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Abstract In this study, a dataset comprising 20,328 body weight records from birth 

to 360 days of age was utilized to compare five growth curve models and genetic 
analysis of growth curve parameters in Iran-Black sheep. The data and genealogical 
information were collected between 1981 and 2007 from the Breeding Station of 
Abbasabad in the Khorasan Razavi province of northeast Iran. The performance of 
five statistical models including Brody, negative exponential, von Bertalanffy, Logistic, 
and Gompertz for describing the growth curve of the studied population was evaluated 
by applying the SAS software. The statistical measures used for model comparisons 
were Akaike's information criterion (AIC), root mean square error (RMSE), and 
adjusted coefficient of determination (𝑅2

𝑎𝑑𝑗). The Brody model, exhibiting the highest 

𝑅2
𝑎𝑑𝑗 and the lowest values for both AIC and RMSE, was selected as the best model 

for characterizing the growth curve in this breed. Consequently, the parameters of the 
growth curve, including parameter A (considered as weight at maturity), B (considered 
as an integration constant), and K (maturation rate) were predicted by applying the 
Brody model. To investigate the effect of maternal components on the growth curve 
parameters, nine univariate animal models, including different combinations of the 
direct additive genetic, maternal additive genetic, maternal permanent environmental, 
and maternal temporary environmental effects, were fitted. Subsequently, two 
multivariate animal models, comprising the standard (SMM) and fully recursive (FRM) 
models were analyzed by using the Bayesian inference. The FRM outperformed SMM 
in terms of lower means square error (MSE) and higher Pearson's correlation 
coefficients between the actual and predicted records (r(y, �̂�)) values, indicating better 
goodness of fit. The posterior means for heritability of A, B, and K parameters were 
low but statistically significant under SMM and FRM. It may be concluded that the 
growth trajectory traits of Iran-Black sheep are influenced mainly by non-additive 
genetic and environmental effects, emphasizing the importance of considering these 
effects for developing the corresponding breeding strategies. The Spearman's rank 
correlation coefficients between the estimated breeding values for growth curve traits 
under SMM and FRM indicated significant re-ranking of animals, favoring FRM for 
genetic evaluation in Iran-Black sheep. 
 

Keywords: causal effect, genetic parameters, goodness of fit measures, growth 
trajectory, sheep 

Introduction 
size, weaning performance, wool quality, and adaptability to   

Iran-Black sheep is the first composite breed in Iran,  challenging environmental conditions in Baluchi sheep   
synthesized to improve characteristics such as the litter  (Rashidi, 2012). The breeding program commenced in 1975,  
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and performance monitoring initiated in 1984. The 
genetic makeup of Iran-Black sheep comprises a 50% 
blend of gene pools of Baluchi and Chios sheep breeds. 
Bathaei and Leroy (1998) emphasized the importance of 
increased live body weight, commonly known as growth, 
as a crucial aspect of animal development. Growth is an 
important trait in livestock species and can be effectively 
characterized through statistical modeling (Eisen, 1976). 
This biological growth process can typically be divided 
into three distinct stages, as outlined by Waheed et al. 
(2011). In the initial stage, growth initiates from a defined 
point, with gradual increases in body weight observed. 
Subsequently, the second stage is described by a 
growth trajectory that exhibits a partially linear pattern 
until it reaches an inflection point. In the last stage, the 
growth curve reaches an asymptotic state. Monitoring 
the development of livestock species throughout their 
lifespan holds significance in formulating suitable 
feeding programs based on their body weight and 
identifying the most advantageous age for slaughter 
(Ghavi Hossein-Zadeh, 2017). Waheed et al. (2011) 
pointed out the magnitude of understanding the growth 
curve in developing farm management strategies. 
Conversely, a slow growth rate in animals may result in 
diminished market weight, subsequently influencing the 
profitability of breeding operations (Abegaz et al., 2010). 
Statistical models have garnered considerable attention 
as suitable means for addressing the growth trajectory of 
domestic species (Malhado et al., 2009). Teleken et al. 
(2017) emphasized the efficiency of these functions in 
quantifying biological parameters of growth, such as 
mature weight. Additionally, the methodologies 
employed for modeling the growth curve of farm animals 
serve as valuable instruments for enhancing production 
efficiency within livestock breeds (Vazquez et al., 2012). 
Several statistical models, including Logistic (Nelder, 
1961), negative exponential (Brown et al., 1976), 
Richards (Richards, 1959), Gompertz (Laird, 1965), 
Brody (Brody, 1945), and von Bertalanffy (von 
Bertalanffy, 1957) have been utilized to describe the 
growth curve in various livestock species. 

In biological systems, causal relationships might be 
present among traits, yet standard multivariate models 
(SMM) commonly employed for genetic assessment 
cannot cover such causal relationships. The SMM 
estimates correlations among traits without taking causal 
links into account. Structural equation models (SEM), 
introduced by Wright (1921), offer a more sophisticated 
statistical approach for investigating the causal 
relationships among phenotypes (Gianola and 
Sorensen, 2004). These models enable the exploration 
of causal relationships among traits within a multivariate 
context. 

The growth curve in several sheep breeds in Iran has 
been studied by applying different statistical models. 
Zamani et al. (2016) studied the growth curve in Moghani 
sheep via random regression models by combining B-
Spline and Legendre functions. They reported that B-
Splines had high potential for genetic evaluation of body  

 
 
weight in this breed. Other studies included model 
comparisons and genetic analysis of growth curve traits 
in various sheep breeds, such as Kermani sheep 
(Mokhtari et al., 2019), Kordi sheep (Mohammadi et al., 
2019), and Moghani sheep (Ghavi Hossein-Zadeh, 
2017) breeds, by applying SMM. However, Amou Posht-
e Masari et al. (2021) investigated causal effects among 
growth curve traits in the Lori-Bakhtiari sheep breed by 
using the fully recursive model (FRM), a type of structural 
equation model (SEM). They pointed out that 
incorporating causal effects among growth curve traits 
within the FRM framework led to improved goodness of 
fit of the model compared to SMM. Moreover, neglecting 
these causal relationships resulted in significant 
changes in the ranking of estimated breeding values for 
growth curve traits in Lori-Bakhtiari lambs. 

Hence, the main purpose of the present study was to 
infer the causal relationships among growth curve 
parameters in Iran-Black sheep using SEM. 
Furthermore, the performances of the standard 
multivariate and structural equation-based models were 
evaluated in terms of the goodness of fit measures, 
genetic parameter estimations, and the ranking of 
animals based on their breeding values.  

Materials and methods 

Flock management and data collection 

In the breeding season, which lasts from late August to 
late October, estrous ewes were identified by teaser 
rams. Annually, approximately 10-12 rams were 
randomly assigned to mate with 20-25 ewes per ram, 
with individual sire identification recorded. Maiden ewes 
were introduced to fertile rams at approximately 18 
months of age. Ewes remained within the flock for a 
maximum of 7 breeding cycles (up to 8 years of age), 
while rams were utilized for 2-3 mating seasons. 
Lambing typically took place from late January to late 
March. For this study, a dataset comprising 20,328 body 
weight records from birth to 360 days of age (10,220 
records for male lambs and 10,108 records for female 
lambs) collected between 1981 and 2007 from the 
Sheep Breeding Station of Abbasabad in the Khorasan 
Razavi province, northeastern Iran, was utilized. These 
records pertained to 5,626 offspring descended from 114 
sires and 1,359 dams. The dataset included 
measurements on body weight at birth, weaning, six 
months of age, nine months of age, and yearling age. 
The CFC program was employed to track pedigree 
information and facilitate subsequent analyses 
(Sargolzaei et al., 2006). Among the registered animals, 
those with both parents known, both parents unknown, 
and one parent known comprised 93.67%, 4.12%, and 
2.21% of all individuals, respectively. Furthermore, 
74.42% of animals had no progeny, while 25.58% had 
progeny. 

Statistical analyses 
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In the present study, the statistical analyses performed 
at three stages, included fitting non-linear growth curve 
models on body weight and age data to determine the 
best model, investigating the importance of maternal 
effects on the growth curve parameters, and performing 
multivariate analyses. 

The investigated statistical growth curve models 

Five non-linear models were fitted to the live body 
weight-age records to determine the best growth curve 
model. These models included the von Bertalanffy, 
Brody, Logistic, Gompertz, and negative exponential. 
The mathematical formulations for growth curve models 
were as follows: 

𝑦𝑡 = 𝐴 / (1 + 𝐵 𝑒−𝐾𝑡) Logistic model 

𝑦𝑡 = 𝐴 𝑒−𝐵𝑒−𝐾𝑡
 Gompertz model 

𝑦𝑡 = 𝐴 (1 − 𝐵𝑒−𝐾𝑡) Brody model 

𝑦𝑡 = 𝐴 − (𝐴𝑒−𝐾𝑡) negative exponential model 

𝑦𝑡 = 𝐴 (1 − 𝐵𝑒−𝐾𝑡)3 von Bertalanffy model 

In these equations, 𝑦𝑡 represents the body weight at 
age t (measured in days), where parameter A denotes 
the asymptotic weight, which is considered as the 
mature weight; parameter B denotes an integration 
constant associated with the initial body weight of the 
animals; parameter K represents the maturation rate, 
and e represents the base of the natural logarithm. The 
records were analyzed by using the NLIN procedure and 
the Gauss-Newton iterative method which implemented 
by SAS software (SAS, 2004). The performance of 
models for describing growth curves was assessed 
using three statistical metrics: Akaike's information 
criterion (AIC) (Akaike, 1974), root mean square error 
(RMSE), and adjusted coefficient of determination 
(𝑅2

𝑎𝑑𝑗). The AIC was computed as follows: 

𝐴𝐼𝐶 = 𝑛 log  (
𝑆𝑆𝑒

𝑛
) + 2𝑝 

The RMSE was calculated as follows: 

𝑅𝑀𝑆𝐸 =  √
𝑆𝑆𝑒

𝑛 − 𝑝 − 1
 

The 𝑅2
𝑎𝑑𝑗  was computed as follows: 

𝑅2
𝑎𝑑𝑗 = 1 − (

𝑛 − 1

𝑛 − 𝑝
 ) × (1 − 𝑅2) 

where, n represents the number of observations, p 
denotes the number of model parameters, and SSe is the 
residual sum of squares. The most suitable model 
among those tested was the one with the highest 𝑅2

𝑎𝑑𝑗 

and the lowest AIC and RMSE. 

The evaluation of maternal components of the 
growth curve traits  

The impact of maternal components on the parameters 
of the growth curve was examined. Nine univariate 
animal models, incorporating different combinations of 
direct additive genetic, maternal additive genetic, 
maternal permanent environmental, and maternal  
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temporary environmental (or litter effect, representing 
the dam within a year) effects, were applied to analyze 
the growth curve traits under investigation. The 
investigated models were as follows: 

y = Xb + Z1a + e  Model 1 
y = Xb + Z1a + Z2pe + e  Model 2 
y = Xb + Z1a + Z3m + e Cov (a,m) = 0 Model 3 
y = Xb + Z1a + Z3m + e Cov (a,m) = Aσam Model 4 
y = Xb + Z1a + Z2pe + Z4l + e  Model 5 
y = Xb + Z1a + Z2pe + Z3m + e Cov (a,m) = 0 Model 6 
y = Xb + Z1a + Z2pe + Z3m + e Cov (a,m) = Aσam Model 7 
y = Xb + Z1a + Z2pe + Z3m + Z4l+ e Cov (a,m) = 0 Model 8 
y = Xb + Z1a + Z2pe + Z3m + Z4l+ e Cov (a,m) = Aσam Model 9 

where, y denotes the vector of parameters A, B and 
K; b, a, m, pe, l, and e are the vectors of fixed, direct 
additive genetic, maternal additive genetic, maternal 
permanent environmental, maternal temporary 
environmental (litter), and the residual effects, 
respectively. The fixed effects taken into account for 
inclusion in the animal models consisted of the sex of 
lambs (males and females), dam age at lambing (2-7 
years old), birth type (single, twin, and triplet), and birth 
year (1981-2007). The generalized linear model (GLM) 
procedure was utilized to identify the statistically 
significant fixed factors to be incorporated into the animal 
models (SAS, 2004). 

The matrices of X, Z1, Z2, Z3, and Z4 are design 
matrices relating corresponding effects to vector y. It 

was assumed a ~ N (0, A𝜎𝑎
2), m ~ N (0, A𝜎𝑚

2 ), pe ~ N (0, 

𝑰𝒑𝒆𝜎𝑝𝑒
2 ), l ~ N (0, 𝑰𝒍𝜎𝑙

2) and e ~ N (0, 𝑰𝒏𝜎𝑒
2). A and σam are 

the numerator relationship matrix and covariance 
between direct additive and maternal additive genetic 
effects, respectively. Ipe, Il, and In are identity matrices of 

appropriate dimensions. Furthermore, 𝜎𝑎
2 , 𝜎𝑚

2 , 𝜎𝑝𝑒
2 , 

𝜎𝑙
2 and 𝜎𝑒

2 are direct additive genetic, maternal additive 

genetic, maternal permanent environmental, maternal 
temporary environmental (litter), and residual variances, 
respectively. The Bayesian information criterion (BIC) 
proposed by Schwarz (1978) was utilized to ascertain 
the most suitable univariate animal model and computed 
as follows: 

𝐵𝐼𝐶 =  −2 × 𝑙𝑜𝑔𝐿 + 𝑝 × log (𝑛) 

where, logL is the logarithm of likelihood, n is number 
of records, and p is number of parameters in the model. 
For each trait, the model exhibiting the lowest BIC was 
chosen as the best model. 

Genetic analyses were conducted using the 
WOMBAT software developed by Meyer (2007). The 
best univariate animal model detected for each trait was 
used in the subsequent analyses. At the last stage of the 
study, two types of multiple-trait models comprising the 
standard mixed model (SMM) and fully recursive 
multivariate (FRM) were applied. By taking the full model 
considered in the present study (model 9) into account, 
the SEM-based multivariate model is shown in matrix 
notation as: 

𝚲𝒚𝒊 = 𝑿𝒊𝒃𝒊 + 𝒁𝟏𝒊𝒂 + 𝒁𝟐𝒊 𝒑𝒆 + 𝒁𝟑𝒊𝒎 + 𝒁𝟒𝒊𝒍 + 𝒆𝒊      Cov (a,m) = 
Aσam 
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The Λ matrix represents the structural coefficients, 
where the diagonal elements are set to 1 and the off-
diagonal elements are determined based on the cause-
and-effect relationships among the traits. These 
structural coefficients are types of regression coefficients 
and estimated using SEM as described by Gianola and 
Sorensen (2004). Considering three traits, the matrix of 
structural coefficients under the FRM was formulated as 
follows: 

Λ =  [

1 0 0
−𝛌𝟐𝟏 1 0
−𝛌𝟑𝟏 −𝛌𝟑𝟐 1

] 

In this context, the first trait causally affects the 
second and third traits, while the second trait causally 
influences the third trait. The causal structure, depicted 
in this study, is illustrated in Figure 1. 

Figure 1.  Multivariate fully recursive model considered among 

the studied growth curve traits in Iran-Black sheep (Parameter 
A: Asymptotic weight, which is considered as mature weight, 
Parameter B: An integration constant related to initial animal 
weight, Parameter K: Maturation rate). Each Arrow shows the 
direction of the causal effect. 

At the likelihood level, SEM faces issues with 
identifiability because of additional parameters such as 
structural coefficients. To attain identification, it was 
assumed that residual correlations within the system 
were uncorrelated. In other words, the variance-
covariance matrix of residuals (R) in SEM was supposed 
to be a diagonal matrix. Moreover, a multivariate normal 
distribution with a null mean vector and (co)variance 
matrix R ⊗ In was supposed for residual effects, in which 
In is an identity matrix and R is the residual (co)variance 

matrix, ⊗ representing the Kronecker product.  
Multivariate analyses were done by applying the 
Bayesian approach via the GIBBS2F90 software 
(Misztal et al., 2002). The adequacy of the chain length 
and the burn-in period was assessed through visual 
examinations of trace plots generated from posterior 
samples of the parameters. In each multivariate model 
200,000 iterations were executed, and the posterior  

 
 
samples from each chain were thinned at intervals of 20 
iterations. The initial 20,000 iteration samples were 
discarded as burn-in. Subsequently, the computation of 
posterior means and posterior standard deviations 
(PSD) of (co)variance components for each growth 
curve trait was done by using the POSTGIBBSF90 
software developed by Misztal et al. (2002). 

Lopez de Maturana et al. (2007) demonstrated that 
the SEM-based models are executed by fitting the parent 
trait as a covariate for another trait while genetic 
correlations between traits are included in multiple trait 
analyses. By considering two traits, parent trait is a trait 
which causally affect other trait. In the current 
investigation for fitting FRM, this method was used.  

Statistical measures for model comparisons 

The SMM and FRM were assessed via two statistical 
criteria: the mean square of error of prediction (MSE) and 
Pearson's correlation coefficient between the observed 
and predicted values of growth curve traits (r(y,ŷ)), were 
computed through the PREDICTF90 software developed 
by Misztal et al. (2002). The model with lower MSE and 

higher r(y,ŷ) would be deemed the superior model. 

System parameters 

The parameters derived through SEM, termed system 
parameters, possess a distinct interpretation compared 
to their counterparts estimated under SMM, as outlined 
by Gianola and Sorensen (2004). Consequently, 
additional transformations are required to facilitate 
comparison between the parameters estimated under 
SEM and SMM, utilizing the following formulas provided 
by Gianola and Sorensen (2004): 

𝐆∗ =  𝚲−1𝐆𝚲′−1 

𝐌∗ =  𝚲−1𝐌𝚲′−1 

𝐏𝐄∗ =  𝚲−1𝐏𝐄𝚲′−1 

𝐋∗ =  𝚲−1𝐋𝚲′−1 

𝐑∗ =  𝚲−1𝐑𝚲′−1  

and  𝐏∗ =  𝚲−1𝐏𝚲′−1 .     

The matrices G*, M*, PE*, L*, R*, and P* are the SMM-
equivalent of (co)variance matrices for direct additive 
genetic, maternal additive genetic, maternal permanent 
environmental, maternal temporary environmental 
(litter), residual, and phenotypic effects which were 
estimated under FRM, respectively. R* is a matrix with 
non-zero off-diagonal elements.  

The influence of causal effects on the ranking of 
animals based on EBVs 

The impact of models (SMM and FRM) on the ranking of 
animals according to estimated additive breeding values 
was measured by employing the Spearman's rank  
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correlations between the posterior means of the 
estimated breeding values for all animals, as well as for 
subsets consisting of the top 50%, top 10%, and top 1% 
ranked animals. The estimated breeding values obtained 
under FRM, were adjusted to align with those of the 
SMM using the formula provided by Konig et al. (2008): 

𝐁𝐕∗ =  𝚲−𝟏 𝐁𝐕 

where, BV is the vector of estimated breeding values 
under SEM.  
 
Results 
  
Statistical comparisons of the growth curve models 
 
The findings of model comparisons for the growth curve 
modeling in Iran-Black lambs using the applied statistical 
models are shown in Table 1. According to the AIC,  
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RMSE, and 𝑅2
𝑎𝑑𝑗  values, the Brody model was identified 

as the most suitable model for describing the growth 
curve in Iran-Black lambs. Conversely, the Gompertz 
model exhibited the highest AIC and RMSE values, 
along with the lowest 𝑅2

𝑎𝑑𝑗  compared to other models, 

indicating its lower efficacy in characterizing the growth 
curve of Iran-Black lambs compared with other models. 
Figure 2 displays the actual and predicted average body 
weights from birth to 360 days of age, achieved through 
fitting the Brody model. The trend indicates a steady 
increase in body weight with age. A Pearson's 
correlation coefficient of 0.99 (P<0.01) was obtained 
between the actual and predicted body weights from 
birth to 360 days of age. Table 1 shows the estimates of 
the model parameters for the growth curve under the 
various models. In Brody model, the estimated values for 
growth trajectory parameters were 42.09 kg, 0.91, and 
0.006 for A, B, and K parameters, respectively. 

Table 1. Comparative statistics for goodness of fit measures and estimates of model parameters (± standard error) of 

the growth curve across the tested growth curves in Iran-Black sheep 

Model Comparative measures ¥ Model parameters ¥¥ 

AIC RMSE 𝑅2
𝑎𝑑𝑗 Parameter A Parameter B Parameter K 

Brody 124365.491   5.15741 0.8625 42.09±0.18 0.91±0.002 0.006±0.0001 
Negative 
exponential 

124709.301 5.20121 0.8601 40.23±0.14 - 0.007±0.0001 

von 
Bertalanffy 

125044.328 5.24426 0.8578 38.63±0.11 0.53±0.003 0.010±0.0001 

Gompertz 140966.202 7.75871 0.6887 NC NC NC 
Logistic 140772.123 7.72175 0.6917 NC NC NC 

¥AIC: Akaike's information criterion, RMSE: Root mean square error, R2 adj: Adjusted coefficient of determination 
¥¥ Parameter A: Asymptotic weight, which is considered as mature weight, Parameter B: An integration constant related 
to initial animal weight, Parameter K: Maturation rate. 
NC: Not converged 

Figure 2. Real and predicted average body weights (kg) of the Iran-Black sheep at different ages by 

applying the Brody model. 
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The effects of fixed factors on the growth curve 
traits 
 
Table 2 displays the descriptive statistics for the growth 
trajectory characteristics derived from fitting the Brody 
model. The coefficient of variation ranged from 29% 
(parameter B) to 70.15% (parameter K). 

Additionally, Table 3 illustrates the least squares 
means of the growth curve traits across the various 
levels of the fixed effects under consideration. The birth 
year of lamb had significant influences on all the 
examined growth curve parameters (P<0.01). The sex of 
lamb exerted a significant influence on all the analyzed  
 
 

 
 
growth curve parameters (P<0.01), with male lambs 
exhibiting superiority in parameters A, B, and K 
compared to female lambs. The birth type exhibited a 
significant influence on all the examined growth curve 
traits (P<0.01). Single-born lambs displayed higher 
parameter A values compared to twins and triplets. In 
contrast, twins had higher parameter A values than 
triplet-born lambs (P<0.01), with no statistically 
significant difference observed between twins and 
triplets (P>0.05). Dam age significantly influenced 
parameters A and B (P<0.05) but not parameter K (P> 
0.05). Lambs born from ewes older than 2-year-old 
exhibited significantly higher estimated mature weights 
than those born from 2-year-old ewes.  
 

Table 2. Descriptive statistics for the studied growth curve traits in Iran-Black sheep 

Item ¥ Traits ¥¥ 

Parameter A Parameter B Parameter K  

No. of records 5096 5096 5096 
Mean 41.53 0.91 0.0067 
S.D. 13.04 0.03 0.0047 
C.V. (%) 31.39 3.29 70.15 
Min. 10.79 0.66 0.001 
Max. 99.12 0.99 0.088 

¥ S.D.: standard deviation, C.V.: coefficient of variation, Min.: minimum value, Max.: maximum value 
¥¥ Parameter A: Asymptotic weight, which is considered as mature weight, Parameter B: An integration constant 
related to initial animal weight, Parameter K: Maturation rate. 

Table 3. Least squares means (± standard error) for the studied growth curve traits in Iran-Black sheep 

Effect No. of lambs per 
sub-level 

Traits¥ 

Parameter A Parameter B Parameter K 

Sex - ** ** ** 
Male 2573 43.78±0.59 a 0.913±0.001 a 0.0067±0.002 a 
Female 2523 38.96±0.58 b 0.909±0.001 b 0.0063±0.002 b 
Birth type - ** ** ** 
Single 1600 43.46±0.61 a 0.900±0.001 c 0.0077±0.0002 a 
Twin 2925 41.77±0.57 b 0.912±0.001 b 0.0061±0.0002 b 
Triplet 571 38.84±0.73 c 0.921±0.001 a 0.0058±0.0003 b 
Dam age (yr) - ** ** ns 

2 1586 39.75±0.60 b 0.917±0.001 a 0.0062±0.0002 a 
3 1319 41.54±0.62 a 0.913±0.001 b 0.0066±0.0002 a 
4 1002 42.06±0.64 a 0.912±0.001 b c 0.0065±0.0002 a 
5 609 41.65±0.71 a 0.910±0.001 c 0.0067±0.0003 a 
6 372 41.99±0.81 a 0.908±0.002 c 0.0064±0.0003 a 
7 208 41.23±0.99 a 0.908±0.002 c 0.0068±0.0004 a 

Birth year - ** ** ** 
¥ Parameter A: Asymptotic weight, which is considered as mature weight, Parameter B: An integration constant related to initial 
animal weight, Parameter K: Maturation rate. 
Within column in each subclass, means with common superscript(s) do not differ (P>0.05, ns: not significant, ** P<0.01). 
 

The importance of maternal effects 
 
Table 4 displays the BIC values obtained by fitting nine 
univariate animal models for each trait. The model 
including the direct additive genetic, maternal permanent 
environmental, and maternal temporary environmental 
(litter) effects (model 5) was detected as the best model 
for genetic analysis of parameters A and B. Conversely, 
the model featuring only the direct additive genetic 
effects (model 1) was determined as the best model for 
genetic analysis of parameter K.  
 

The goodness of fit of the SMM and FRM 

 
Table 5 shows the performance of SMM and FRM in 
terms of MSE and r(y, �̂�) for each trait. For all traits, FRM 
exhibited lower MSE and higher r(y, �̂�) values compared 
to SMM and therefore, was superior to SMM for genetic 
analysis of growth curve traits. Thus, the causal structure 
adopted in FRM (Fig. 1) appears suitable for depicting 
the causal relationships among the growth curve traits. 

Structural coefficients 

Table 6 presents the posterior means for the structural 
coefficients among growth curve traits, estimated  
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through the application of FRM, along with their 
corresponding 99% highest posterior density intervals 
(HPD). Notably, all estimated structural coefficients were 
statistically significant, with 99% of HPD intervals 
excluding zero. Specifically, the coefficients associated  

Growth curve modeling in Iran-Black sheep 

with the causal effects of parameter B on parameters K 
and A were determined as -0.592 and 2.829, 
respectively. Additionally, the causal effect of parameter 
K on parameter A was estimated at -0.569.  
 

 
Table 4. The BIC values for growth curve traits in Iran-Black sheep under different models 

Model Traits ¥ 

Parameter A Parameter B Parameter K 

Model 1 30378.32 14544.28 20333.76 

Model 2 30348.4 14501.95 20340.22 
Model 3 30356.02 14525.69 20341.73 
Model 4 30363.72 14532.16 20348.05 
Model 5 30318.85 14474.08 20348.11 
Model 6 30356.03 14509.6 20348.75 
Model 7 30362.01 14515.24 20355.87 
Model 8 30326.4 14481.91 20356.64 
Model 9 30332.98 14487.97 20363.76 

 ¥ Parameter A: Asymptotic weight, which is considered as mature weight, Parameter B: An integration 
constant related to initial animal weight, Parameter K: Maturation rate. 
The best model is shown in boldface. 

Table 5. The goodness of fit measures for the studied traits under two multivariate models 

Traits ¥ Model ¥¥ 

SMM FRM 
¥¥¥ MSE ¥¥¥ r(y,�̂�) ¥¥¥ MSE ¥¥¥ r(y,�̂�) 

Parameter A 97.34 0.68 ** 30.56 0.91 ** 
Parameter B 4.15 0.71 ** 3.34 0.71 ** 
Parameter K 18.01 0.46 ** 4.93 0.67 ** 

¥ Parameter A: Asymptotic weight, which is considered as mature weight, Parameter B: An integration constant related to 
initial animal weight, Parameter K: Maturation rate. 
¥¥ SMM: Standard multivariate model, FRM: Fully recursive multivariate model 
¥¥¥ MSE: mean square error, r(y,�̂�)= Pearson's correlation between observed and predicted values 

 
Table 6. Posterior means ± posterior standard deviation (PSD) for the structural coefficients under FRM 

Causal effect from Mean ± PSD ¥¥ 99% HPD interval ¥¥ 

 Parameter B to Parameter K -0.592±0.077 -0.790 to -0.394 
Parameter B to Parameter A 2.829±0.708 1.006 to 4.652 
Parameter K to Parameter A -0.569±0.055 -0.711 to -0.427 

¥ Parameter A: Asymptotic weight, which is considered as mature weight, Parameter B: An integration constant related 
to initial animal weight, Parameter K: Maturation rate. 
¥¥  PSD: Posterior Standard Deviation, 99% HPD intervals did not include zero. 

 

Posterior means of genetic parameters 
 
Heritabilities  
 
The posterior means ± standard deviations (PSD) of 
heritabilities for the growth curve parameters are shown 
in Table 7. When employing FRM, the posterior means 
for heritabilities were estimated at 0.17, 0.10, and 0.06 
for parameters A, B, and K, respectively. Conversely, 
under SMM, the posterior means for heritabilities of 
parameters A, B, and K were 0.08, 0.06, and 0.07, 
respectively. It is noteworthy that the posterior means for 
heritabilities of the growth curve parameters under both 
SMM and FRM were statistically significant (95% of HPD 
intervals did not include zero). However, the differences 
between posterior means of the direct heritability 
estimates of the studied growth curve traits under both 
SMM and FRM were not statistically significant, with 
95% of HPD intervals overlapping.  
 

Posterior means for the ratio of the permanent 
maternal environmental variance to the phenotypic 
variance (𝑝𝑒2) for parameters A and B were 0.04 and 
0.06 (under SMM) and 0.13 and 0.06 (under FRM), 

respectively. Posterior means of 𝑝𝑒2  estimates for 
parameters A and B were statistically significant (95% of 
HPD intervals did not include zero). However, there were 

no statistically significant differences between 𝑝𝑒2 
estimates for parameters A and B under SMM and FRM 
(95% of HPD intervals overlapped). Posterior means for 
the ratio of the maternal temporary environmental 

variance to the phenotypic variance (𝑙2) for parameters 
A and B were 0.09 and 0.10 (under SMM) and 0.15 and 

0.15 (under FRM), respectively. Posterior means of 𝑙2 
estimates for parameters A and B were statistically 
significant (95% of HPD intervals did not include zero). 
However, there were no significant differences between 

𝑙2 estimates for parameters A and B under SMM and 
FRM (95% of HPD intervals overlapped). 
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Correlation estimates 
 
The features of posterior means ± PSD for genetic, 
phenotypic, and environmental correlations among the 
growth curve parameters are shown in Table 8. The 
posterior means of genetic correlations for growth curve 
parameters varied from -0.65 for B-K to 0.53 for A-B 
under SMM and from -0.30 for A-K to 0.43 for A-B under 
FRM. The phenotypic correlation estimates were 
statistically significant, with 95% of the highest posterior 
density (HPD) intervals not including zero. Under the 
SMM, these estimates ranged from -0.36 between 
parameters A and K to 0.65 between parameters A and 
B. Meanwhile, under the FRM, the estimates were from  
 
 

 
 
-0.43 between parameters A and K to 0.26 between 
parameters A and B. In the context of the SMM, the 
posterior means of the residual correlations among the 
examined traits spanned from -0.41 (for A-K) to 0.74 (for 
A-B). Conversely, in the FRM, the corresponding 
estimates ranged from -0.68 (for K-A) to 0.43 (for A-B).  

 
Influence of SMM and FRM on the ranking of 
animals based on EBVs 
 
Generally, a descending pattern was evident in the 
Spearman’s rank correlations between the breeding 
values under SMM and FRM for all selected categories, 
ranging from all animals to the top 1% ranked individuals 
(Table 9). 
 

Table 7. Posterior means ± posterior standard deviation (PSD) for the direct heritability(ℎ2), the ratio of permanent 

maternal (𝑝𝑒2) and/or temporary maternal (𝑙2) environmental variance to phenotypic variance estimates for the studied 
growth curve traits in Iran-Black sheep under SMM and FRM models 

Traits SMM FRM 

ℎ2±PSD 𝑝𝑒2±PSD 𝑙2±PSD ℎ2±PSD 𝑝𝑒2±PSD 𝑙2±PSD 

Parameter A 0.08±0.03 0.04±0.01 0.09±0.02 0.17±0.07 0.13±0.04 0.15±0.02 
Parameter B 0.06±0.02 0.06±0.01 0.10±0.02 0.10±0.02 0.06±0.01 0.15±0.02 
Parameter K 0.07±0.02 - - 0.06±0.03 - - 

¥ Parameter A: Asymptotic weight, which is considered as mature weight, Parameter B: An integration constant related to initial animal 
weight, Parameter K: Maturation rate. 
¥¥  PSD: Posterior Standard Deviation, 99% HPD intervals did not include zero. 

 
Table 8. Posterior means ± posterior standard deviation (PSD) for the genetic correlation (rg), phenotypic correlation (rp), 

and residual correlation (re) among the studied growth curve traits in Iran-Black sheep under SMM and FRM models 

Pair traits¥ SMM FRM 

rg±PSD rp±PSD re±PSD rg±PSD rp±PSD re±PSD 

Parameter A- 
Parameter B 

0.53±0.21 0.65±0.01 0.74±0.01 0.43±0.19 0.26±0.08 0.43±0.08 

Parameter A- 
Parameter K 

-0.19±0.25 -0.36±0.01 -0.41±0.02 -0.30±0.04 -0.43±0.12 -0.68±0.07 

Parameter B- 
Parameter K 

-0.65±0.17 -0.29±0.01 -0.29±0.02 -0.29±0.07 -0.22±0.04 -0.32±0.04 

¥ Parameter A: Asymptotic weight, which is considered as mature weight, Parameter B: An integration constant related to initial animal 
weight, Parameter K: Maturation rate. 
¥¥  PSD: Posterior Standard Deviation, 99% HPD intervals did not include zero. 

 
Table 9. Spearman's rank correlations of posterior means of direct genetic effects for studied growth traits in Iran-

Black sheep under SMM and FRM models 

Traits ¥ All animals 50% top-ranked 10% top-ranked 1% top-ranked 

Parameter A 0.729 ** 0.665 ** 0.585 ** 0.432 ** 
Parameter B 0.977 ** 0.978 ** 0.969 ** 0.928 ** 
Parameter K 0.676 ** 0.249 ** 0.194 * 0.122 * 

¥ Parameter A: Asymptotic weight, which is considered as mature weight, Parameter B: An integration constant related to initial 
animal weight, Parameter K: Maturation rate. 
* P <0.05,  ** P <0.01.  

 

Discussion 
 
Variability in the efficacy of different growth curve models 
in describing body weight changes over time is 
documented in the literature. Ahmadpanah et al. (2023) 
assessed five non-linear models including Brody, 
Gompertz, Logistic, von Bertalanffy, and Richards to 
characterize the growth curve in Kurdi sheep and 
concluded that the Brody model was the most suitable 
for delineating body weight changes. Similarly, Amou  

 
Posht-e Masari et al. (2021) applied five statistical 
models, including Brody, Logistic, negative exponential, 
Gompertz, and von Bertalanffy to body weight-age 
records of Lori-Bakhtiari lambs with Brody model 
exhibiting the best performance among the tested 
models. Ghavi Hossein-Zadeh (2015b) compared six 
non-linear models, including Logistic, Brody, negative 
exponential, Gompertz, Richards, and von Bertalanffy on 
body weights of Shall sheep and determined that the 
Richards model was the most effective for characterizing  
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the growth curve in this breed. Parameter A is commonly 
interpreted as asymptotic mature weight. The asymptotic 
limit of each model, as age approaches infinity, does not 
approximate the heaviest weight attained by the animal. 
It is an asymptotic mean weight (Brown et al., 1976). 

However, Malhado et al. (2009) highlighted the 
challenge of defining an optimal mature weight, as it 
varies depending on factors such as species, breed, and 
management practices. Using the Brody model, 
parameter A values were reported as 23.69, 43.37, and 
64.84 in Kermani (Mokhtari et al., 2019), Kordi 
(Mohammadi et al., 2019), and Lori-Bakhtiari sheep 
breeds (Amou Posht-e Masari et al., 2021), respectively. 

According to Malhado et al. (2009), parameter B 
lacks a specific biological interpretation and is 
considered an integration constant. The estimated value 
for parameter B in the current investigation (0.91) aligns 
with values obtained by previous studies. Mokhtari et al. 
(2019) reported a value of 0.877 in the Kermani breed 
under the Brody model, Mohammadi et al. (2019) found 
0.905 in the Kordi sheep breed under the Brody model, 
and Amou Posht-e Masari et al. (2021) reported 0.93 in 
Lori-Bakhtiari sheep under the Brody model. 

According to Lupi et al. (2016), animals with K values 
tend to reach maturity weight at a faster rate. The 
estimated K value in the current investigation (0.006) is 
consistent with values reported by Amou Posht-e Masari 
et al. (2021) in Lori-Bakhtiari sheep (0.005) and by 
Mohammadi et al. (2019) in Kordi sheep (0.007) breeds 
under the Brody model. However, higher estimates were 
obtained by Mokhtari et al. (2019) in the Kermani sheep 
breed under the Brody model (0.019). 

The significant effects of birth year on the studied 
growth curve traits are potentially attributed to 
differences in climatic conditions and managerial 
practices across different years (Gbangboche et al., 
2008). This observation aligns with previous findings 
indicating the significant impact of lamb birth year on 
growth curve traits in breeds such as Moghani (Rashedi 
Dehsahraei et al., 2023) and Kermani (Mokhtari et al., 
2019) sheep. Consistent with our findings, Rashedi 
Dehsahraei et al. (2023) reported significant effects of 
lamb sex on Moghani growth curve parameters A, B, and 
K, with male lambs demonstrating superiority over 
females, as found in the the present study. Similarly, 
Mokhtari et al. (2019) observed the superiority of male 
Kermani lambs over females in parameters A and K, 
while no significant difference was found between male 
and female Kermani lambs for parameter B. In the 
present study, the highest and lowest values for 
parameter B were observed in triplet and single-born 
lambs, respectively. In contrast, Mokhtari et al. (2019) 
reported that birth type did not have a significant effect 
on the growth curve parameters in Kermani lambs. 

The significant effects of dam age on the parameters 
A and B aligns with the notion highlighted by 
Gbongbache et al. (2008) that the maternal ability of 
ewes becomes more pronounced with age. London and 
Weniger (1995) also noted that first-parity ewes are still  
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in a growing phase, and there exists competition 
between dams and fetuses for nutrient consumption. 
Additionally, Mokhtari et al. (2019) reported that Kermani 
lambs born to 3-, 4-, and 5-year-old ewes had 
significantly higher estimated mature weights than those 
born to 2- and 6-year-old dams. 

In the present study, maternal effects were important 
for genetic analysis of parameters A and B, which 
necessitate including these effects in models used for 
estimating (co)variance components for these 
parameters. This finding contrasts with previous reports 
indicating no significant influences of maternal effects on 
the growth curve traits of Shall (Ghavi Hossein-Zadeh, 
2015a) and Lori-Bakhtiari (Amou Posht-e Masari et al., 
2021) sheep breeds. 

Model comparison by applying the MSE and r(y, �̂�) 
revealed the importance of considering causal 
relationships among the studied growth curve 
parameters into account for multivariate genetic analysis 
of these parameters in Iran-Black sheep. Superiority of 
FRM over SMM for genetic analysis of growth curve 
parameters in the Lori-Bakhtiari sheep breed was also 
pointed out by Amou Posht-e Masari et al. (2021). 

The structural coefficient of parameter B on 
parameter K suggests that an increase in the parameter 
B value would correspond to a 0.592 unit decrease in the 
maturation rate (parameter K). While the positive 
structural coefficient of parameter B on parameter A 
shows that an increase in parameter B would correspond 
to a 2.829 kg increase in the estimated mature weight 
(parameter A). The negative causal effect of parameter 
K on parameter A indicates that each one-unit increase 
in parameter K would result in a decrease of parameter 
A in Iran-Black sheep by -0.569 kg. As shown in Figure 
1, parameter B caused an indirect causal effect on 
parameter A, mediated via parameter K. Therefore, the 
overall causal effects of parameter B on parameter A are 
equal to the summation of direct (2.829) and indirect 
causal effects mediated via parameter K [(-0.592) × (-
0.569) = 0.337)] which is equal to 3.166; i.e., 3.166 kg 
increase in parameter A will be expected as a result of 
one kg increase in parameter B. 

Consequently, lambs with a higher maturation rate 
would mature in a shorter period and consequently 
exhibit a lower estimated mature weight (Abegaz et al., 
2010). In a similar vein, Amou Posht-e Masari et al. 
(2021) inferred causal relationships among the growth 
curve parameters of the Lori-Bakhtiari sheep breed 
using FRM, estimating causal effects of parameter B on 
parameter K, from parameter B on parameter A, and 
from parameter K on parameter A as -0.073, 10.319, and 
-0.601, respectively. 

By comparing the direct heritability estimates of the 
growth curve parameters under SMM and FRM, it can 
be concluded that possible causal relationships among 
the investigated growth curve parameters did not 
significantly affect the posterior means of direct 
heritability estimates in Iran-Black sheep. Similar 
findings were reported by Amou Posht-e Masari et al. 
(2021) in Lori-Bakhtiari sheep. In addition, Mokhtari et al.  
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(2019) reported direct heritability estimates of 0.10, 0.03, 
and 0.04 for parameters A, B, and K, respectively, in 
Kermani sheep. Ghavi Hossein-Zadeh (2017) reported 
heritability estimates of 0.2, 0.2, and 0.3 for A, B, and K 
parameters in Iranian Moghani sheep under a Bayesian 
approach, respectively, which were higher than the 
corresponding estimated values in the current 
investigation. Ghavi Hossein-Zadeh (2015a) estimated 
heritability values of 0.13, 0.15, and 0.19 for parameters 
A, B, and K in Shall sheep, respectively. 

The relatively low direct heritability estimates may be 
attributed to the substantial influence of non-additive 
genetic factors and/or environmental variations. 
Consequently, enhancing these parameters might 
require improvements in environmental conditions 
alongside direct genetic selection based on the 
estimated breeding values, not phenotypic values. It is 
widely recognized that factors such as breed 
characteristics, genetic diversity within the population, 
and the methodologies employed for parameter 
estimation can influence the heritability estimates for 
growth curve parameters (Ghavi Hossein-Zadeh, 2017). 
In a study by Rashedi Dehsahraei et al. (2023) on growth 
curve parameters in Moghani sheep, differences were 
observed between REML and Bayesian genetic 
parameter estimates for the studied traits, highlighting 
the impact of methodological approaches on parameter 
estimation. In line with current findings, Ghavi 
Hosseinzadeh (2017) reported low estimates of 0.07 for 

both 𝑝𝑒2 of parameters A and B in Moghani sheep. 
The estimated posterior means of the direct genetic 

correlations between parameters A and B were 0.53 
under SMM and 0.43 under FRM. Consequently, an 
increase in the initial body weight may correspond to an 
increase in weight at maturity, which in turn entails 
additional feed particularly when the cost of 
supplementary feeding constitutes a significant portion 
of the total costs, as observed in Iranian sheep flocks 
(Bathaei and Leroy, 1998). In such scenarios, selection 
criteria may prioritize animals with more rapid growth 
rates at an early age and/or those that mature earlier. 
Bathaei and Leroy (1998) pointed out that a faster growth 
rate enhances the proportion of feed utilized for tissue 
synthesis and reduces the overall input per unit of body 
weight gain. 

The primary biological genetic correlation among the 
growth curve parameters, as highlighted by Ghavi 
Hosseni-Zadeh (2015a), exists between Parameters A 
and K. In the current investigation, negative genetic 
correlations between these parameters were estimated 
under both SMM (-0.19) and FRM (-0.30). The estimated 
value under SMM was not statistically significant, with 
95% of HPD intervals including zero. In contrast, the 
estimate under FRM was statistically significant (95% of 
HPD intervals did not include zero). This negative 
genetic correlation suggests that animals with higher 
adult weights generally exhibit lower growth rates 
compared to those with lower adult weights, as observed 
by da Silva et al. (2012). Notably, the direct genetic  

 

correlation estimated between parameters A and K 
under SMM was not statistically significant, with 95% of 
HPD intervals including zero, whereas the 
corresponding estimate under FRM was statistically 
significant, with 95% of HPD intervals not including zero. 

In this study, the posterior means for genetic 
correlations between parameters B and K were -0.65 
(under SMM) and -0.29 (under FRM), both of which were 
statistically significant (95% of HPD intervals did not 
include zero). However, there was no significant 
difference between correlations, as evidenced by the 
95% HPD intervals overlapping. Amou Posht-e Masari et 
al. (2021) reported a negative value of -0.97 for the direct 
genetic correlation between parameters B and K in the 
Lori-Bakhtiari sheep breed under a FRM. 

The positive phenotypic correlation estimates 
between parameters A and B suggest that an increase 
in the initial body weight of lambs may lead to an 
increase in the mature live weight. Amou Posht-e Masari 
et al. (2021) documented positive and substantial 
estimates of 0.79 and 0.99 between the phenotypic 
parameters A and B in the Lori-Bakhtiari sheep breed 
under SMM and FRM, respectively. They also observed 
negative and statistically significant (95% HPD intervals 
not including zero) phenotypic correlation estimates for 
parameters A-K (-0.36 and -0.43) and B-K (-0.29 and -
0.22) under both SMM and FRM, with no statistically 
significant difference between the two models (95% HPD 
intervals overlapped). Additionally, Amou Posht-e 
Masari et al. (2021) reported higher negative estimates 
of -0.72 (under SMM) and -0.97 (under FRM) for 
phenotypic correlations between parameters A and K in 
Lori-Bakhtiari sheep compared to the corresponding 
estimates in the present study. They also found high 
negative values of -0.62 (under SMM) and -0.94 (under 
FRM) for phenotypic correlation between parameters B 
and K in Lori-Bakhtiari sheep. The negative residual 
correlation observed between parameters A and K 
suggests that enhancing the environmental conditions 
for early maturity may not positively impacts on the 
mature weight of the Iran-Black sheep breed. 

Investigating the outcomes of SMM and FRM on the 
ranking of EBVs of animals revealed that it is essential 
to account for causal relationships among growth curve 
parameters in the genetic evaluation of Iran-Black 
sheep. Failure to consider these relationships may result 
in inaccuracies in ranking the animals, particularly those 
of superior quality. Notably, in the current study, as 
depicted in Figure 1, parameter B is regarded as a parent 
trait, leading to the least alteration in animal rankings 
when utilizing both SMM and FRM. Conversely, 
significant changes in animal rankings were observed for 
parameters A and K, underscoring the crucial role of 
employing appropriate models for selecting superior 
animals to maximize genetic progress in the genetic 
evaluation of growth curve parameters in the Iran-Black 
sheep breed. This observation aligns with the findings by 
Amou Posht-e Masari et al. (2021) in the Lori-Bakhtiari 
sheep breed. 
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Conclusion 

It was concluded that the Brody model can be a suitable 
statistical tool for predicting the live weight of Iran-Black 
sheep breed from birth up to 360 days of age. Studying 
the causal links between growth curve parameters in the 
genetic evaluation of growth curve parameters in Iran-
Black sheep by using the FRM led to a higher level of 
goodness of fit compared to the SMM. Substantial 
reductions in the levels of additive genetic variation were 
observed across all growth curve parameters analyzed, 
likely stemming from heightened phenotypic variance 
due to significant non-additive genetic influences and 
environmental factors. For achieving a desirable growth 
curve shape and developing an effective breeding plan 
for this breed, emphasis should be placed on improving 
the environmental conditions that impact growth curve 
parameters. Analyses of Spearman's rank correlations 
between the posterior means of estimated breeding 
values for growth curve parameters demonstrated that 
integrating the causal relationships among these 
parameters in the model could significantly alter the 
rankings of these animals. 
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