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ABSTRACT 

Remote sensing is a unique and cost-effective tool that provides 

information about the nitrogen status of plants in a non-destructive way. 

The objective of this study is to evaluate the effectiveness of aerial 

multispectral imagery captured by UAV for estimating corn nitrogen (N) 

and chlorophyll (Chl) content at different growth stages. The study used 

a fully randomized experimental design with four treatments of nitrogen 

fertilizer (0, 50%, 100%, and 150%). Ten plants were randomly selected 

in each plot at the phenological stages of 8 leaves (V8) and tasseling 

growth stages (VT) for sampling. Leaf samples were taken to measure 

total nitrogen (N) and chlorophyll (Chl) content. Mathematical models 

were created using vegetation indices extracted from aerial multispectral 

images to estimate the amount of nitrogen and chlorophyll. The models 

were evaluated using the leave-one-out cross-validation method. The 

results showed that there is a significant positive relationship between 

the leaf dry weight (LDW), the Chl and N content with the amount of 

nitrogen fertilizer used. So, the results indicated that the REIP index is 

suitable for estimating chlorophyll content in both the V8 (R2 of 0.997) 

and VT (R2 of 0.980) growth stages. Additionally, the REIP index was 

found to be an appropriate index for estimating N content in both growth 

stages (R2 of 0.980). It can be concluded that aerial multispectral remote 

sensing technology is a reliable method for estimating corn nitrogen and 

chlorophyll content. 
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INTRODUCTION 

Nitrogen (N) is an essential corn nutrient 

(Santana et al., 2021; Vleugels et al., 2017). 

Providing a sufficient amount of nitrogen 

increases photosynthesis and chlorophyll 

content, seed quality, and crop yield (Santana 

et al., 2021; Xu et al., 2023). 

The traditional method for determining 

plant N content involves destructive methods 

by the cutting of fresh biomass, subsequent 

drying and the measurement of N 

concentration, which is labor-intensive, 

tedious, time-consuming and therefore 

impractical under normal farm conditions 

(Wang et al., 2019). Also, the SPAD1 meter is 

the most commonly used tool applied for 

chlorophyll content diagnosis (Ban et al., 

2022; Lin et al., 2010). With this method, 

measurements were conducted at specific 

points, and readings were affected by different 

leaf positions (Krienke et al., 2017).  

Recent research into detecting N and Chl 

variability has focused on non-destructive, 

timely and more effective in-season 

management techniques (Shanahan et al., 

2008). A variety of sensors and technologies 

including hyperspectral and RGB sensors, 

LiDAR systems (Escalante et al., 2019), the 

GreenSeeker (Xia et al., 2016), the Crop Circle 

(Cao et al., 2015), and satellite remote sensing 

(Bagheri et al., 2022; Xu et al., 2021) have 

been used to develop a non-destructive and 

quick method to estimate the N and 

chlorophyll content in crops (Wang et al., 

2019).  

Remote sensing is a unique tool for 

providing information linked to plant N and 

chlorophyll status in a rapid, cost-effective, 

and non-destructive way (Liu et al., 2018). 

Satellite imagery is known as one of the most 

popular types of remote sensing images 

(Wang et al., 2019). Satellite imagery has 

                                                      
1. Chlorophyll meter soil plant analysis 

shown the ability to diagnose N and 

chlorophyll status in corn (Bagheri et al., 

2013), rice (Huang et al., 2015) and maize 

(Gabriel et al., 2017). The use of satellites for 

precise monitoring of crop growth in 

smallholder fields is very extensive but limited 

due to its high cost, time consumption, and low 

resolution (Escalante et al., 2019; Xu et al., 

2021).  

In recent years, new opportunities for crop 

monitoring have been opened up by the use of 

Unmanned Aerial Vehicles (UAVs). UAVs 

are more flexible in scheduling field surveys 

than satellite remote sensing techniques 

(Pádua et al., 2017). In comparison with 

satellite remote sensing or aircraft-based 

imaging, UAV-based low-altitude remote 

sensing could acquire timely images with 

higher resolution and lower cost (Krienke et 

al., 2017; Narmilan et al., 2022). UAVs have 

the potential as a platform for detecting and 

managing crop stress during the growing 

season, and they provide unique advantages 

compared with other platforms (Colomina & 

Molina, 2014; Xu et al., 2021). In the last 

decade, there has been an increase in remote 

sensing applications with UAVs for precision 

agriculture rather than conventional satellite 

imagery (Escalante et al., 2019; Huang et al., 

2013; Tripicchio et al., 2015; Valente et al., 

2011; Zhang & Kovacs, 2012). UAV-based 

vegetation indices have been successfully 

regressed against leaf chlorophyll 

(Lebourgeois et al., 2008; Miao et al., 2009; 

Narmilan et al., 2022; Noh & Zhang, 2012) 

and N content  (Barzin et al., 2021; Geipel et 

al., 2016; Lebourgeois et al., 2012; Reyniers & 

Vrindts, 2006) of different crops such as wheat 

(Chen et al., 2023), corn (Xu et al., 2021), 

maize (Bagheri et al., 2022; Corti et al., 2019; 

Jaberi-Aghdam et al., 2024; Krienke et al., 

2017), rice (Ban et al., 2022; Li et al., 2015), 

canola (Liu et al., 2018), grass seed (Wang et 
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al., 2019) and barley (Escalante et al., 2019).  

The summary of previous research shows that 

aerial images taken by UAV have a good 

ability to estimate the biochemical 

characteristics of crops. Considering the 

importance of nitrogen and chlorophyll in 

examining plant growth and yield estimation, 

the objectives of this research are as follows: 

 - Investigating the ability of aerial 

multispectral images taken by UAV to 

estimate the amount of nitrogen and 

chlorophyll of corn plants in V8 and VT 

growth stages. 

 - Introduction of appropriate vegetation 

indices extracted from aerial multispectral 

images to estimate nitrogen and chlorophyll in 

different stages of crop growth.  

- Providing mathematical models with 

acceptable accuracy to estimate the studied 

variables.  

MATERIALS AND METHODS 

Field Experiments 

The study area was a research field at 

Varamin, Iran (35° 8ʹN and 51° 40ʹE) during 

the 2018 growing season (Fig1). Soil sampling 

was carried out before corn planting. Five 

samples from the soil depth of 0-30 cm were 

collected and then sent to the laboratory for 

chemical analysis. Based on the results of soil 

experiments, the soil was classified as a sandy 

loam with N: 1.1%, Phosphorus (P): 10.4 ppm, 

Potassium (K): 410 ppm, Electrical 

Conductivity (EC): 3.65 Ds/m1 and pH: 7.69.  

Figure 1. The study area and experimental plots of the research 

 

The experimental field trial design was a 

fully randomized design with four N fertilizer 

treatments and four replications. The area of 

each plot was 22.5m2. Corn seed (Gazda MTC 

450) was planted in all plots by seeder in 5-8 

cm soil depth with a 75 cm row distance. Four 

N fertilizer levels of 0, 50%, 100% (71.3 kg/ha 

N), and 150% were applied by water irrigation 

                                                      
1. Desi Siemens per Meter 
2. The 8 leaves on the corn plant 
3. Tasseling stage 

in the V8 2 and the VT 3 growth stages. Plant 

sampling and aerial imaging were performed 

in one day. Ten plants were randomly sampled 

per plot between 12:00- 14:00 to measure Chl, 

N contents and Leaf dry weight (LDW). Chl 

content of plant samples was measured in the 

V8, and VT4 corn growth stages using a 

Minolta SPAD 502 Chlorophyll meter 

4. The silking stage (silk is visible outside the 

husk) 
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(Minolta Corp., Osaka, Japan). SPAD values 

calculate relative Chl content based on the 

amount of light transmitted by the leaves at 

two different wavelengths: red (650 nm) and 

near-infrared (940 nm) (Maresma et al., 2016). 

Measurements were carried out from all leaves 

of selected plants. Three readings were taken 

from the base, middle and top of each leaf, and 

the averaged data were used for processing. 

The Kjeldahl method is used to determine leaf 

N content. First, the leaves were separated 

from the stems, oven-dried at 70°C for 48 

hours, weighed on a digital scale with 0.1 g 

accuracy, ground to pass a 1 mm mesh screen, 

then stored in plastic bags, and sent to the plant 

analysis laboratory (Bagheri et al., 2013). 

LDW of samples was obtained by weighting 

dried samples with a digital scale with 0.1 g 

accuracy. Data of Chl reading, N, and LDW 

for each treatment (and in each replication) 

were used to construct mathematical models.  

Aerial imagery acquisition 

Aerial multispectral imagery of corn crops 

was carried out using a UAV before collecting 

leaf samples. The developed UAV by Bagheri 

et al. (2017) is used for aerial imaging. It was 

an eight-rotor aerial platform with a robust 

carbon-fiber flight frame capable of vertical 

take-off and landing. This system consisted of 

onboard and ground-station subsystems. The 

onboard subsystem was equipped with body 

and wings, 8 D.C. brushless motors, 8 control 

speeds, chargeable 3-cell Lithium polymer 

battery (3300mAh- 11.1V, Shanghai Danlions 

International Co., Shanghai, China), carbon-

fiber camera mount, and autopilot intelligent 

navigation system (NAZA MV2). The ground 

station was equipped with 8-frequency radio 

control and laptop and flight monitor software. 

In the present study, the aerial images were 

taken in the V8 (2 October 2018) and VT (18 

November 2018) corn growth stages between 

11:00 to 12:00 in sunny weather, cloud-free 

and clear sky. Aerial images were obtained at 

a flight height of 100m above the ground level 

with a spatial resolution of 4cm. Therefore one 

static image shot was enough to cover the 

whole area.  

ADC-Micro multispectral camera 

(Tetracam, Inc, Gainesville, FL, USA) with 

520-900 nm wavelengths in Green (520-600 

nm), Red (630-690 nm), and Near-infrared 

(760-900 nm) channels were used to collect 

imagery. This camera has a 3.2 megapixel 

CMOS sensor (resolution of 2048 * 1536 

pixels), and a fixed lens with a focal length of 

8.43 mm. A Teflon calibration target was used 

for image calibration. The Teflon target 

exhibits a reflectivity of approximately 99% in 

the wavelength range of 520-900 nm. DCM 

File format was selected for image saving and 

the camera was set to the automatic exposure 

time (5s). 

The calibration image was captured at the 

height of the canopy level so that the surface 

of the Teflon target was inside the image 

frame. Aerial multispectral imagery of the 

corn farm in the V8 and the VT growth stages 

is shown in Fig 2. 

 Figure 2. Aerial multispectral imagery of the corn 

farm in a: V8 (Right) and b: VT growth stages (Left) 

(NIR-R-G bands) 

Multispectral aerial images analysis  

Preprocessing and processing of the 

collected aerial imagery were performed after 

collecting images and extracting data from the 

SD memory card of the camera. The 

PixelWrench2 (Tetracam Co, USA) and the 

environment for visualizing images software 

(ENVI 5.4, L3Harris Geospatial) were used 

for the preprocessing and processing of 
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imagery, respectively. For preprocessing, the 

color reconstruction of the raw images was 

carried out. The Tagged Imagery File Format 

(TIFF) was produced for saving images. Then, 

the false-color composite of the collected 

imagery with the NIR-Red-Green band 

composite was prepared. Also, radiometric 

calibration is performed by using a white 

Teflon calibration plate. Processing images 

was carried out by the ENVI 5.4 software. The 

vegetation indices (VIs) based on green, red, 

and near-infrared spectral bands as effective 

predictors of plant greenness as well as the N 

and Chl content in plants were used (Liu et al., 

2018; Shanahan et al., 2008) (Table 1). After 

extracting the spectral value of G, R, and NIR 

bands for each pixel of the image, vegetation 

indices were calculated for each image pixel. 

Then the values of VIs were averaged (16 

average VIs for four treatments and four 

replications). The mean values of VIs data 

were used to construct mathematical models 

for estimating N and Chl content. 

The relationship between calculated 

vegetation indices with Chl reading and corn 

N content of treatments was obtained by 

second-order polynomial regression models. 

The Leave-one-out cross-validation method 

was used for the validation of vegetation 

indices-based models. In the method, all but 

one sample was used for training the model 

(15 samples), then the trained model was used 

to predict the variable of interest in the leaved-

out (test) instance. This process was repeated 

15-times, each time changing the test sample. 

These values were averaged and reported 

following the procedure used by Escalante 

Escalante et al., 2019. The root means square 

error (RMSE) and the coefficient of 

determination (R2) was used to evaluate the 

performance of models by Excel 10 software 

(Microsoft, USA). The best equations fit all 

models were second-order polynomial 

equations. 

Table 1. Vegetation indices for estimation of N and Chl contents 

References Equation Vegetation Index 

(Haboudane et al., 2004) 𝑁𝐼𝑅−𝑅

√𝑁𝐼𝑅+𝑅
 

 

RDVI1 

(Cao et al., 2015) (
𝑁𝐼𝑅
𝑅

− 1)

√(
𝑁𝐼𝑅
𝑅

+ 1)

 

MSR2 

(Daughtry et al., 2000) 1.2 × [2.5(𝑁𝐼𝑅 − 𝑅) − 1.3(𝑁𝐼𝑅 − 𝐺)] MCARI13 

(Haboudane et al., 2004) 1.5 × [2.5(𝑁𝐼𝑅 − 𝑅) − 1.3(𝑁𝐼𝑅 − 𝐺)]

√−0.5 + (2𝑁𝐼𝑅 + 1)2 − (6𝑁𝐼𝑅 − 5√𝑅)

 
MCARI24 

(Elvanidi et al., 2018) 
3 [(𝑁𝐼𝑅 − 𝑅) − 0.2(𝑁𝐼𝑅 − 𝐺) × (

𝑁𝐼𝑅

𝑅
)] 

TCARI5 

(Gitelson et al., 2001) 
(
1

𝐺
) − (

1

𝑁𝐼𝑅
) 

ARI6 

(Mistele & Schmidhalter, 2008) 700 + 40((R + NIR)/2 -R)/(NIR-R) REIP7 

                                                      
1. Randomized Difference Vegetation Index 
2. Modified Simple Ratio 
3. Modified Chlorophyll Absorption Ratio Index1 
4. Modified Chlorophyll Absorption Ratio Index2 

5. Transformed Chlorophyll Absorption and Reflectance Index 
6. Anthocyanin Reflectance Index 
7. Red Edge Inflection Point 
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RESULTS AND DISCUSSION 

The relationship between corn N content 

and applied N fertilizer  

The relationship between the applied N 

fertilizer and the LDW of treatments is shown 

in Fig 3. Based on the figure, the LDW of 

treatments increased by increasing the amount 

of N fertilizer applied to the farm in both V8 

and VT growth stages. The LDW of the crop 

in the VT stage was more than the LDW of the 

V8 stage because, in the VT stage, the plant 

received N fertilizer once more than in the V8 

stage and the plant biomass and nitrogen 

content were higher in the VT stage in 

comparison with the V8 stage. Santana et al 

(2021) and Xu et al (2023) found that there is 

a positive and significant relationship between 

nitrogen content and plant weight and 

increasing the dry weight of the plant increases 

yield. 

 
Figure 3. The relationship between applied N 

fertilizer and LDW  

The relationship between applied N 

fertilizer and corn N content (g) of treatments 

is shown in Fig 4. The content of N is obtained 

by multiplying the percent of N content by 

LDW. Based on Fig 4, N content increased by 

increasing N fertilizer dosage in both the V8 

and VT stages. Increasing the nitrogen content 

with increasing the amount of fertilizer in the 

V8 growth stage is not very significant, but the 

increasing trend is evident in the VT growth 

stage. Since the plant in the VT growth stage 

has received N fertilizer once more than the 

V8 growth stage and LDW has increased, so 

the amount of nitrogen content of the plant has 

increased in this growth stage. 

 
Figure 4. The relationship between corns N content 

(g) and applied N fertilizer 

The relationship between Chl and N 

content of leaves 

The relationship between the Chl and N 

content of leaves is shown in Fig 5. Based on 

the figure, the higher the N content of the 

leaves, the greater the Chl reading for both V8 

and VT growth stages. Results showed a high 

correlation between leaves Chl reading and N 

content in the V8 (R2=0.97) and VT (R2=0.99) 

growth stages. According to the report of Xu 

et al. (2023), nitrogen is one of the important 

components of chlorophyll and there is a 

positive and significant relationship between 

them. 

 
Figure 5. The relationship between Chl reading of 

leaves and N content 
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The relationship between leaves Chl and 

vegetation indices 

To determine the correlation between Chl 

and vegetation indices in V8 and VT growth 

stages, the mathematical models of predicting 

Chl based on VIs were obtained. The results of 

predicted models and their validation by 

leave-one-out validation test are presented in 

Table 2. Second-order polynomial equations 

were used for modeling because of better 

fitting in comparison with other equations. 

Based on the results, REIP is predictable by 

Chl with R2 values of 0.997, 0.990, 0.997, 

0.970 and 0.997, respectively in the V8 growth 

stage and R2 values of 0.982, 0.966, 0.900, 

0.970 and 0.985, respectively in the VT 

growth stage. ARI and MCARI1 indices are 

good predictors of Chl in the V8 stage with R2 

values of 0.910 and 0.932, respectively and 

also TCARI and MCARI2 are good predictors 

of Chl in the VT stage with R2 values of 0.961 

and 0.971, respectively. By comparing R2 

values, it could be concluded that REIP and 

ARI are good predictors of Chl with R2 of 0.99 

in the V8 stage. The REIP index is a good 

predictor of Chl in the VT stage with an R2 of 

0.98. Ben et al. (2022) reported the correlation 

between the actual and estimated chlorophyll 

values with this method from 0.76 to 0.86. 

Narmilan et al. (2022) also found the 

coefficients of determination (R2) between the 

actual and estimated chlorophyll value of 

sugarcane, according to the type of algorithm 

used, from 0.68 to 98. 

Table 2. Validation results of VIS models for estimating Chl 

VI 
Growth Stage  Predicted  Validated 

 R2  R2 RMSE 

RDVI 
V8  0.357  0.990 0.006 

VT  0.450  0.966 0.002 

MSR 
V8  0.620  0.025 0.132 

VT  0.999  0.609 0.365 

MCARI1 
V8  0.570  0.932 4.57 

VT  0.888  0.749 50.40 

MCARI2 
V8  0.920  0.584 0.007 

VT  0.440  0.971 0.006 

TCARI 
V8  0.921  0.174 169.3 

VT  0.990  0.961 135.8 

ARI 
V8  0.999  0.91 0.000 

VT  0.830  0.1 0.000 

REIP 
V8  0.984  0.997 0.03 

VT  0.978  0.985 0.004 

       

 

The relationship between vegetation 

indices and applied N 

The relationship between investigated 

vegetation indices and the level of applied N is 

shown in Fig 6. It is found that VIs had 

different responses to the N at the low, optimal 

and excessive N fertilizer. Most VIs showed a 

higher correlation with amounts of nitrogen in 

the V8 growth stage than in the VT growth 

stage because there was not much difference 

between treatments due to the small amount of 

nitrogen distributed in the V8 growth stage. 

MCARI2, and TCARI, indices were correlated 

more with the N in the VT growth stage than 

the V8 growth stage because more variations 

in plant N concentration could be explained by 

VIs at later growth stage when the canopy was 

fully closed compared to earlier stages when 
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the field was partially covered by the canopy 

(Cao et al., 2015).  

Based on the figure MSR indices values 

increased by increasing the applied N fertilizer 

in both V8 and VT growth stages. For the 

RDVI index, there is an increasing trend with 

increasing applied N fertilizer in the V8 stage 

and for the VT stage, the index value increased 

by increasing N fertilizer level in N50% and 

N150%. For the MCARI1 index, an increasing 

trend was obtained by increasing the N 

fertilizer level with a low slope in the V8 stage. 

In the VT stage, the MCARI1 index value 

decreased with increasing the N fertilizer level 

in N100% but it showed increasing trends in 

N50% and N150%. For the MCARI2 index, 

increasing trends were observed by increasing 

the N fertilizer level in the V8 stage except for 

N50%. These indices showed increasing 

trends by increasing the N fertilizer level 

except for N100% in the VT stage. The 

TCARI index in the V8 and VT stages 

decreased and increased by increasing the N 

fertilizer level, respectively. For the ARI 

index, a decreasing trend was observed by 

increasing the applied N fertilizer in the V8 

stage. In the VT stage, the ARI index value 

decreased to N50% and N150% levels. The 

REIP index value decreased by increasing the 

applied N fertilizer level for both V8 and VT 

stages but in the V8 stage, the decreasing trend 

had a low slope. Santana et al. (2021) found a 

positive and significant relationship between 

corn nitrogen content and some vegetation 

indices. 

 
Figure 6. The relationship between vegetation indices and applied N 
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The results of the validation of obtained 

models for estimating N content (g) of leaves 

by VIs are presented in Table 4. In this table, 

R2 and RMSE values of evaluated models by 

the Leave-one-out method are shown. The 

results demonstrated that strong relationships 

exist between the REIP indices and corn N 

content in both V8 and VT growth stages. 

Among the studied VIs ARI and TCARI 

indices are good predictors of N content in the 

V8 and VT growth stages, respectively. 

Therefore, by comparison of the R2 and RMSE 

values of models, it could be concluded that 

the REIP index was the best vegetation index 

for modeling N content in the V8 growth 

stage. The TCARI index was the best 

vegetation index among investigated indices 

for modeling N content in the VT growth 

stage. Chen et al obtained correlation 

coefficients of 0.47, 0.83, 0.86 and 0.77 

between the actual and estimated nitrogen 

values of the wheat crop for booting, heading, 

flowering and filling growth stages, 

respectively. Xue et al (2023) obtained similar 

results for monitoring leaf nitrogen content in 

rice. 

Table 4. The results of the validation of models for estimating N content 

VI 
Growth 

Stage 
R2 RMSE VI 

Growh 

Stage 
R2 RMSE 

RDVI 
V8 0.65 0.15 

TCARI 
V8 0.88 0.11 

VT 0.22 3.48 VT 0.97 0.78 

MSR 
V8 0.65 0.18 

ARI 
V8 0.97 0.52 

VT 0.99 6.40 VT 0.35 2.83 

MCARI1 
V8 0.68 0.29 

REIP 

V8 0.98 0.03 

VT 0.88 1.52 

VT 0.98 1.53 
MCARI2 

V8 0.75 0.10 

VT 0.19 3.82 

 

 CONCLUSIONS 

In this paper, the application of precision 

agriculture and the performance of aerial 

multispectral imagery taken by the UAV were 

evaluated to estimate the N and Chl content of 

corn at different growth stages. The following 

conclusions are drawn from the results of the 

study: 

- The amount of LDW, N and Chl contents 

of corn leaves increased by increasing the 

amount of applied N fertilizer in both V8 and 

VT growth stages. 

- Among investigated indices, REIP was the 

best vegetation index for estimating the Chl 

content in both growth stages. 

- Among investigated indices, the REIP 

index was the best vegetation index for 

estimating corn N content in both V8 and VT 

growth stages. 
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