbit of
the polyhedral (2, 2, 2) as shown:

x0 = x, x1 = y, x2 = yεxi, x3 = x−i−ε, x4 = yεx−i−ε+h,

x5 = x−1−ε, x6 = x, x7 = xi−ε−h, x8 = x1+i+ε+h, x9 = x−i+ε,

x10 = x1−i, x11 = x−1−ε, x12 = x, x13 = xi−ε−h, x14 = x1+i+ε+h,

x15 = x−i+ε, x16 = x1−i, x17 = x−1−ε, x18 = x, . . . .

Since x5 = x11 = x17 = x−1−ε and x6 = x12 = x18 = x, we get LCFHx,y((2, 2, 2)) =
6. �

Theorem 4.4. For n > 2,

LCFHx,y((2, n, 2)) = lcm (6, hxn (n)) .

Proof. We prove this by direct calculations. We first note that in the group
defined by

〈
x, y | x2 = yn = 1, (xy)2 = 1

〉
We have the sequence

x, y, yεxi, y2εxi−ε, y2+ε−2hx−i−ε+h, y2+4ε−2hx−1−ε,

y−2+8ε+2hx, y6+6ε−6hxi+ε+h, y8+14ε−8hx1+i+ε+h,

y−8+26ε+8hxi+ε, y18+22ε−18hx1+i, y26+44ε−26hx1+ε,

y−26+80ε+26hx, y54+70ε−54hxi+ε+h, y80+134ε−80hx1+i+ε+h,

y−80+242ε+80hxi+ε, y162+214ε−162hx1+i, y242+404ε−242hx1+ε,

y−242+728ε+242hx, y486+646ε−486hxi+ε+h, y728+1214ε−728hx1+i+ε+h,

y−728+2186ε+728hxi+ε, y1458+1942ε−1458hx1+i, y2186+3644ε−2186hx1+ε, · · · .
So we get the sequence with initial conditions a0 = x, a1 = y, a2 = yεxi, a3 =
y2εxi+ε and a4 = y2+ε−2hxi+ε+h as follows:

a5 = y
2+4ε−2h

x
1+ε

, a6 = y
−2+8ε+2h

x, a7 = y
6+6ε−6h

x
i+ε+h

, a8 = y
8+14ε−8h

x
1+i+ε+h

, · · · ,

a11 = y
26+44ε−26h

x
1+ε

, a12 = y
−26+80ε+26h

x, a13 = y
54+70ε−54h

x
i+ε+h

, · · · ,

a17 = y
242+404ε−242h

x
1+ε

, a18 = y
−242+728ε+242h

x, a19 = y
486+646ε−486h

x
i+ε+h

, · · · ,
· · ·

a6n+5 = y
x6n+5x

1+ε
, a6n+6 = y

x6n+6x, a6n+7 = y
x6n+7x

i+ε+h
,

a6n+8 = y
x6n+8x

1+i+ε+h
, a6n+9 = y

x6n+9x
i+ε

, a6n+10 = y
x6n+10x

1+i
.

Since the order of the element y is n and the period of the sequence {xn (n)}
is hxn (n), we obtain the period of the sequence {an} as lcm (6, hxn (n)). �

Consider the sequence
c0 = 1,
c1 = 0,
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c2 = i,
c3 = −i− ε,
c4 = −i− ε+ h,
c5 = −1− ε,
c6 = −1− 2ε− 2h,
c7 = −2− 3i− 3ε+ h,
c8 = −5− 3i− 5ε− h,
c9 = −4 + 3i− 5ε− 8h,
c10 = −9− 9i− 10ε.
...
cn = 4cn−3 − 3cn−6, where n ≥ 11.
It is easy to prove that the sequence {cn} for modulo t is periodic. Reducing
the sequence {cn} by a modulo t, then we get the repeating sequence, denoted
by

{cn (t)} = {c0 (t) , c1 (t) , . . . cu (t) , . . .} .

We denote the lengths of the period of the sequence {cn (t)} by hcn (t). We
take into consideration the generating matrix

A =


0 0 4 0 0 −3
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0

 .

By direct calculations it is easy to see that the sequence {cn} conforms to the
following pattern:

A


−9− 9i− 10ε

−4 + 3i− 5ε− 8h
−5− 3i− 5ε− h
−2− 3i− 3ε+ h
−1− 2ε− 2h

−1− ε

 =


c11
c10
c9
c8
c7
c6

 , A
2


−9− 9i− 10ε

−4 + 3i− 5ε− 8h
−5− 3i− 5ε− h
−2− 3i− 3ε+ h
−1− 2ε− 2h

−1− ε

 =


c17
c16
c15
c14
c13
c12

 , . . . .

Using the above, we define the following matrices:

An


−9− 9i− 10ε
−4 + 3i− 5ε− 8h
−5− 3i− 5ε− h
−2− 3i− 3ε+ h
−1− 2ε− 2h
−1− ε

 =


cn+10

cn+9

cn+8

cn+7

cn+6

cn+5

,

where n ≥ 0. From these equations we immediately deduce:
hcn (t) is the smallest positive integer β such that Aβ ≡ I(mod t).
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Now we give the lengths of the period of the sequence LCFHx,y((n, 2, 2))
by the aid of the above useful results.

Theorem 4.5. For n > 2, the cyclic-Fibonacci hybrid length of the polyhedral
group (n, 2, 2) is hcn (n) .

Proof. The polyhedral group (n, 2, 2) is defined by the presentation
〈
x, y | xn = y2 = 1, (xy)2 = 1

〉
,

then the cyclic-Fibonacci hybrid orbit of (n, 2, 2) is as follows:

a0 = x, a1 = y, a2 = yεxi, a3 = x−i−ε, a4 = yεx−i−ε+h,

a5 = x−1−ε, a6 = x−1−2ε−2h,

a7 = x−2−3i−3ε+h, a8 = x−5−3i−5ε−h,

a9 = x−4+3i−5ε−8h, a10 = x−9−9i−10ε,

a11 = x−17−12i−17ε−4h, a12 = x−13+12i−14ε−26h,

a13 = x−30−27i−31ε−3h, a14 = x−53−39i−53ε−13h,

a15 = x−40+39i−41ε−80h, a16 = x−93−81i−94ε−12h,

a17 = x−161−120i−161ε−40h, a18 = x−121+120i−122ε−242h,

a19 = x−282−243i−283ε−39h, a20 = x−485−363i−485ε−121h,

a21 = x−364+363i−365ε−728h, a22 = x−849−729i−850ε−120h,

a23 = x−1457−1092i−1457ε−364h, a24 = x−1093+1092i−1094ε−2186h,

a25 = x−2550−2187i−2551ε−363h,

· · ·
a3n−1 = x1−2.3

n−2− 1
2 (3

n−2−1)i+(1−2.3n−2)ε− 1
2 (3

n−2−1)h

a3n = x
1
2−

3n−1

2 +2.3n−2i+( 1
2+

3n−1

2 )ε−(1−3n−1)h

a3n+1 = x
3
2−

7
2 .3

n−2−3n−1i+( 1
2+

7
2 3
n−13n−3)ε+( 3

2−
3n−2

2 )h.

By direct calculation it is easy to see that the sequence CFHx,y((n, 2, 2))
conforms to the following pattern:

a0 = x, a1 = y, a2 = yεxi, a3 = x−i−ε, a4 = yεx−i−ε+h,

a5 = xc5 , a6 = xc6 , a7 = xc7 , a8 = xc8 , a9 = xc9 ,

a10 = xc10 , a11 = xc11 , a12 = xc12 , . . . .

Since the sequence {cn} appears as the power of x and the order of x is n,
the period of the sequence {cn (n)} with the cyclic-Fibonacci hybrid length of
group (n, 2, 2) are the same. So we have the conclusion. �

5. Conclusion

In this paper, we define the cyclic-Fibonacci hybrid sequence by considering
hybrid numbers and Fibonacci recurrence. Firstly, we study the number the-
oretic properties of the sequence defined. Further, we determine the periods
of the cyclic-Fibonacci hybrid sequence when reading modulo m by the matrix
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method. Finally, we extend the sequence stated to groups. Then we describe
the cyclic-Fibonacci hybrid orbit of a 2-generator group and investigate it in
non-abelian groups. Additionally, we obtain the lengths of the periods of cer-
tain classes of finite polyhedral groups as applications of the results produced.

As mentioned above, (2, n, 2) ∼= (n, 2, 2) and they are different presentations
of the dihedral group D2n. Our main purpose here is to show that the lengths
of the periods of the cyclic-Fibonacci hybrid orbits of two isomorphic groups
may be different.
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Karamanoğlu Mehmetbey University
Karaman, Turkey

Email address: esrakirmizi@kmu.edu.tr

Nazmiye Yılmaz

Orcid number: 0000-0002-7302-2281

Department of Mathematics
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