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ABSTRACT 

Smart and precision agriculture seeks to boost the efficiency of 

operations and crop yield by using modern technology. Modern tools 

such as sensors, imagery cameras, and deep learning enable farmers to 

identify and control weeds, pests, and diseases in real-time. A robotic 

platform can carry these modern types of equipment and achieve the 

mentioned objectives precisely. Automatic and accurate navigation of 

this autonomous robot in agricultural fields is essential for performing 

these precision tasks. An agricultural robotic platform was designed and 

developed for row crop fields. The robot navigation system comprises 

two main components: a vision-based row detection system for path 

tracking and a motion controller system. The vision-based guidance 

system processes acquired image data from a tilted camera in front of the 

robot to identify the crop row's position. The Hough transform method 

was used to determine the position of the crop rows. Using the resultant 

guidance line equations, the motion controller directs the robot to move 

automatically between rows without harming the crops. Differential 

speed steering allows both wheels on the robot to rotate at different 

speeds. The steering system improved the robot position error by 

controlling both powered wheel speeds. To move the robot among the 

crop rows, it generates the wheel speed difference command. The robotic 

platform effectively followed the rows of sugar beets at a velocity of 0.5 

m/s, exhibiting an average lateral offset of 12 mm and a standard 

deviation of 22 mm. 

 

ARTICLE INFO 

Article type:  

Research Article 

 

Article history: 

Received 23 October 2023 

Received in revised form 28 

March 2024 

Accepted 30 May 2024 

Available Online 30 June 2024 

 

 

Keywords: 

Robotic Platform, Vision-Based 

Navigation, Differential 

Steering, Pulse Width 

Modulation (PWM), Crop Row 

Detection. 

 

Cite this article: Behfar, H., Hashemi, F., & Nobakht, A. (2024). Development of a Guidance System for an 

Agricultural Wheeled Robotic Platform in Row Crop Fields. Biomechanism and Bioenergy Research, 

3(1), 14-25. https://doi.org/ 10.22103/BBR.2024.22392.1063 

 The Author(s).                                      Publisher: Shahid Bahonar University of Kerman 

DOI: https://doi.org/ 10.22103/BBR.2024.22392.1063 

https://orcid.org/0000-0003-1233-8693


15 

 

NTRODUCTION 

Increasing crop yield is the most effective way 

to address the current food production problem 

worldwide. Precision agriculture technology can 

help achieve this goal by using modern site-

specific crop management methods and tools. 

Precision agriculture involves the application of 

the right amount of inputs at the right time and 

place to improve crop productivity and yield. 

However, conventional tractors used in 

agricultural practices face challenges in meeting 

the precision requirements of modern farming 

systems. These tractors are limited in 

maneuverability and precise control, and their 

heavy weight can cause soil compaction. While 

most tractors use a mechanical steering system, 

precise electronic steering control is either not 

feasible or expensive (Jurik & Zhang, 1999). As 

a result, farmers had to employ laborers for their 

precision agricultural tasks like inter and intra-

row weeding management (Zhang et al., 2022). 

Due to the COVID-19 pandemic and other 

infections, temporary labor shortages are 

affecting productivity worldwide. As a result, 

farmers are exploring new ways to automate their 

farming operations and reduce the need for 

human intervention. Mobile robots are becoming 

increasingly important in this regard because they 

can carry out precision tasks on farms with 

greater accuracy and precision than tractors. 

Additionally, small and lightweight robots can 

minimize the risk of soil compaction and 

environmental impact. With new sensors such as 

vision cameras and GPS technologies, these 

robots offer high maneuverability and precise 

control, making them a flexible platform for 

precision farming applications. They are 

particularly beneficial for automating tasks such 

as precision planting, weeding, spraying, 

fertilization, phenotyping, harvesting specific 

crops, and creating datasets required for machine 

learning (Mueller-Sim et al., 2017). However, 

high-precision guidance remains a significant 

challenge for agricultural systems using these 

robots. 

 On-site robot guidance can be accomplished 

by using two methods: machine vision and a 

high-precision global positioning system 

equipped with DGPS or RTK. Weed control 

robots were first presented in 2002 by Astrand 

and Baerveldt (2002) and Blasco et al. (2002). 

They used mechanical actuators and selective 

high-voltage electric discharge to remove the 

weed. 

Astrand and Baerveldt (2002) developed their 

robot at Halmstad University in Sweden. It had a 

length of 120 cm and a width of 70 cm and was 

designed for row crops with a row spacing of 50 

cm. Its steering system was controlled by a 

servomotor and was guided by an image 

processing system to follow rows of sugar beet 

crops. Bak and Jacobsen (2004) constructed a 

robot for farming in Denmark. The robot was 

used for monitoring and mapping weed density. 

The machine vision system detected crop rows 

and guided the robot between rows at 25 and 50 

cm row intervals. This robot, called the robotic 

platform, had four moving wheels with electric 

motors. The system had a standard deviation of 1-

1.6 cm at a low speed of 0.2 m/s. This error 

increased to 7.10-7.7 cm at high speed of 1.6 m/s. 

A robot for weeding was developed by Baker et 

al. (2010) at Wageningen University in the 

Netherlands for weeding. This robot was the only 

farm robot that was fully hydraulic. The drive 

system was powered by a 31.3 kW diesel engine, 

unlike most of the current new robots. The system 

failed to become commercial due to issues such 

as environmental pollution and vibrations, which 

are commonly faced by combustion engines. This 

system was controlled simultaneously by RTK 

GPS (absolute positioning), machine vision, and 

Dead Reckoning (relative positioning) 

technologies. The maximum error and deviation 

from its row was 3 cm at the speed of 0.5 m/s with 

a standard deviation of 1.2 cm. Dong et al. (2011) 

developed a robotic system for harvesting white 

asparagus. It had a length of about 3 meters, 

weighed 450 kg, and was able to harvest 

asparagus automatically at a crop row distance of 

0.8 m with a height of about 0.5 m. The image 

processing system has completed the task of 
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detecting rows. The electric motors that powered 

its two driving wheels had a power of 450 W with 

a nominal torque of 12.6 Nm. Bowden et al. 

(2014) at the University of Queensland, 

Australia, developed a compact SRVF all-

purpose agricultural robot. It was a four-wheeled 

robot with two driven wheels and a differential 

steering system. The robot's length was 3 meters 

and its width was 2.5 meters. This device was 

capable of reaching speeds of up to 1.4 m/s (5 

km/h) and produced a maximum power of 5.4 

kW. Grimstad and Fram (2017) developed the 

Thorvald series of agricultural robots in Saga 

Robotics, which were modular. The assembly 

was determined by their application in the field or 

greenhouse and the type of operation. Yanmar 

Inc. has presented four models of robots) in Italy, 

including Agrobot (unmanned ground robot), 

Platoid (soil conditioning robot), Flybot (drone), 

and Ankillarybot (service robot in open areas. 

The spatial accuracy of the Agrobot was ±0.02 

meters due to its RTK GPS position control 

system. The guidance was provided by vision and 

laser sensors. The vision system had RGB and 

stereo color systems installed (Sarri et al., 2020). 

A wheeled robot consists of several main 

components, such as the chassis, the drive system 

(power generation), the guidance and control 

system, the steering system, and the agricultural 

equipment (e.g., a weeding unit) (Bechar & 

Vigneault, 2016). Vision based guidance is 

usually performed for row detection (Marchant & 

Brivot, 1995). 

Row detection based on image processing 

To begin with vision based row detection, the 

image pixels that are associated with plants need 

to be identified and separated several methods 

have been suggested to differentiate the pixels 

associated with the green portions of plants. 

Marchant and Brivot (1996). Tillet et al. (2002), 

and Astrand and Baerveldt (2002) used a band 

pass filter to block visible wavelengths in images 

acquired by a CCD monochrome camera to 

enhance plant segments in near-infrared. 

Meanwhile, Bakker et al. (2008) improved the 

contrast between the background and plants by 

combining normalized color channels and 

transforming them into a grayscale image. 

Segmentation, as the second step, is typically 

performed by thresholding in row detection. 

After carrying out the necessary steps to obtain 

thresholded images, row detection algorithm as 

the third step should be applied. Vision-based 

row detection algorithms are divided into two 

categories: traditional and machine learning 

methods (Shi et al., 2023). These are stripe 

analysis, stereo-vision, blob analysis, linear 

regression, and Hough transform (Bai et al., 

2023). 

The horizontal strips method involves dividing 

the images into horizontal strips and calculating 

the center of gravity of each row section. Points 

are then marked in each strip to indicate these 

centers of gravity. By joining these points, the 

lines of the rows can be obtained (Hague & 

Tillett, 2001; Sainz-Costa et al., 2011; Søgaard & 

Olsen, 2003). 

In blob analysis-based row detection, the main 

blobs are formed by attaching adjacent pixels 

with the same value in segmented images. For a 

blob to be considered as a main blob, it should 

have a minimum sum of 200 pixels. The center of 

gravity and the angle of the primary axes of the 

main blobs are then calculated (Fontaine & 

Crowe, 2006). 

Stereo-vision processing involves the 

acquisition of 3D coordinates for ROI points 

from stereo images using a pair of cameras. To 

ensure accurate application of this method, the 

crops must meet a minimum height requirement 

(Kise et al., 2005; Rovira-Más et al., 2008). 

The Hough transform is a widely used 

algorithm for detecting rows in classic row 

detection (Shi et al., 2023). The specifics of the 

method are elucidated in the subsequent section. 

Astrand and Baerveldt (2002) and Bakker et al. 

(2008) utilized the Hough transform on 

segmented images of sugar beets. Van Evert et al. 

(2006), Bonadies et al. (2019) and García-

Santillán et al. (2018) employed this transform 

method for corn, lettuce, and potato fields, 

respectively. Choi et al. (2015) utilized the 

Hough transform on selected leaves of rice plants, 

which were chosen based on morphological 
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image processing. Bejay et al. (2023) 

implemented a fusion of the Hough transform and 

Lidar sensor to navigate their field robot. Chen et 

al. (2021) applied the Hough transform to process 

images captured by unmanned aerial vehicles 

(UAV). 

A variety of test and field robotic platforms 

equipped with electric motors have been 

successfully developed by the Biosystem 

Engineering Department at the University of 

Tabriz (the laboratory of electrical and 

instrumentation systems). This was done to take 

advantage of the many benefits of electric robots, 

such as their lack of vibration, high control 

accuracy, ability to prevent pollution, simple 

power transmission system, and easy 

controllability (Kamandar et al., 2022). The 

research focused on developing a robot guidance 

system, which consisted of two parts: a machine 

vision-based row detection system and a 

guidance system. 

MATERIALS AND METHODS 

The first platform was moved by an AC motor-

driven winch on a rail that was powered by an 

inverter and was situated next to a soil bin. The 

length of the cultivation soil bin was 7 meters (as 

shown in Figure 1-a). The tools being considered 

were attached to the test platform and evaluated. 

The chosen tool was then installed on a mobile 

field robot for further testing in the field. The 

dimensions of the mobile platform were the same 

as those of the mobile-wheeled robot (Figure 1-

b). 

  
  

Figure1. a: field platform b: laboratory platform 

The platform overview 

The robot is an all-electric, lightweight robotic 

platform that can be controlled in two ways, 

including manual control and automatic 

guidance. The robotic system includes a modular 

chassis, vision system, driving unit and its control 

circuit, power supply, and steering system. The track 

width of the robot is 1000 mm. The platform 

chassis width and length is 800 mm and 1000 

mm, respectively. It was initially designed to 

work on sugar beet and maize farms with row 

distances of 500 mm and 750 mm respectively. 

The robot passes above two rows of sugar beets 

and one row of maize crops, which are located 

between the wheels. The wheels were placed 25 

cm and 15 cm apart from the planting row in 

sugar beet and maize fields respectively, to 

prevent damage to the crops. 
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One of the key features of the robot is its 

modular configuration for various operations, 

achieved through its engineering grooved profile 

units. The side view of the robot structure in 

Figure 1-b shows two completely independent 

side units beside the wheels. The robot's height 

can be adjusted to suit crops with different sizes. 

The side units contain all the primary drive 

components, such as gearbox, wheels, motors, 

batteries, etc. The span between them is a clear, 

open space without any main components. 

Several transverse profiles connect the side units, 

making it easy to adjust the robot's width based 

on the distance between the rows. 

The enclosed workspace between the chassis, 

measuring 800×1000×700 mm³, is used for weed 

or crop detection. A downward-facing camera 

and lighting system can be mounted above this 

area. The manipulator, such as Cartesian arms or 

implement units like spot spraying or selective 

hoe can be mounted at the rear profile that 

connects the two side units. 

The robot's driving system has two passive 

wheels and two active wheels, which enable it to 

move around. The wheels have a diameter of 400 

mm, and the robot has two batteries located at the 

center of each side unit. These rechargeable 

batteries have a capacity of 60 amp-hours and 

output 12 volts of power. They are connected in 

series to provide a 24-volt supply, which allows 

the robot to operate for three to four hours.  

To provide the robot with a speed of up to 1 

m/s, two 500W DC motors were used, each with 

a maximum rotation speed of 2500 at 24V. They 

were combined with 50:1 gearboxes. There are 

also two encoders mounted on each wheel shaft 

that sense the robot's displacement and speed 

(Figure 2). They provide feedback signals for 

speed control. Rotary encoders count the number 

of pulses for each wheel rotation, which has a 

resolution of 2500 pulses per revolution. This 

means they can measure 0.5mm of displacement 

per pulse. 

 

 

 

Figure 2. Encoder 

Image processing based row detection  

The choice of machine vision for robot 

navigation was made due to the limitations of 

DGPS service and expensive RTK-GPS systems 

in Iran. The guidance system is responsible for 

controlling the position of the robot to follow a 

crop row. To achieve this, the system relies on a 

vision system that calculates the offset and 

heading error of the robot at the front relative to 

the rows. The image processing algorithm for 

crop row recognition then calculates the distance 

of the closest row from the robot's center at the 

nearest horizontal line to the robot chassis, the 

heading angle of the row line at this horizontal 

border, and the time it takes to process this 

information. 

Two types of cameras was tested in the 

guidance system: Basler camera acA-1920 with a 

resolution of 1920 × 1080 pixels and acA1300-

60gmNIR. The first one provides a color output 

in three channels (R, G, and B), the second one 

has a single gray channel output. The camera is 

mounted at the front of the vehicle, facing 

downward to capture images of rows. The camera 

height from the ground and its tilted angle 

depends on the plant's growing period. The 

smaller the crop's size, the lower the camera 

height, and the wider the camera angle (relative 

to the perpendicular to the ground). The camera 

angle is changed by a servo motor. The camera was 

mounted at about 100mm above the ground level 

tilted downward, looking forward at an angle of 

about 45 degrees (Figure 1.a).  

It was expected that the green channel values 

would be used for image segmentation due to the 

green color of plants. However, the row detection 

algorithm had to be robust to variable field 
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conditions. Variability arises from changes in 

row geometry, plant height and size, weed 

infestation, natural lighting, partially missing 

plants, and objects' presence such as stones and 

crop residues. These issues were considered in 

the processing code, and therefore a combination 

of color channels such as 2*(green) - red - blue 

was used instead of the green value. 

The thresholding operation was used to 

separate the pixels of the plant from the soil. The 

line equation was then obtained through the 

Hough method, and the amount of deviation from 

the path was calculated. In the Hough transform, 

the position (x, y) of pixels related to the plant 

was converted to polar space in terms of (ρ, θ), by 

using the equation of 1. 

ρ= xcosθ+ysinθ (1) 

Where, ρ is normal distance from origin and θ 

is the angle of this line with horizental line. 

 In this space, a sine curve was drawn for each 

point (Figure 3-a). The polar coordinate axis 

space is divided into cells, and the accumulators 

of these cells count the number of sinusoidal 

curves that pass through each one. The 

accumulators with the most passes (brighter 

points in Figure 3-a) are the main line coordinates 

in polar form. These coordinates show the normal 

distance from the origin and the angle of the 

normal line of the row line. By using some 

geometric relationships, the robot offset and 

heading angle were calculated. To digitize the 

values, the space was given a resolution value 

(resolution), which was usually 0.2 degrees for 

the angle and 1 cm for the width from the origin

.   

Figure 3. a: Hough space b: detected line for a row 

The steering system 

The second main objective of this research was 

to develop an interface circuit between the 

computer and the motors to receive signals 

through the vision system. This circuit performs 

two main tasks. First, it transmits a signal from 

the digital system with low power to the motor 

system with high power, or in other words, it 

performs power amplification. Secondly, it 

creates a safety system to prevent any induced 

magnetic field or noise from being transmitted 

from the motors to the control circuit and 

computer. 

This robotic platform is entirely electric and 

can be easily controlled through signals from the 

computer control system. The feedback speed 

control circuit aims to enable automatic tire 

rotation adjustment to maintain a desired speed 

and establish the required wheels' difference. 

Two manual switches provide two different 

modes: manual and automatic guidance. The 

robot is transported from the hangar to the field 

using a manual steering system. There are eight 

relays available that allow for manual control in 
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either the forward or backward direction. The 

system controller interface is an Arduino Mega 

2560, which operates both the relays and the 

speed control.  

The robotic platform uses a two-wheel steering 

mechanism. It utilizes Pulse-Width-Modulation 

(PWM) output of the Arduino for speed control. 

The electric power for each motor is supplied 

through a transistor H-bridge circuit. This circuit 

not only modifies the applied voltage to change 

the forward speed but also allows independent 

speed control for each wheel. Mobile robots 

based on independent steering wheels offer more 

benefits, including adaptability to different crops, 

maneuverability, and adaptability to terrain. 

To maintain its position along the crop rows, 

the robot must move sideways in relation to the 

rows to correct for any steering errors detected by 

the computer vision sensor. This is achieved by 

making a quick turn, which requires adjusting the 

linear speeds of the left and right wheels. In 

Figure 4, L represents the distance between the 

front and rear wheels, W represents the distance 

between the left and right tires (wheelbase), vR 

the linear speed of the right wheel, vL is the linear 

speed of the left wheel, and RO is the rotation 

radius of the robot. The difference in wheel 

speeds determines the turning radius, and 

choosing the right radius is crucial. If the wheel 

speeds are the same, the turning radius will be 

infinite, and if one wheel stops moving (skid 

mode), the turning radius will be zero (in situ 

rotation). It is recommended that the value of RO 

should not be less than the wheelbase, which 

varies depending on the type of soil. Low values 

of RO require a greater difference in angular 

velocity, which can cause slippage. Additionally, 

lower voltages must be applied, resulting in 

reduced power. The recommended value of RO 

for agricultural soils is 5-8 meters (Wu et al., 

2013). 

 

 

 

 

 

 

 

Figure 4. Kinematic model of electric robot with 

differential steering 

Experimental curves were utilized to determine 

the optimal RO value. These curves vary 

according to the forward speed at which the robot 

operates. Therefore, a specific speed needs to be 

considered first. The typical speed for robots that 

perform precise operations such as spot spraying 

or inter-row weeding is between 0.5-1 m/s. 

Robots used for in-row cultivation or planting 

generally have a speed range of 1-5 m/s. The 

motor and gearbox of the developed robot were 

chosen to provide a speed of 1 m/s, with a wheel 

radius of r=20 cm and a circumference of 2r, 

which equals 1.25 m. The nominal speed of the 

motors was 2500 rpm, and with a 1:50 gearbox, 

its nominal speed was 50 rpm or 0.83 rps. 

Therefore, the forward speed of 1.04 m/s was 

included in the experiments. The angular speed of 

the wheels required to achieve this speed was 

0.13 rad/s .Experimental tests were conducted to 

obtain the curve of different values of RO against 

different values of the angular speed difference of 

the left and right wheels at this forward speed 

(Figure 5). 
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Figure 5. The curve showing the relationship between 

the angular speed difference of the wheels and the turning 

radius 

When using mobile robots in farms, it is 

advisable to set the value of RO between 5 and 8. 

This is because high rotation angles in farm 

robots can cause severe slippage, which reduces 

the efficiency of the system and causes problems 

with traction. For faster turning, a turning 

diameter of 5m was chosen. Figure 5 shows an 

angular speed difference of 0.04 radians/second. 

In case of excessive slippage, a larger value 

should be selected. 

Applying appropriate voltage to the wheels 

A value of RO 5m was selected for which the 

angular velocity difference was 0.04 

radians/second. The amount of voltage required 

to generate this angular speed, and hence the 

numerical value of the PWM required by the 

controller, was determined in the laboratory. To 

achieve this, the rotational speed of the wheels 

and the angular speed were measured for different 

voltages. Various voltages were created and 

applied to the motor using the PWM method, and 

the voltage was read with a voltmeter. The 

number of revolutions per unit of time (rps) was 

measured using encoders attached to the wheel 

(Figure 6). 

Figure 6. The relationship between voltage and rps 

RESULTS AND DISCUSSION 

Closed loop control system of the steering 

camera  

In the previous section, we discussed the main 

feature of this robot, which is the adjustable 

height and angle of the camera based on the 

growth stage of the main plant. The camera's 

height and angle should be adjusted according to 

the plant's height to ensure accuracy. If the plant 

is shorter, the camera should be placed lower and 

its angle should be wider than the perpendicular 

to the ground. This allows for more continuity 

between the pixels related to the product row, 

resulting in a better representation of the row line 

with higher accuracy as shown in Figure 7-b. If 

the camera is positioned high and its angle is 

narrower than the perpendicular direction to the 

ground, there will be more separation between the 

green pixels of the row, and the obtained line will 

not be an ideal representative of the row line, 

resulting in lower accuracy (Figure 7a)
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.  

b a 

Figure 7. a: Image taken from the row at a lower height b: Image taken from a higher height  

The automatic camera control system had a 

second feature that involved using a light sensor 

to detect the direction of the sun's radiation. The 

experiments showed that moving the robot 

towards the sun during the early hours and late in 

the day could greatly reduce the accuracy of the 

system. This was due to the impact of solar rays 

on the camera sensor and the brightness created 

on plant leaves, especially sugar beets. 

PWM frequency selection for the used 

motor 

The method used to control the speed of the 

wheels was Pulse Width Modulation (PWM). In 

the coils, the induction impedance (Z) is directly 

proportional to the angular speed and the 

frequency (Relation 2). 

(2) Z = Lωj, ω = 2πf 

Where L is the induction coefficient (with 

Henry unit). 

High Z impedance causes the motor to heat up 

and reduces the efficiency and life of the motor. 

Therefore, the value of f should be chosen as a 

reasonable value. This numerical value should be 

between 20 and 40 kHz. This value varies from 

motor to motor, depending on the frequency 

response of the motor. The dynamic model of a 

DC motor can be shown in Figure (8). The 

inductor L is in series with the resistor R. To 

obtain the transfer function of the motor's 

electrical system, one must either have access to 

the values of R and L of the motor or obtain it in 

the laboratory. 

 

Figure 8. The dynamic figure of the engine used in the 

design 

The manufacturer, Kormas, provided the motor 

datasheet which contained the necessary 

information for the laboratory test. To conduct 

the test, the wire of the motor was connected to a 

digital voltmeter, and the data collected was 

recorded on the computer (as shown in Figure 9). 
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Figure 9. Motor response curve 

According to Figure 9, the system becomes 

stable after 15 ms. Figure 8 shows that the 

equivalent dynamic system consists of a 

resistance and an inductor, making it a first-order 

system. In first-order systems, equilibrium is 

reached at 5τ, as shown in Figure 10. The time 

constant of the system (τ) is equal to 3 ms. τ is 

inversely proportional to the exponential 

frequency (f), which has a value of 333. The 

system's function in the time environment is 

expressed as Relation 3). 

 

Figure 10. The time constant value of τ 

(3) VL=12(1-e-333t) 

In the design of PWM driver systems, it is 

recommended to use frequency values higher 

than the response frequency of the system, i.e. 

333. At much higher values, the relationship 

between current and voltage becomes non-linear. 

But lower frequencies cause noise. Since the limit 

of human hearing is 18 Hz, the PWM frequency 

was chosen higher than 20 kHz. Of course, 

provided that the frequency creation system can 

create this frequency. 

Steering accuracy of the robotic system  

To assess the performance of the robot 

guidance system and the real-time application of 

the image processing unit and the row tracking 

system, a field test was carried out. A powder 

indicator was used to measure the degree of 

deviation from the robot's path in the field (Figure 

11). The powder was poured in the center of the 

row. 

 

Figure 11. The amount of deviation from the middle 

line between the rows 

The average lateral deviation from the row for 

the data in Figure 11 was 12 mm. In case of 

increasing the density of weeds, this error 

increased up to 25 mm. 

CONCLUSIONS 

The development of an agricultural robotic 

platform at the University of Tabriz demonstrates 

significant advancements in precision farming, 

particularly for row crop fields. This platform 

integrates a vision-based row detection system 

and a motion controller, both essential for the 

autonomous navigation of the robot between crop 

rows. The vision-based guidance system 

leverages image data from a tilted camera and the 

Hough transform method to accurately identify 

and track crop rows. This precise tracking allows 
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the robot to move seamlessly between rows 

without damaging the crops. Moreover, the 

differential speed steering system, enhanced by 

PWM technology, adjusts the side motors' speed, 

thereby minimizing lateral offset error. The 

robotic platform exhibited remarkable 

performance in tracking sugar beet rows with a 

minimal average lateral offset and standard 

deviation, showcasing its potential to improve the 

efficiency and precision of agricultural 

operations. Overall, the integration of modern 

technologies in the robotic platform holds 

promise for advancing smart agriculture by 

enhancing crop management and operational 

efficiency. 
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