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ABSTRACT. Egyptians of the predynastic era had a good decimal num-
ber system for counting and addition. Although, up to some times, they
had problem in counting beyond a million, by the dawn of their history,
Narmer, the founder of the first Egyptian dynasty had accountants that
could record 400,000 cows and 1,422,000 goats of a war booty. Except
for some ambiguities in the case of Mayan number system, specialists in
the history of mathematics can guess that how the counting system of
the various civilizations evolved into one of the number systems in base
10, 20, 60, etc. There is a puzzle in the mixture of the Egyptian decimal
and binary number systems which we are going to discuss and present a
justification for it. The novelty of the present paper is the study of the
evolution of the binary number system from the predynastic Egypt down
to the Leibniz era who, by the benefit of Khwarazmi’s ”Indian Arith-
metics,” completed this evolution by representing integers in 0 — 1 forms
and performing the hybrid decimal/binary Egyptian arithmetic opera-
tions purely inside the 0 — 1 system. The second author is pleased to
dedicate his share of this paper to Esfandiar Eslami showing his love and
appreciation for decades of his friendship and collaboration (since 1967)
and, of course, the young coauthor joins the joy of this dedication to her
former professor.
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1. Introduction

The paper is more than a dedication; we have redirected our paper to fit the
mathematical topic which are favoured by Professor Eslami. Before choosing
the course, we searched for his general interests and found the following three
important books authored or coauthored by him:

(A) (With J.J. Buckley) An Introduction to Fuzzy logic and Fuzzy Set

Theory; Springer-Verlag, Berlin, Heidelberg GmbH, 2002.
(B) (With J.J. Buckley and T. Feuring) Fuzzy Mathematics in Economics
and Engineering; Springer-Verlag, Berlin, Heidelberg GmbH, 2002.
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(C) Fuzzy Logic and its applications; Sh.B. University of Kerman, 2013/2014
(in Persian).

His earlier researches (including the Ph.D. program 1977-1981) were originally
in classical, non-classical, and algebraic logic gradually switching to Fuzzy logic
and its applications to computer sciences. It looked somehow disappointing!
We wanted to dedicate a paper related to Esfandiar’s interest and did not see
that courage to go beyond the classic 0-1 systems. So, to be able to join his fans,
we concretely asked him if he is still fond of binary logic, and he reasonably
answered back the following;:

"First, a logic is a discipline in which we communicate, express ideas, and
evaluate arguments. We may call it the science of reasoning. One part of a logic
is its semantics that evaluates the statements. A logic in which every statement
is either false (0) or true (1) together with special axioms and rules of inference
is called the classical two valued logic. If at least one of its postulates is failed,
it is called a non-classical logic. There are many non-classical logics. One of the
well-known non-classical logics is fuzzy logic whose semantics is different from
our classical or mathematical logic which is usually used in mathematics or in
an area where every thing is completely clear. Fuzzy logic has two versions:
broad sense and narrow sense. Semantics of Fuzzy logic in broad sense is
linguistic that is the statements are evaluated such as: true, very true, very
very true, more or less true, ..., false, not true not false, .... We use these values
usually in our daily life. Semantics of Fuzzy logic in narrow sense is usually
the unit interval [0, 1]; O for completely false and 1 for completely true. This
logic, some times called mathematical fuzzy logic, is an extension of classical
two-valued logic. Fuzzy logic is used in areas such as engineering fields where
there are some vague and uncertain concepts. It is used also in fields such as
sociology, psychology, medicine, law, philosophy,..., in which most notions are
not well-defined but are vague or uncertain. In fact, in every field of study
we may use a suitable logic and I some times say that every human being has
his/her own logic. If we understand each other it seems that we have common
logical facts. Otherwise, we can not even talk to each other.”

So, we got enough motivation to write the present paper regarding the roots
of Boolean algebra and binary number system which formed a basis for the
modern binary logic. In Section 2, we show that how a simple distribution of
bread among the workers and farmers on the banks of Nile river sparked the bi-
nary fractions and how they were developed into binary integers and enriched
the Egyptian multiplication and division. With the fall of Egyptian dynas-
ties, their fractions were transfered to Europe labeled as ”Greek made” and
the Egyptian binary number system lacking the essential place value property,
waited for a millennium to be revived and completed, of course independently,
by Leibniz and others. (See Section 4). The intermediate Section 3 studies
the historical events related to the binary systems between the fall of Pharaohs
and the Leibniz era.
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We conclude this introductory section with a quick review of the history
of fractions. At the dawn of the history, civilizations needed natural numbers
for counting and measuring of time, length, area, volume, weight, etc. Before
astronomers to realize that a solar year was at lest 365.25 days, in most middle
eastern countries, it was a 360—day year consisting of twelve 30-day months.
This made it easy for astronomers to find * of any number k of years for all
natural numbers m and k and any divisor n of 360. (See [17].) For example,
the fraction % of 250 years can be easily computed as 250 x % = 750 days
= 2 years and 1 month. This could also mean that if 250 loaves of bread had
to be distributed among 120 workers on an Egyptian construction site, each
worker must get 2 loaves and one-twelfth of a loaf. Certainly, this is not a fast
and practical way of distributing bread among the hungry workers; in the next
section we learn how Egyptians would make the distribution of bread easy even
in the case the number of the loaves was quite arbitrary. Around the same time
Chinese had a 364—day solar year consisting of thirteen 28—day months each
with exactly 4 weeks. We do not know if ever Chinese used fractions %, %,
etc. in their calculations, but one may conjecture similar fraction in Mayan

Calendars. (See [17].)

2. Egyptian Binary number system

Egypt seems to be the only civilization that used two different number sys-
tems in prehistoric times. One for counting and addition, another for fractions.
The first one was decimal and the second one was binary. It seems that they first
developed the decimal system for their day-to-day counting and later used the
binary fractions {1/2,1/4,1/8,1/16,1/32,1/64} for sharing symmetric goods
like bread loaves. The latter fractions were used by the farmers who needed
to divide a (regular round) loaf of bread into equal sectors through a series
of halving and re-halving. The halving would stop at 1/64 as such a slice of
bread was too slim to be halved further. Some authors believe that the ancient
Egyptians ”"used binary systems for multiplication of two numbers, a procedure
today known as the peasant multiplication” [15]. The main goal of the present
paper is to show that the Egyptian ”binary fractions” preceded its so-called
”peasant multiplication”.

The binary number system entered Egyptian multiplication and division
with no approximate time to be known. In this section we put different pieces
of the excavated documents to reconstruct a history for the appearance of
the Egyptian binary system. However, the (non-positional) decimal number
system and the corresponding digits for the numbers 1, 10, 100, 1000, - - - were
in use by predynastic Egyptians. See Fig.1 showing the number 1,333, 330; the
photo lacks a stick | to contain all the symbols needed for writing the numbers
1 —19,999,999. The symbols function like various coins; for example 203 can
be written in many ways as follows:

polll = llop = lpllp = lplol = -+
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1,000,000 3(100,000)  3(10.000) 3(1000)  3(100) 3(10)
Courtesy of Cynthia J. Huffman (Pittsburg State University) taken from Edfu Temple

In Egypt (237-257 BC.): it shows 1,333,330 The numerals are exactly the
same as those used by the founder of the first dynasty ca.3100 BC.

Figure 1. Edfu Temple

where p = 100 and | = 1.

Elementary additions and multiplications were like counting the coins and
exchanging the smaller denominations by the larger ones as far as possible. For
subtraction, one only needed enough small denominations to replace the large
ones by smaller ones if needed. For example,

25+ 18 =nn ||l I =nnndiiib = nann || = 43,

where N = 10. For 25 — 18, one has practically to exchange 1 dime for 10
pennies to get

25 =18 =nn||[[[ = (O = A= O = 1= 7.

(The scribe’s mint worked very simple; All he needed was a pen and a washable
tablet to draw as many coins as necessary and to cross or wipe out any ones
not needed.)

A monumental wall painting exists showing the founder of the first dynasty
(ca.3100 B.C.) boasting on the large numbers of his soldiers, captives, booties,
etc. One of these numbers shows 1,422,000 goats which we believe its accurate
value is between 1,421,000 and 1,423,000. This shows that 1,000,000 was an
accessible ordinary number for the Egyptians of 5000 years ago. However, the
word for million was "Heh” which meant ”chaos” or ”infinity” and was the
name of a God. They also used it to show infinity, a number bigger than any
number that’s ever been written. Comparing with the word ”Three” derived
from the Indo-European ” Throng” meaning "too many” [9], or the equivalent
of "Four” in the Africans’ language reported in George Gamow’s ”One, Two,
Three, Infinity”, reveals that the prehistoric Egyptians were very advanced in
counting and writing large quantities.

Thus, at the dawn of the history, the Egyptians could easily count over a
million, and add, subtract, double, or triple very large numbers. With the
symbols they had for 1, 10, 100, etc., they could easily multiply any number
by 10. This is in fact done in some papyri but not frequently. However, there
is no Egyptian algorithm for the product of two arbitrary decimal numbers.

The Egyptian golden age came a millennium after the foundation of the
first dynasty. The following so far excavated important documents containing
almost all of the Egyptian mathematical heritage appeared during this period.
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These documents are listed below with their usual abbreviations:

AWT Akhmim Wooden Tablets, ca.1990 B.C.
EMLR Egyptian Mathematical Leather Roll, from 2000 to 1850 B.C.
MMP Moscow Mathematical Papyrus, ca.1850 B.C.

AMP Ahmes Mathematical Papyrus, originally dated ca.1850 B.C.

The less important (BMP) Berlin Mathematical Papyrus (21st century B.C.),
(LMP) Luhan Mathematical papyri (19th century B.C.), and (RP) Reisner
Papyrus (18th century B.C.) contain partial mathematical results found in the
above mentioned four documents. All these documents are written during the
Egyptian golden age of science, economy and social/political prosperity [9], [16]
beginning by the 11*" dynasty ca.(2150 — 1991) B.C. and ending with the 12"
dynasty ca.(1991 — 1783) B.C. Amenemhat I, the founder of the 12} dynasty
(ca.1991 B.C.) was the minister/co-regent of the last king of the 11! dynasty
who (most probably) overtook the power peacefully after it became clear that
there was no eligible ruler from the 11*" dynasty to continue. Therefore, the
AWT could be claimed to have been written by his order. Also, the most
important pharaoh from the 12" dynasty and one of the most just rulers of
the world was Amenemhat 111 who first ruled Egypt as a co-regent of his father
since 1861 or later and as a king from 1841 until 1797 B.C. Therefore, it is most
probable that the four most important Egyptian mathematical documents were
written during the time of either Amenemhat I or his descendant Amenemhat
ITI. In fact, Ahmes clearly asserts that he is copying a document which was
written at the time of the king of the upper and lower Egypt, Ni-Maat-Re. The
latter name was the religious name of Amenemhat III and meant ”belonging to
the truth of the Sun”. Another name for AMP is RMP (Rhind Mathematical
Papyrus) named after the Scottish antiquarian Alexander Henry Rhind; the
papyrus sold to him in 1858 A.D. was probably found during illegal excavations.

The notion of the decimal number system was known to the Egyptians of
the prehistoric times; but, its evolution to the place value number system was
not completed until the ninth century A.D., half a millennium after the Ro-
man sack of Egypt (30 B.C.). The development of the Egyptian binary system
was not continued by Greeks and Romans who inherited and expanded their
science and technology. No one cared to acknowledge the Egyptian share or
to investigate how their binary system came into being. In fact, people of the
Middle Ages thought that Egyptian fractions were invented by Greeks. Here,
we investigate this development and try to share its credit between Egyptians
and the Englishman Thomas Harriot (1560-1621), the Spaniard Juan Cara-
muel de Lobkowitz (1606-1682) and, most importantly, the German Gottfried
Wilhelm Leibniz (1646-1716) the latter three living in a scientific era equipped
with a full positional decimal number system.

A careful and logical study of the Egyptian mathematical documents reveals
that the prehistoric people living along the Nile river had a prime need in
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distributing bread among the workers and farmers. All these documents show
that bread was an item deeply mixed with their daily life and economy. All
their mathematical documents, even in the time of their later dynasties, used
”bread” as a unit and, in some problems that the unit was not specified at the
beginning, their answers ended up with bread as the unit.

According to historians, ” Egypt had no cash economy until the coming of the
Persians in 525 B.C. ... Egypt operated on a barter system up until the Persian
invasion of 525 B.C. and the economy was based on agriculture. ... Laborours
were often paid in bread and beer, the staples of the Egyptian diet.” [12]. Or
”Bread is called in most Arab countries khobz. But in Egypt, it is called Eish,
meaning living (see Fig.2). The word connotes the salience of bread — which
was once the method of payment to workers who built the pyramids in Ancient
Egypt- in the lives of Egyptians” [2]

Egyptian bread = e = & = o0

FIGURE 2. Eish

A loaf of bread, as a unit, had no multiples. To divide a limited amount
of bread among the workers, needed no advanced mathematics; the employer
would hand out one loaf of bread at a time to each worker and repeat for the
second, third,- - - rounds until a remainder (strictly smaller than the number of
workers) is left. (If the amount of bread was large enough, the employer could
save time by giving 2 or more breads at a time to each worker for the first few
rounds.) To continue the division was where the submultiples of the unit were
really needed. A loaf, as a unit, had six submultiples half (= 27!), quarter
(= 272), one eighth (= 27%), one sixteenth (= 27%), one thirty-second
(= 27%) and one sixty-fourth (= 276). (See Fig. 3.) Since the circular bread
and its sectors had (theoretically) axes of symmetry, folding was the easiest way
to divide a loaf of bread into its submultiples. In fact, the Egyptian symbol
for "half” was D which reminds of something being bent or folded. The tiny
slice 27% was so narrow that could not be halved with hand. There was no
prejudice against the fraction 276; if the remaining slices of size 275 were less
than the number of the workers, the boss could leave them to be consumed by
the passersby including birds, or even workers themselves.
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Example 2.1. Imagine a farm owner of five or siz thousand years ago on the
bank of the Nile river wants to divide 22 loaves of bread among 6 labourers.
The naive owner of the farm starts giving 1 (if smart enough, 2 or, if smarter,
3) loaves at a time to each farmer and repeats until each labourer gets 3 loaves.
That is the first stage of division is

22=6+4+6+6+4=3x6+4; (note that 0 <4 < 6).

It remains to find 4 = 6 to its 6™ submultiple. Today, a modern educated
farm owner would continue the division to two decimals to get 22 + 6 = 3.66.
Thus, each worker gets 3 whole loaves, 6 tenths, and 6 hundredths. Being
almost impossible for the farm owner of the antiquity, he/she would switch to
binary fractions and enjoy the ease of halving 4 loaves to yield 8 halves. Each
worker gets an extra 1 half and 2 halves remains. Further halving yields 4
quarters coming short of 2 and, hence, halving is continued to yield 8 eighths.
Now, each farmer gets 1 with 2 eights remained. By twice re-halving of the
remaining slices, 8 thirty-seconds are obtained and each farmer gets one slice.
Halving the remaining 2 thirty-seconds, yields 4 sixty-fourths which can not be
halved further and the division comes to an end, practically. (He may leave
the remaining 4 sizty-fourths to be shared brotherly.) In total, the amount of
bread that each farmer gets is the sum of the decimal number 3 and the binary
fraction

(1) 4+6~ 27 447t 4 /87 167+ 1327 64

where the notation 'v means the summand ~y appears in the quotient. (Egyptians
would write the right-hand side of (1) as a column vector and the quotient is
the sum of those entries v which are marked as '~.) This Egyptian binary ex-

pansion (1) is equivalent with the modern representation (0.101010)y (in binary
number system,).

With the modern terminology, the Egyptian mathematicians have shown
that if @ < b are positive integers, then

(2 a+b > 2127 40 02242 323 b0 27 42 270 41 6276

= (0.1',11',2"'5676)2 > (a—b) —276,

with z_; € {0,1}; 1<:<6.

In particular, if 63 loaves of bread were supposed to be distributed among 64
workers, each person would get half a loaf in the first round and 62 halves would
remain. In the next round, each worker gets 1 quarter and again 61 quarters
are left and so on. Thus, at the end, each worker gets one loaf of bread minus
a slice of size 276; i.e.,
(3) 63+ 64 = (0.111111)5 = (1 — 0.000001) ~ 1.

Hence, each worker gets approximately the whole bread shown in Fig. 3.
The predynastic simple numerical approximation (3) got a mystical fate by
the postdynastic priests and politicians. The founder of the first dynasty is
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credited for the unification of the two upper (southern) and lower (northern)
Egypt. The bitter and sad memories of the unification wars were not forgotten
for several years or centuries. Politicians and priests made stories that these
fierce battles were between the various deities. In one of these wars, an upper
Egyptian deity called Seth (a god of deserts, storms, disorder, violence, and
foreigners) tore apart an eye of Hur (Persian Khur or Hur, Greek Horus, and
the lower Egyptian god of kingship, healing, protection, sun and sky) into six
pieces and threw them among the thick bushes on the banks of the Nile river.
Anyway, the kind supreme god helped Hur to find them and recover his eye;
so, they were named the Hur’s eye fractions and priests would write them on
armbands to be sold for body safety and perfection. As a result, it was falsely
believed that the following theorem was true.

FIGURE 3. [1~0.111111 in base 2]

Theorem 2.2. (False) The sum of the Hur’s eye fractions is exactly 1; i.e.,
2714972493 4ot 405 41976 -1,

Centuries later a smart young priest, enjoying the cool weather of the temple
and using pen and paper playing with the (holy) Hur’s eye fractions, noticed
that multiplying the sum of the six quantities by 64 yields 63. He hurriedly
reported the flaw to the high priests but as in the case of Pythagoreans who were
caught surprised by the irrationality of v/2, the priests tried in vain to suppress
the news [9]. As was expected the news spread and the common denominator
became a new excitement for the mathematics lovers. An important question
was, for example, what happens if in (1) the division 4+6 is replaced by 2566
in which the 4 (full) loaves of bread are replaced with 4 x 64 = 256 slices of
size 279 in fact, Section 5 of AWT contains a much more difficult example in
which 32431 =+ 926 is replaced by 2075166 =- 926, where 2075166 = 32431 x 64.
(See also Section 2 of [16].) For the moment, we lower the computational level
of our examples to fit the knowledge of the mathematicians of the first few
dynasties (few centuries before writing AWT). Getting back to (1), we observe
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that 256 = 42 x 6 + 4, by which each worker gets 42 slices of size 276 and 4
slices are left for the passersby! In comparison, the share of each worker in (1)
was a subcollection A of the collection {271,272 ... 276} while, by the new
method, each worker gets 3 copies of the submultiple 276, where 3 = 2° " A;
ie.,

B = 42=26(27 42724 7273 427 4 /975 4 976
(4) = 7254244 728 122 1 721 11 = (101010),.

In particular, if 32 < a < b = 64 in (2), then z_; = 1, the approximation is
exact, and

(5) a=25+x 2"+ 325+ 2 422+ 52" 42420

This proves that Egyptians got the binary expansion of any positive integer
25 < a < 2. On the other hand, the flaw in Theorem 2.2 as well as the criticism
of the pharmacists about the inadequacy of Hur’s eye fractions destroyed their
sanctity and gave enough courage to mathematicians to ignore the temple’s
opposition and expand the definition of fractions to any quantity of the form
1/n. In particular, if 2" < a < 2"*! the expansion (5) is generalized as

(6) a=2"4apn 12" 4 apn 22" 4 a2’

where a; € {0,1} for j =0,1,2,--- ,n— 1.
Now, the simple multiplication of 2™ x b can be extended to any product
a X b for any pair of integers a, b as is shown in the following example.

Example 2.3. To find 11 x 15, we write the powers 2 in the first row of Table
1 and search for the admissible ones. First find n such that 2" < 11 < 2n+1,
Since 8 < 11 < 16, it follows from (6) that n = 3 and 11 = 8§ + 2™ 4 --.
or, equivalently, 2™ < 11 — 8 = 3 < 2™*L. That is m = 1. So far, 11 =
28121 492k ... or, equivalently, 2F < 11 —-8—2 =1 < 28t Again, it follows
that k = 0 and 11 = 23 +21+2°. In modern sense 1119 = (1011)o. Multiplying
these summands into 15 as shown in the second row and adding them up yields
11 x15 = 154+304120 = 165. Recall that Egyptians had no name or symbol for
our modern 0 and it was convenient for them to work with the transpose of our
Table 1. Their multiplication table had two columns. In the forst column, they
would write the powers 2™ until they reach 23 = 8 < 11 < 2* = 16. They would
then mark '8 as the highest power of 2 that is admissible. Next, they would go
back to find the first power of 2 whose sum with 8 does not exceed 11; that is
2 yielding 8 + 2 = 10 < 11. So, they would mark '2 as admissible. Finally,
adding 10 to 1 = 2° yields 11 = 23 + 2 + 20 which yields the final admissible
power of 2. Therefore, in this example 4 = 22 is not marked as an admissible
power of 2. In modern terminology, 1119 = 10115.

Similarly, we can divide integers by using binary representations.

Example 2.4. (Division with remainder) To find the quotient x and the
remainder r of the division 2509, we observe that 250 = 9z +r with 0 < r < 9.
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TABLE 1. 11 x 15

2 117241 '8 |16
2*x 1515|3060 | 120 | -

Expand x as in the first row of Table 2 and find 2¢ x 9 as in the second row.
Since x is unknown we do not know where to stop. Instead, we know in the
second row that 2° x 9 cannot exceed 250. Therefore, we first calculate the
second row to reach 144 = 2* x 9 < 2% x 9 = 288. Thus, '144 is marked as
such. Now, 144 + 72 = 216 < 250 and so '72. Next, 216 + 36 = 252 > 250
and thus 36 is rejected. Now, 216 + 18 = 234 < 250 and 234 + 9 = 243 < 250
mark '18 and '9 as admissible. Hence, v = '16 + '8 +4+ 2+ '1 = 27 and
r =250 — 243 = 7. (In modern terms 27 = (11011)5.)

TABLE 2. 250 =9z +r

2! 1121418 16 | 32
20 x99 [718 36|72 | "144 | 288

The last two examples as well as the arguments given in the conclusion of
this section justify our claim that, in spite of no place value number system,
Egyptians achieved a high level of mathematics in dealing with binary number
system; a system which was re-discovered by Leibniz almost three millennia
later in Europe. The next example shows further how they would continue the
divisions to obtain sharper (fractional) quotients with ignorable (fractional)
remainders.

Example 2.5. (Division without remainder) Sharpen the division 2509
by using Eqyptian allowable binary fractions.

Predynastic Metod: In a farm we have to distribute 250 loaves of bread
among 9 labourers. In the first round we give one bread to each family
and repeat the rounds for 27 times. (Since the quantity of bread is
large enough, we may save time by handing out 5 loaves at a time and
continue until we fill the quantity has shrunk enough and switch to the
safe "1 loaf at a time”.) There remains 7 loaves and continue by halving
and re-halving according to Fxample 2.1. Thus, each labouror receives:

1 1 1
27 + 3 + 1 + o1 loaves of bread.

Akhmim Method: Multiply the number of loaves by 64 to find the total
number 16000 of (possible) slices of size 276, (See Table 3.) Now, we
follow Table 4 to find 16000 + 9 with error < 276,

Since 9216 < 16000 < 18432, since 9216 + 4608 = 13824 < 16000,
since 13824 + 2304 = 16128 > 16000, since 13824 + 1152 = 14976 <
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TABLE 3. 64 x 250 = 16000

2 1 2 4 8 16 32 '64
2" x 250 | 250 | 500 | 1000 | 2000 | 4000 | 8000 | 16000

TABLE 4. 16000 =9

Row 1 20 1 2 22 23 21 25
Row 2] 22x9 | 79 18 ’36 72 | 7144 | 288
Row 1| Cont’d]| 2° 27 28 29 210 211
Row 2| Cont’d | '576 | 71152 | 2304 | 74608 | 79216 | 18432

16000, since 14976+576 = 15552 < 16000, since 155524288 = 15840 <
16000, since 15840+ 144 = 15984 < 16000, since 15984+ 72 = 16056 >
16000, since 15984 + 36 = 16020 > 1600, since 15984 + 18 = 16002 >
16000, and since 15984 +9 = 15993 < 16000, it follows that only 9216,
4608, '1152, '576, '288, '144, and’9 are marked admissible and, hence,
the remainder is 16000 — 15993 = 7.

Therefore, 16000 =9 = 210 + 29 4+ 974 96 4 25 424 4. 22 4 1 4 (7 9)
copies of the submultiple of size 276 or, equivalently, 250 ~ 9 = 2% +
2242414271 4+2724274 42764 (7T+9)x 276 = 27427142724 270 4
276 4+ (7+9) x 27 loaves of bread. Thus, 250 + 9 ~ (11011.110101)5.

Simplified Akhmim Method: By division with remainder, 250 ~ 9 =
274+ (7+9). (See Table 2.) It remains to apply Akhmim method to 7+9.
First observe that 7x64(= 1x6442x6444x64 = 64+128+256) = 448
and, hence, we continue by the following Table 5 to find 448 +9 without
remasinder.

TABLE 5. 448 -9

2 1] 2[22]23] 2% 25 | 26
20x 9’918 (36|72 |’144 | /288 | 576

Since 288 < 448 < 578, since 288 + 144 = 432 < 448, since 432 +
72 = 504 > 448, since 432 4 36 = 468 > 448, since 432 4 18 = 458 >
448, and since 432+ 9 = 441 < 448, we have marked '288, '144 and '18
as admissible, and have rejected the rest. Therefore, Tx64 = 9(2°+24+
20Y+7 and, hence, 7+9 =271 +27242764(7+9)276 ~ 27142724276
with an error < 275,

We now conclude this section by reviewing the various evolutionary stages
of the binary number system that was shaped in the hands of Egyptians from
predynastic to postdynastic times. Recall that Egyptians of those days had no
knowledge of place value number system and had no perception of zero as a
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number or of 0 as a digit. Therefore, our modern formulas should be interpreted
in the language of the ancient Egyptians.

Stage (i) Binary fractions: The naive prehistoric farmers on the banks
of the Nile river used bread as monetary to pay workers. If the num-
ber of the (regular round) loaves of bread was greater than or equal
to the number of workers, they would simply give one bread to each
worker and repeat the round until the number of the loaves reduces to
a number strictly less than the number of workers. So far all the nu-
merals were communicated orally or pictorially in the (no-place valued)
decimal number system. For the remainder they would use the sub-
multiples 271,272, ... 276 and ignore the smaller ones. Thus besides
an integral decimal number of the loaves, each worker would also get 1
or 0 slice of size 27", n =1,2,--- ;6. That is, Egyptians of predynastic
times would approximate any proper fraction a + b (with a < b) as a
(0, 1)-sequence of 6 terms after the binary point. (See Examples 2.1,
2.4, 2.5.) As far as the distributor was concerned the remaining slices
(of size 276) were ignored. However, if the boss in Example 2.1, say,
decides to give 1 or more of the remaining slices of size 27° to some of
the workers as bonus, then each modified share would be represented
by a unique binary fraction; for example if one gets two extra slices,
one’s share would be 0.1011(= 0.101010 + 0.000001 + 0.00001).

Stage (ii) Binary integers: In predynastic times, Egypt was divided
into two Southern and Northern countries with capitals almost one
thousand kilometers apart which had different deities and religious be-
liefs. However, thanks to the Nile waterway they shared the same
language and mathematics. In particular, the binary fractions were
developed more or less at the same time in the two lands. The founder
of the first dynasty is credited for his unification of the two Egyptian
lands after a long civil war. However, the war between deities never
ended and persisted almost to the last dynasty. Akhmim tablets were
written during the Egyptian golden age of science and economy and
shows that the northern deities had an upper hand. The sun God Hur
monopolized the binary fractions as the six parts of his eye; Assuming
their sum is equal to 1 made a barrier on the further development of
the binary fractions. On the other hand, pharmacist needed sharper
approximations for fractions of their quantities, pushed for smaller frac-
tions and removed the lower barrier 276. Mathematicians helped them
by generalizing the Hur’s eye fractions to any unary fraction of type
1/n for all integers n > 1. Even, except for the beloved fraction ”two-
thirds” and the misfortune fraction ”three-fourths” which had their
own stories, any other non unary fraction was not regarded as a quan-
tity unless it was written as the sum of distinct unary fractions. For
example 2 = 5 was an "action” whose result was any ”quantity” of the
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form

1 1 1 1 1 1 1 1 ¢
576730 1573 Py
Of course, for a long time the (damned) fraction ”one third” had no
place in Egyptian arithmetic and could only be viewed as the combi-
nation
1
9 (g),
the one on the left being a holy Hur’s eye fraction, and the one on the
right being the fraction of the solar year in which the generous Nile
was peaceful. Later that the unary fractions 1/n were permitted to the
Egyptian arithmetic, it could be also represented as the sum of distinct
unary fractions. Although, the latest mathematical documents had
no discrimination among the unary fractions, other fractions, such as
2/(2n+1) were not allowed in and took a lot of energy to be interpreted
as quantities.
This could bring a halt to the development of the binary number
system but, anyway, a different stage of evolution shaped up.

Stage (iii) Binary multiplication/division: The discovery of ”com-
mon denominator” of the Hur’s eye fractions by elite mathematicians
(not naive farmers) resulted in the discovery of the binary expansion
of any positive integer a < 64, see (5) and then, by demystifying the
Hur’s eye fractions, of any positive integer, see (6). This helped Egyp-
tians to extend the multiplication 2™ x a to the multiplication of any
two positive integers (see Table 1). Finally, by a reverse operation,
they discovered methods for division with remainder (see Table 2) and
without remainder (see Tables 3-4).

Remarks Not every progress in mathematics was helpful in the further
development of the Egyptian binary number system. We already mentioned
that the introduction of unary fractions reduced the importance of the Hur’s
eye fractions as well as other binary ones. Also, the ease of multiplication by
10, 100, 1000, etc. was another setback to the use of binary number system.
For example, to do 117 x 66, Egyptians found it easier to use less binary integers
in the following way:

117 x 66

66(100) + 17 x 66
6(1000) + 6(100) + (1 + 2*)(66)
= 6(1000) + 6(100)) + 66 + 1056 = 7722.

Recall that the Egyptian symbols for 1,10, 100, 1000, - - - were like various coins
and addition was like counting the coins and exchanging the smaller denomi-
nations by the larger ones as far as possible.
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3. Zero-one systems before Leibniz era

What we regard as the modern binary expansion of a number was not pos-
sible to be done by ancient Egyptians; they had no knowledge of place value
number system and were not ready to digest the notion of a number called zero
and symbolized as 0. Therefore, there was a limitation on their representation
of binary numbers. For example, the modern binary expansion of 11 is as 1011
which meant 1 x 23 +0 x 22 + 1 x 21 + 1 x 2°. However, Egyptians would
write these numbers as a column vector and mark those entries which must
participate in the sum as shown in the first row of Table 1. (See below.)

('1, '2, 4, '8, 16)7.

Midway to Leibniz zero-one number system, we have few other mathemat-
ical or non mathematical concepts which, like Egyptian binary numbers, can
be regarded as pre-zero-one systems. One of these is the principle of non-
contradiction in logic which like Euclid’s parallel postulate, Zorn’s lemma,
axiom of choice, etc. is accepted as an axiom. In modern binary logic, as
mentioned in the introduction, we assign a value 1 (resp. 0) to any so-called
statement P if it is true (resp. false). The principle of non-contradiction asserts
that the truth value of a statement P is 1 if and only if the truth value of its
negation =P is 0. Therefore, to prove a theorem, one can assume the contrary
of the conclusion and show that the hypothesis is false. Yet, the mathemati-
cians are displeased to use the proof by contradiction and would avoid it if
possible. Mahani, whose name honours the present journal as well as its spon-
sor "Mahani Mathematical Research Centre,” was probably the only moslem
mathematician who, following the Greek mathematicians, was reluctant to use
such proofs. We have the title of a lost paper by Mahani which indicates such
a reluctance:

Mahani, Abu-Abdollah Mohammad-ebn Isa; ca.850 A.D. On twenty
siz theorems of Fuclid’s Elements which can be proved by “non-contradiction”
method. ( [4], p. 433)

Recall that in Aristotle’s logic, every statement P is either true or false;
moreover the Aristotle’s principle of "non-contradiction” asserts that if a state-
ment P is true, then its negation —P is false. Although Mahani was using the
binary logic and Khwarazmi had introduced the notion of 0 to the Islamic world
almost fifty years before him, it was too early for Mahani and others to use the
0 — 1 language in their logical statements.

Another mathematical concept related to the binary number system is the
dyadic number system which is taken by some as a synonym. By fixing our
definition of dyadic number system, we make it clear that the two concepts are
different in the present paper.

Definition 3.1. Let z be a positive integer.
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(i): Dyadic expansion. By the dyadic expansion of x, we mean a series

of the form
T = Z T 27 ,
0<j<k
for some nonnegative integer k and some x; € {1,2}; (0 < j < k).
(ii): Binary expansion. By the binary expansion of z, we mean a series

of the form
x=2"4 Z x;27,
0<j<k—1
for some nonnegative integer k£ and some z; € {0,1};(0 < j <k —1).

We leave it to the reader to show that every positive integer x has a unique
dyadic as well as a unique binary expansion; moreover, the definitions can be
extended to any real number x. Note that, ancient Egyptians knew without
proof that the binary expansion existed and was unique. Some ethnographers
of the nineteenth century who visited the Australian aboriginals reported that
the natives’ counting system was binary.(See [8] and [6].) If that was the case,
then we have to credit them as pioneers of the binary number system alongside
with the ancient Egyptians. Here, we briefly show that the report is misleading
and their counting is a kind of pseudo-dyadic system which is neither binary
nor dyadic.

To prove our claim, we examined all the examples reproduced in [8] and no-
ticed that when all of them are translated into English, they follow the pattern
of the fourth column of the Table 6 below, where the symbols ”1” and ”2”
stand for the pronunciation of the aboriginal words ”one” and ”two”, respec-
tively. (See [19] for the variety of languages.) It seems that they had no way for
writing their numbers or even they might had no alphabet as well. The word
"ras” for 7 and any other number beyond 7 indicates that the visited tribes
could not count beyond 6 and would regard all other numbers as infinity. (See
a similar phenomenon reported in [3] regarding the numbers beyond 3.) Gen-
erally, one may formulate the Australian aboriginal pronunciation of a decimal
integer n as Tally(k,”2”) if n = 2k and as Tally(k,”2”)"1” if n = 2k + 1, where
Tally(k, 1) =111 (k times).

Another prehistoric related concept is the classical Chinese book ”I Ching”
which was a tool for "kind of” fortune-telling written in antiquity to help people,
especially kings and other authorities, to make better decisions! The standard
I Ching had 64 chapters each advising the king what to do or not to do about
the matter for which I Ching was consulted. Each chapter is labeled by an
ordered sequence of length 6 made by two characters a and b. To tell the for-
tune, the fortune-teller would toss a coin six times and record the outcomes
head= a or tail= b in the order of throwing to get a sequence, say, ”bbabaa” cor-
responding to a chapter in I Ching. The consultee then interprets the chapter
for the customer. The order of the chapters differ from one edition to another;
obviously, one of the good orders is something as follows: aaaaaa, aaaaab,
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TABLE 6. Aboriginal Counting

’ n \ Binary \ Dyadic \ Aboriginal
1 1 1 717
2 10 2 727
3 11 11 A
4 100 12 nr 7y
5 101 21 772” 772” ki 1”
6 110 22 A
7 111 111 ras
8 | 1000 112 ras

aaaaba, aaaabb, aaabaa ..., bbbbbb which is equivalent with the natural order
of the integers 0 = (000000)2, 1 = (00001)3, 2 = (000010)2, 3 = (000011)2,
4 = (000100)3,..., 63 = (111111),.

Chinese artists have symbolized a as a broken line and b as a solid one and
have created various forms of I Ching. One of these was sent to Leibniz which
will be discussed in the next section. A clean and more informative I Ching can
be seen in [11] on which we have added Arabic numerals as demonstrated in
Fig. 4. Tt has several rings made of characters. The outer ring consists of 365
small circles representing the number of the days in a standard solar year. The
second ring consists of 64 hexagrams beginning from 0 at the lowest point of
the ring and counts anticlockwise upward to 31; next to it is 63 and counting
continues downward to 32 (adjacent to 0). The Arabic numerals 0 — 32 on
the right and 32 — 63 on the left are written by us. On the third ring there
are thirteen (4 x 7)—arrays representing a 364-day year divided into 13 equal
28-day months. Note that each solar year contains at least 12 and at most 13
full moons. Although not of interest to us regarding the study of the binary
number system, it may, however, throw some light on the historical background
of I Ching and the generality of the bad omen of number 13 [17]. Each of the
fourth and the fifth rings represent the 8 trigrams aaa, aab, aba, abb, baa, bab,
bba and bbb, which we have labeled by Arabic numerals 0,1,2,3,4,5,6,7. In
fact, the second ring is the Cartesian product of the fourth and the fifth rings;
that is, each hexagram, say bbabaa, is made of two trigrams (bba,baa) each
having a certain meaning to the interpreter. Finally, in the center of the plate,
we see two pentagons each interpreting the four main elements shaping up the
universe plus a supplementary one.

Although we do not claim that Chinese would start counting the chapters of
I Ching from 0, yet, we can credit them for getting so close to the idea of the
binary number system. But two things should be cleared: (i) Chinese had no
intention of numbering the chapters of the I Ching, and (ii) Leibniz was really
working with the binary number system and got excited to see a resemblance
of his findings with the hexagrams in I Ching.
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FIGURE 4. A Chinese plate

4. The Leibniz Era

Leibniz (1646-1716) did great works in mathematics. But he was so eager
for social and religious reform that he could not resist mixing his valuable
mathematical achievements with things which may be regarded as superstitions
today. In fact, mathematics for him was a secondary goal. As is mentioned
in [13], Leibniz became interested in Chinese culture as early as his age of
twenties. He has been referred to as the last universalist or “universal genius”
with interests and contributions in all areas of European knowledge ( [11], [14]).
However, he did not receive much attention from his contemporary scholars.
In 1714, Leibniz discussed some of his ideas with the well-known L’Hopital and
others but felt they paid no more attention to it than if he had told them about
a dream of him( [11]; pp.523-4). Even in the Leibniz-Newton controversy over
who had invented calculus, most mathematicians of the non-German-speaking
countries in Europe sided with Newton. To be fair, it must be mentioned
that, the non-German L’Hopital acknowledged in his 1696 book about the
calculus from a Leibnizian point of view that Newton’s published work of the
1680s is as "nearly all about this calculus” but expressed preference for the
convenience of Leibniz’s notation [5]. After one or two centuries of the death of
Leibniz, most judgments credited both Newton and Leibniz as the independent
inventors of calculus [7]. But, papers appear off and on that claim Leibniz not
only plagiarized Newton on calculus, he also plagiarized Englishman Thomas
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Harriot (1560-1621) and the Spaniard Juan Caramuel de Lobkowitz (1606-1682)
on binary systems [1] [10].

Harriot as is claimed in [18], did not only work in base 2, but also in number
systems with bases 3, 4, 5 etc. As a mathematician, physicist and astronomer,
Harriot saw no practical application in his works but believed that useless
knowledge may someday be useful theory. Harriot passed away 25 years before
Leibniz to be born.

The talented mathematician and astronomer, Caramuel was more interested
in theology than mathematics. He dealt with number systems of various bases
relating them to different natural phenomena or philosophies; base 2 in rela-
tion to doubling or halving the strings in musical tools ...; base 3 in relation to
Christian Trinity ...; base 4 in relation to the four winds ...; base 5 in relation
with the four main universal elements supplemented by ”quintaes sentia” ...
and so on. Finally, when he reaches base 60, he does not forget to relate it
to degree, minute and second used by the astronomers. In spite of his math-
ematical interests such as divisibility of natural numbers, dice games, number
lottery, and geometric constructions, one is surprised that Caramuel with the
description of these number systems does not connect any further mathemat-
ical considerations or provide practical tips [10]. Caramuel was 15 years old
when Harriot died and he passed away when Leibniz was 36 years old. Anyway,
there is no information whether Caramuel knew of the works done by Harriot
or Leibniz.

It seems that Leibniz was the first person in the history that corresponded
the I Ching symbols with his binary representations of the Arabic numbers
0,1,2,---,63. A copy of the I Ching less complicated than the one shown in
Fig. 4 was sent to him from China by the French Jesuit Joachim Bouvet. The
Leibniz’s copy is not clear and can be searched in Google; it consists of the single
ring of the 64 characters as is seen in Fig. 4 with nothing in the middle except
for an 8 x 8 array of the same characters. Leibniz has marked the characters
by the Arabic numerals 0,1,2,--- ,63. All the writings are faded. Bouet was
working in China between the years of 1697 and 1707 with a group believing
the Chinese Fu Xi whom the I Ching was revealed to, was not Chinese but was
rather the original Lawgiver of all mankind [13]. Among other things, Leibniz
was using base 2 to invent a calculator. After matching his newly invented
0 — 1 numbers with the hexagrams in the I Ching, Leibniz did not hesitate to
claim that ”it has been up to him, a European, to restore the lost meaning of I
Ching”. Leibniz tried to prove (in vain) how the Chinese had lost the ”intended
meaning” [13].

Leibniz claimed the operations in base 2 are so easy that one shall never have
to guess or apply trial and error. He hoped that the binary system would aid
him in the creation of the ”characteristica universalis”, constructing a universal
formal language for expressing mathematics, science, and other concepts. The
discovery of the hexagrams and their relation to his binary number system
gave him encouragement in this area. Simon Marquis de Laplace believed that
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Leibniz saw in his binary arithmetic the image of Creation. For him the numeral
1 represented God and the numeral 0 represented nothing and that is how the
whole universe was created by God alone. In letters to Rudolph August, Duke
of Brunswick, Leibniz expressed that his system of numbers were a suitable
analogy to God’s omnipotence, just as unity and zero express all numbers in
his system of numeration. He asked the Duke of Brunswick to issue a silver
medal commemorating this discovery with the following inscriptions: ”The
model of creation discovered by Gottfried Wilhelm Leibniz ....”
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