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ABSTRACT. In this paper, a hybrid method for solving time-fractional
Black-Scholes equation is introduced for option pricing. The presented
method is based on time and space discretization. A second order finite
difference formula is used to time discretization and space discretization
is done by a spectral method based on Chelyshkov wavelets and an op-
erational process by defining Chelyshkov wavelets operational matrices.
Convergence and error analysis for Chelyshkov wavelets approximation
and also for the proposed method are discussed. The method is validated
and its accuracy, convergency and efficiency are demonstrated through
some cases with given accurate solutions. The method is also utilize for
pricing various European options conducted by a time-fractional Black-
Scholes model.
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1. Introduction

Simulation of many phenomena in applied sciences and engineering by frac-
tional order differential equations (FDEs) is more accurate and expressive than
their simulation by classical differential equations. Fractional derivatives and
integrals, because of their non-locality feature, play a paramount rule for char-
acterization of memory. Because, the classical Black-Scholes equation is based
on certain stringent assumptions, which include constant volatility, constant
rates of return, and the absence of dividends, taxes, or transaction costs. The
emergence of fractional structures in the financial market has led to the de-
velopment of fractional Black-Scholes (fBS) models. A significant limitation
of the classical Black-Scholes approach, as well as some other versions, is the
integer order derivative in their differential components. Integer order deriva-
tives only offer local information around a specific point. However, changes in
market conditions have resulted in the evolution of some unusual structures
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in financial systems. Models that rely on local derivatives are flawed in many
ways due to these changes. To address these shortcomings and provide a more
realistic representation of reality, fractional models have been introduced.

The memory and non-locality properties, two fundamental aspects of frac-
tional calculus, have enhanced the Black—Scholes equation with fractional time
order, making it a more accurate model for option pricing. A nonlocal operator
isn’t directly determined by function values, hence the concept of non-locality
introduces an additional layer of uncertainty into deterministic physical sys-
tems, similar to Heisenberg’s uncertainty principle.

Moreover, a fractional derivative’s covariant formulation is inherently based
on a global concept of non-locality, which is also applicable to space-dependent
derivative operators. Unlike an integer order differential operator, which is
local, a fractional order differential operator is nonlocal. This nonlocal nature
of the fractional order derivative in the model makes both exact and numerical
solutions more complex compared to those with the integer order model.

According to modern nonlocal theory, this behavior is a direct result of a
memory effect. In a society with memory, relationships are more stable, but
the strength of these relationships varies depending on how well the society
remembers its past. The more the past is remembered, the less likely change
occurs. Conversely, in a network with little memory, relationships are in a
constant state of flux.

The interpretation of equations involving derivatives and integrals of non-
integer order in relation to time is linked to memory effects. Fractional deriva-
tives have the ability to depict the traits of long memory and nonlocal reliance
of numerous irregular processes. The system’s memory effect is preserved by
the fractional-order derivative, which is non-local and surpasses the integer-
order derivative in this aspect.

In this context, various fractional Black—Scholes models have been succes-
sively introduced. It’s widely recognized that fractional calculus is an optimal
tool for illustrating memory effects. In fact, these memory effects encompass
trend memory, which can be expressed using fractional derivatives. Therefore,
we can use fractional calculus to represent the memory process of the increment
in traditional stochastic differential equations.

Models based on fractional derivatives are excellent mathematical instru-
ments for elucidating the dynamics of intricate processes, irregular increases,
and trend memory effects, which are demonstrated by a variety of financial
instruments.

On the whole, it is possible to solve quite a few fractional differential equa-
tions analytically. Indeed, actual solutions are not attainable usually for FDEs.
Accordingly, numerical approaches are unavoidable to solve such problems.
In order to solving FDEs, a wide range of numerical methods has been pro-
posed [6,9-12,14,15,21]. Research on FDEs has obtain much usefulness by rea-
son of their applications in various distinct areas of engineering and science. A
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portion of the fields of utilization of FDEs cover viscoplasticity, signal process-
ing, control theory, acoustics, material science and fluid mechanics [6,26]. Also,
FDEs are used frequently and properly to represent financial problems [24].

A few years after publishing the Black and Scholes well-known partial dif-
ferential equation (PDE) for the fair value of European call and put options,
many attempts were made to solve the problem numerically. At the present,
numerical solution of time-dependent PDEs, and specifically, time fractional
differential equations set up one of the important bases of computational fi-
nance.

This research has considered the time-fractional Black-Scholes (TFBS) equa-
tion of the following equation:

0%V (s,7) a* 5 9*V(s,T) oV (s, 1) B
74_?3 552 +rs s rV(s,7) =0,

M vO,7) = Vo(r), V(oo,r) = Valr), V(s,T)=Vils),
(s,7) € [0,00) x (0,T) and 0 < & < 1.

Various methods have been presented for producing approximate solution
for TFBS equation. For example, in [34], proposed an implicit finite difference
method (IFDM) to achieve an approximate solution for a spatial fractional
Black-Scholes equation. In [32], proposed an implicit discrete scheme for ap-
proximating the solution of a European options TFBS model, which has a
convergence order of O(At?~% + Az?). An implicit FDM was presented in [28],
for the approximate solution of a TFBS equation. It was proven that the
method is convergent with order of accuracy one in terms of time variable and
with order of accuracy two in terms of space variable. In [3] it was introduced
a method to get to numerical solution of the TFBS equation. It should be
noted that there are few numerical methods offered in researches for solving
the TFBS equation (1). Even though various numerical approaches have been
introduced to deal with the given problem, these suggested procedures are of
less orders in terms of space variable.

In this article, we suggest an approximating procedure with indispensable
analyzes for solving the TFBS model (1) which is of high order in terms of
space variable. The numerical solution process in this paper is obtained using
the popular method of finite difference, followed by a wavelet approach.

The framework of the article is set up as follows: in Section 2, necessary
prerequisites such as the definitions and properties of the used wavelet, a little
about fractional order derivative, and an approximation of fractional deriva-
tive are given. In section 3, notion of operational matrix of integration and
required formulaes are explained. Description of the presented method is de-
clared in section 4. In section 5, convergence of the method is analyzed from
two perspective. Eventually, illustrative examples are provided in section 6 to
expose the method applicability and exactitude.



426 S.A. Samareh Hashemi, H. Saeedi, A. F. Bastani

2. Preliminaries

1. Chelyshkov Wavelets. Chelyshkov Wavelets (ChWSs), ¢y, i (2) = ¢(k, n,m, x),
are defined on the interval [0,1) through [19]:

) Ynm(t) = {\/mpm@kt —n), & <t< il

0, 0therw1se,

where P,,(t) is the Chelyshkov polynomial, which is defined as follows:

(3) P (t) == pram(t Z am 1", m=0,1,..., M,

where:
am,; = (—1)! (

and M is a fixed predetermined integer.

With simple calculations can be observe that the Chelyshkov polynomials,
with respect to the weight function w(t) = 1, are orthogonal on the interval
[0,1] . ie. :

M-—m\(M+m+j+1
j M —-m ’

1
/ P, (t) P (t) dt = 5’"7",
0 m+n+1

where §,,, is the Kronecker delta. Besides,

! 1
(4) /OPn(t)dt_M+1, n=01,. . M
Fixing M, an integer, according to Eq. (3), it is obvious each element of the
set formed by polynomials P,,(t), m=0,1,..., M is of degree M.
The ChWs {¢, () |n = 0,1,...2F — 1, m = 0,1,... M} constitutes an
orthonormal basis for L?[0,1]. Therefore, any member f(t) € L?[0,1] can be
built up in terms of ChWs as:

(5) f(t) = Z Z Cnm Yn,m (1)

n=0m=0

where ¢, m = (f, Ynm) fo t) Yn,m (t) dt. Truncating the infinite series
in Eq. (5) is lead to:

2k_1 M

(6) ~ 3" cnm nm(t) = CTE(2),

n=0 m=0
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where C and ¥(t) are m = 2¥(M + 1)-vectors, are of the form:
CcT = [C0,05 €015+ -5 COM»CLOs -+ CL M- -5 Cok 1,0y Cok_1,M
(M) =[e1,¢,. .., Cmls
(8) () = [oolt), ... o (t),Yro(t), . b1a(t),. ..,
Yor_1,0(t); -+ Yoy pr(t)]
9) = [¥1(8), Y2 (1), - ., Y (£))].

2.2. Modified Riemann-Lioville fractional derivative. The modified Riemann-
Lioville fractional derivative is defined as [25]:

0%u(x,t) 1 o [Tz, ) — u(z,0)
10 = v ———d O0<a<l,
(10) 1o T(1_a) ot /0 t—ro @
Also, the Caputo fractional derivative is defined by [6]:
] . aug %)
Dg t) = 5 —d 1.
le} O,tU({E’) 11(1_04)/0 (- ) s, O<ax<

The Caputo approach’s primary benefit is its similarity to integer order
differential equations when it comes to initial and boundary conditions. This
similarity allows for the same interpretation, making it a popular choice in
practical applications. The Caputo derivative proves to be extremely effective
in tackling real-world problems. It enables the inclusion of standard initial and
boundary conditions in problem-solving, and also maintains that the derivative
of a constant is zero. To see the advantages of the Caputo derivative over other
fractional derivatives in detail, see the following references [7,27,29].

It can be shown that the modified Riemann-Lioville fractional derivative is
equivalent to the Caputo fractional derivative as follows:

0%u(x,t) 1 o ["u(x,7)—u(z,0)
ate T(l—a) ot /0 G O
B 1 L ou(x, ) e gr
S T(1-a) /0 or (t=m)d
(11) = CD(()X,t ’U,(.’L',t) )

After setting uniform grids {tk}géo with t, = kh, h = -, utilizing the

Vta
forward difference formula M and approximating the derivative of

order one on each interval [tg,tx+1] bring in:

Jj—1 _
(12)  [eDgf®)],_, = D bimrt (fltrsn) = f(B)) + B, 0<a<l,
k=0

where j =1,2,..., N¢, and
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h*OL
b= ——— ((k+ 1) > =k k=0,1,....5—1.
k F(Q—Oé) (( + ) )7 Pt} yJ
In equation (12) Ei is the truncation error and Efl < ¢ph?™ and c¢f is a
constant where its value merely depends on f [21,26].

3. ChWs Operational matrix of integration

At this point, we extract a matrix that it makes easy to approximate the
integral of functions. This matrix is called the operational matrix of integration
for ChWs which will be used in the sequel.

By Eq. (3), form =0,1,...,M and ¢ = 0,1,..., it’s easy to calculate that:

T M—m
Qv .
13 P,(t)dt = — ) pmtitl
(13) | Patt >
1 M—-m @
14 9P, (x)dr = —
(14 | aPuto) Y T

Lemma 1. The elements of operational matrix of integration to Chelyshkov
polynomials are in the following form:

_ fo dtP MZJMZZ (2i+1)ajia;,

bij = (P, ()dtP (Il +2)

Proof. According to Eq. (13), we can get:

1 x 1 /M—j ;i l
P;(t)dt) Pi(z)dx = —L I ) Py(z)d
[ ([ poa) rwa /o<§j+1+1x () da
M—j 1
= Z L / xjHHP(J:) dx
—~ j+1+1Jo ’
and by Eq. (14)
M—j M—i
X S Y s
,:0j+l+1 — j+l+1+i+r+1
M—j M~ o a
15 3,0 Qi r )
(15) ;; GHI+D)G+HI+i+7r+2)

Thus if ®(x) = [Po(x),..., Py(x)]" is the vector of Chelyshkov polynomi-
als, then Chelyshkov polynomials operational matrix of integration , P, with
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¥ ®(t) dt ~ P ®(x) will be:
(16)

I M 22—}—1)@];@”

P = [pi; ) Dij = .
il e Pig ;; I+ D)+ l+i+7+2)

Now, using the mentioned topics, we will try to get ChWs operational matrix
of integration. If W(z) stands for the vector of ChWs, then the integral of it
can be approximated by itself and written as:

(17) /Oz W(t) dt ~ P W(z).

In the above formula, P is named the ChWs operational matrix of integration
which is an M X m matrix that is derived by the following process.

Similarly to above topics, by fixing the predetermined integers M, k and
real op <z <1, we start by:

mzbnm(t)dt:/I\/Qk(2m+1)Pm(2kt—n)dt
(18) =1/2F(2m + 1) /m P (28t —n) dt.

Substituting w = 25t —n and z = "2—";4 where 0 < ¢ < 1, in Eq. (18) and
using Eq. (13) we have:

r 2m+1 [7
/Ownm(t)dt: T/O Pm(w dw

0 T < gr
_ 2m+1 —m _ Qm,j k. m+j+1 n n+1
(19) = Z m+j+1 (2%z —n) ot <o < R
2m+1 1 n+1

oF  M+1 T > 3k
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So,

nil Mm
2m+1 a ;
nm (t) dt dz = 0 \/ "l (2Fg — p)m it g
//1/) x +/ ok m—i—j—l—l( T —mn) z
+ 2m+1 d
x
n+1 2k M—I—l
/2 Am,j
23 (m+j+1)(m+j+2)

n+1 2m+1 1

1—
+ 2k) 28 M +1
M—m
2m +1 A 2k —n—1
20 =\ — g .J - +
(20) 23k = (m+j+1)(m+j+2) M+1

As we know, elements of the operational matrix of integration for ChWs are
fo fo Y () dt) Yqi(z) dz. To reduce the computation time and complexity
we try to drlve a formula to that which is as simple as possible. Is is easy to
find that this integral is zero for n > ¢, hence we consider two cases, i.e. n < g
and n = ¢ separately. First, if n < ¢, by (4) and (19),

Lrge om+1 1 o

2m+1 1 2i+1 1
2k M +1 2k M +1
V/@m41)(2i+1)
T 2K(M +1)2
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Now, we investigate the case n = ¢, so:

1 x
/ ( / wnm(t)dt> (@) da
0 0
1 M—m ) ]
- [ et | v s
j:

0
2m 41 Mmooy )
t/ V/i% > n1+?ﬂ—1mkx_”wm+rﬂ 28(2i + 1) P, (2" x — n) dz
7=0

M—m ntl

ok
=v2 1v2i+1 Z +]+1/ (2k,7;— )m-‘r]-‘rlP( x—n)dw

:¢<2m+1><2z'+1> s /1um+f+la<u>du

- .
2 Somtjtl

(22)

M—m M—1

\/(2m+1 2Z+1 Z Z Q5 Qi r

(m+j+1)(m+j+i+r+2)

It is obvious that for z < g, we have fo Ynm(t)dt = 0. Thus, the opera-
tional matrix of integration for ChWs has an upper triangular block matrix as
below:

D M N
0 D M N N
0 0

(23) P = :
00 0 - DN
0 0 0 -~ 0 D

where © and M are (M + 1) x (M + 1) matrices whose elements are:

D= [dij](M+1)><(1W+1)7

ij =

(G+I+1)( j+l+z+T+2)’

=0 r=0
and

(2j + 1)(22’ + 1)
(25) N = [771']‘}(M+1)><(1W+1)a ij = 2’€(M + 1)2

In other words,

(26) P=1,09+UaMN,
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where I, is the identity matrix of order 2% and Uy, is a strictly upper triangular
matrix whose up-diagonal elements are all 1 and the others are 0, i.e.:

01 1 - 1 1
001 -+ 1 1
000 -+~ 11
Upg=1|. . . . .. ,
00 0 0 1
00 0 -+ 0 0],
and,
27 N NN N+ 200 N+ (28 — 2)n?
0 D2 N N+ N N+ (2% — 3)M?
P2: : .
0 0 0 0 R
0 0 0 0 D2

where 01 := D9+ ND. If we define 25 x 2% matrix Uy as:

001 2 ... 202

_ 000 1 ... 28-3

Uk: . . . . . . )
000 0 ... 0 | o

then, we will have Uy, = Uy, x Uy, = U3
P’=1,, 092+ U, N+ U, @ N2,
= I D+ U @ N+ U @ N

Consequently, to obtain the operational matrix if integration for ChWs it is
sufficient to calculate ® and 91 in (23). In order to determine @, it is enough
to consider n = ¢, say, n = ¢ = 0 in (22). Also, to obtain 9 we can set n =0
and i =1 in (21).

For example if k = 3 and M = 3, we have:

105 273v3 1895 2137

1 —63v/3 315 24515  205v/21
28.3.5.7 | 21v/5  —35V15 525 225+/35| ’
—3V7  5V/21  —15V35 735

@:

and:

1 V3 V6 VT
1 |v3 3 Vis V21
27 (V5 V15 5 V35|

VT V21 V35T

N =
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3.1. Solving an ODE with boundary conditions by ChWs. We start
this section by trying to find an approximate solution for the following second
order boundary value problem using ChWs.

ay’(x) + By (x) +yy(z) =r(z), 0<z<1,
y(0) = yo ,y(1) =1

where «, 3,7,yo and y; are given constants.
According Eq. (6), we begin by considering an approximation for y”(x) in
terms of ChWs, i.e.

(28) y'(z) ~ CT W(x)

(27)

3

where the vector C is unknown at the moment. Then we have:
(29) y'(z) = CTP¥(z) +1/(0)

and thereby:

(30) y(z) ~ CTP* ¥ () +3/(0) 2 +yo ,

where P is operational matrix of integratopn for ChWs. Note that ¢'(0) in Eqgs
(29) and (30) is not given and must be determine. By imposing the boundary
condition y(1) = y; in Eq. (30), we have:

y1 =~ CTP? ¥ (1) +4/(0) + o
and this gives us:
(31) y'(0) = y1 —yo — CTP?E(1).
Substituting ¥'(0) in Eqgs. (29) and (30) by (31), respectively, we get:

Qd\
~
5
2
I

CTPW¥(z) - CTP2®(1) +y1 — o ,
y(z) = C'P*¥(z) - CTP*¥(1)z + (y1 — yo)T + Yo
For simplicity and ease of calculations we define yig := y1 — yo, F := P2®¥(1).

According to (20) and definition of operational matrix of integration, (17), F
can be approximated by:

(32) F =P?¥(1) ~ F,

where F is an 1 = 2¥(M + 1)-vector whose elements are calculated by (20).
Then, calculate expansion of functions 1,z and r(x) in terms of ChWs, and
obtain

(33) =ETWw(z),
(34) z:=BT®(2) ,equal holds for n > 1,
(35) r(z) ~ RTW(z),
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and substitute these together with Eqs. (28) — (30) in Eq. (27) and simplifying,
we will have:

C” (ol + BP +~P? — F(BE" +9B")) ¥ ()
= (R" —y10(BE" +9B") =y ET) ¥(z) ,
or equivalently:
(oI + BPT +~(P?)" — (BE +9B)F") C
= (R - y10(BE +9B) —yyE).

Solving this system of linear equations gives C and leads us to the approxi-
mate solution of Eq. (27) as:

(37) y(z) ~ CTP?*¥(2) + (yio — C'F) z + yo.

It should be noted that it is easy to see that the dominant sentence in the
implementation of this method is the calculation of the coefficients of the right-
hand function in terms of the given wavelet basis, i.e. vector R in the notation
of subsection 3.1. For a better understanding of the discussion, consider the
following example

(36)

Ezxample 1. Consider the following ODE with boundary conditions:
y" — 6y — 2y = —2€3" sin(22), y(0) =0, y(1)=—¢
Exact solution for the ODE is:

1 4, . . sinh(\/ﬁx)
y(x) 5 ¢ (2 sin(2z) — (15 4 2sin(2)) Sinh(V1T) ) .

The ODE has been solved both by the proposed method and by using ND-
Solve command in WOLFRAM MATHEMATICA, and the results obtained
are given below for comparison. Using the proposed method, for different val-
ues of M and k, the L.-error and the CPU time are shown in the table 1.
Using NDSolve command, the resulted error is 5.2 x 10~7. As can be seen, by

TABLE 1. Lo Error and CPU time for ODE in example 1

M | k| Lo Err. | CPU time
4120x10°% 0.29

315|14x%x107° 0.73
6|82x1077 1.88
4142x10°6 0.46

4 |5]81x10°8 0.96
6]6.1x10"8 2.57
4166x10"8 0.54

5 15]4.0x10"8 1.28
6]35x10°8 3.30
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increasing M and k in the proposed method, the error can be reduced as much
as desired.

4. Description of the method

4.1. Problem Statement. In this paper we deal with the subsequent TFBS
equation:

0%V (s,7) o ,0*V(s,T) oV (s, 1)

(38) T—’_?S 952 +rs 98 —rV(s,7)=0,
accompanying the subsequent boundary and terminal conditions:
(39) V(0,7) =Vo(r), V(oo,7)=V(r), V(s,T)=Vr(s),

where (s,7) € [0,00) x (0,T) and 0 < a < 1.

In Eq. (38), s is the stock (underlying asset) price, T represents the ongoing
moment (time), V is the value of a European option price, T is the exercise
time or maturity date of contract, r is the risk-free interest rate and o is the
dispersion (volatility) of the revenue from the underlying asset. The fractional
derivative in the equation is the modified Reimann-Liouville derivative defined
in (10).

Changing variables s = e* and 7 = T — ¢ reconstructs Eq. (38) to the
following equation with constant coefficients:

VT ) PPV T ) |0t V(e T 1)
(40) ate 2 2 "7 oz
rV(e®, T—t)=0, (z,t)eRx(0,T),

together with terminal and initial conditions
Ve, T —t)=V(T —1t), V(e*,T—1t)=V(T-1t),
V(e", T) = Vr(e").
By defining u(z,t) = V(e*,T —t), Eq. (40) leads to:
o 2 52 2
(42) . gif,t) - %a gg - %)mé? Jrute).
(z,t) e Rx (0,T) ,

(41)

together with the pursuing terminal and initial conditions
(43) u(—o0,t) = u(t) , u(oo,t) =u(t), wu(x,0)=uo(r).

To get a solving to the equation (42) with conditions (43) practically, we
curtail the region R x (0,7T) to (B, E,) x (0,T), where B, and E, are lower
and upper bounds for z, respectively. Therefore, the equation converts to:

ovu(x,t) ., O%u(x,t) ou(zx,t)
(44) ot C: Ox? +G Ox

- COU(fE,t) + f(:l?,t) )
(2,t) € (Ba, Es) x (0,T) ,
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where Cy = ‘772, Cr =r— %2, Cy = r and the mentioned two boundary
conditions and one initial condition are rewritten as:
(45) w(Bg,t) =up(t) , u(Egt)=ug(t), u(z,0)=ue(z).

The debate over the existence and uniqueness of the solution to the equation
(44) is cited in a multitude of references, including [2,5, 20, 22, 30, 33].

Firstly, we set a uniform partition on time domain by choosing a positive
integer N; and defining h = W and t, = kh ,k =0,1,..., N;. As we know
from (11) the modified fractional Relmann—Llouvﬂle derlvatlve is equivalent to
the Caputo fractional derivative, and we can approximate Caputo fractional

derivative at t =t , k=1,2,..., N; by (12) as follows:

0%u(x, ty)

1
(46) Twh— Zél u(x, th—1 —Ul(x te—i— 1))

where ) = (I + 1)1~ =2 [ =0,1,...,k—1.
Hence, Eq. (44) at t = tj, converts to:

11 ’“‘15 . .
}Tam; 1(u(z, ty—y) —u(z, tg—1—1))

Ou(w, ty) ou(x, ty)
b C b
02 o ox
Also, terminal and initial conditions at ¢t = ¢ take the form:
u(x,0) = up(x) , w(Bg trp) =up(ty), w(FEy tr)=ug(ty).

Defining uy(z) := u(z, tx) and fi(x) = f(x,tx), the Eq. (47) becomes as the
following:

(47)

~ (Y — Cou(l',tk) + f(:zc,tk) R

k-1
T2—a) 251 up—1(z) — up—1-1(z))

(48) =
0u(x Oug(z)
=Ch 92 T Ch . Cour(x) + fr(z),
with:
(49) u(z,0) =up(z) , u(Bg,tp) =1upr, u(Eyty)=:ugyk.

Setting 6 = = ﬁ, Eq. (48) leads to:

k—1
0501% —|— 92 51 0p— 1)uk l( ) — 05k_1u0(x)
(50) 1=1
0%uy(x) dug(x)
=Cs 2 T & T Cour(z) + fr(z),
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and thereby:

Cy 82;L;§$) + 1 8u§x(.%') - (950 + Co)uk (x) =

(51) k—1
0> (01— b11)up—1(x) — 00k 1uo(x) — fil(x).

=0

with boundary conditions (49). Thus, according to Eq. (51), we have a linear
ODE with constant coefficients and boundary conditions which can be numer-
ically solved using the method previously described in subsection 3.1.

4.2. Notes about existence of the solution. According to the method men-
tioned in subsection 3.1 and considering Eq. (51), if we define:

a=0Cy [=0C1, v=—(Cy+05),
A =al+ BPT 4+ ~(P?)T — (BE + yB)FT

=al + APT 4 ~(P?)T — (BE®T (1) + +yB¥T(1))(P*)”
uj(z) ~ X @ (x),

As observed, to solve Eq. (38) numerically we reached an equation of the
form:

n—1
(52) AXn:—G(Sn,lXO—HZSn,ij s n=1,27...,Nt,

Jj=1

where 6 = h%F(Zl—aV 8 = (i+ D)= —i'=* and §; = §; — 6;_1. Or equivalently,

n—1

(53) D b i Xi+AXy=6,1X0, n=12,...,N,
j=1
where A = f%A and Xy is a given vector obtained from initial condition.

One of the important advantages of using this method is that the matrix
of coefficients, A, is constant in all steps and only the vector on the righthand
side changes, so to solve the system of linear equations obtained, there is no
need to calculate the inverse of this matrix in every step and its inverse can be
Calculated only once.

Setting n =1,2,..., N; gives us

AX, = 5y Xo,
5o X1 + AXy = 6, X,

N;—1
Z on, i X; + AXn, = dn,_1Xo,

Jj=1
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If we write the above system in matrix form, we have:

A 0 0 o0 07T X0 71 T 60X ]
(EOI 7A Q .- 0 0 X5 01 Xo
611 Sl A o0 0 X3 52 Xo
SNt—3I gNt—4I gNt—5I A q XNt—l 5Nt—2XO
_SNt_QI SNt_gf 5N¢-4I SOI Al L XNt | _(;Nt—lXO_
or:
X1 (SoX()
L Xo 01 Xo
(I®A+A®I) Sl = . :
Xn, On—1Xo

where ® is the Kronecker product, I is the identity matrix of appropriate order
and:

0 0 0 e 0
8o 0 0 e 0

Al & 0 - 0
6N,—2 ON,—3 ON,—a == O

If we define matrices X := [Xl X2 . XN,] and é = [50X0 61X0 . (5]\[1’_1)(0]7
then by theorem 3 we have the Sylvester equation, that is,

(54) AX + XAT =C.

Definition 2. [13] Let ¢; € R™ denote the columns of C' € R™™ so that
C =ec1,...,¢p]. Then Vec(C) is charactrized to be the mn-vector constituted
G

by stacking the columns of C' on top of another, i.e. Vec(C) = | : | € R™".
Cm

[13]Using Definition 2 the linear system AX + X B = C can be adjusted in
the form

(I, ® A) + (BT ® I,,)]Vec(X) = Vec(C).

Theorem 3. [13] Let A € R™*" B € R™*™ (C € R™*™, then the Sylvester
equation AX + XB = C has one and only one solution if and only if the
matrices A and —B do not have a common eigenvalue.

It’s obvious that the matrix A have no eigenvalues other than 0. Hence only
condition that guarantees existence and uniqueness of solution to the equation
is that all eigenvalues of the matrix A differ from 0 or equivalently det A # 0.
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From another perspective. Now, we look at the linear system obtained by
the mentioned method from a different view. Remember that we begin with a
fractional PDE which was converted to an ODE at each ¢, k =1,2,..., Ny,
afterwards, each ODE was transformed to a system of linear equation. Begin-
ning with & = 1 and solving the linear system, numerically solves the ODE
related to its tx, in turn. In next step, with solution of ODE at former step in
hand, ODE at tx,1 can be solved and so forth. As we know, the final solution
is one correspond to ¢y, that determins the option price at 7 = 0.

As briefly described, uy,(z) solves the problem completely. Thus if we
can get uy,(z) without having to solve the middle problems, ux(x) , k =
1,2,..., Ny — 1, i.e. if we can eliminate intermediary problems, we have saved
a lot of time and avoided a lot of calculations. This is possible as you can see
in following.

From Eq. (52), we have:

n—1
AX, = 6,-1X0 + Z on-jXj;, n=12... N,

j=1

multiplying this equation by A"~! from left, gives

AX, = X,  (6p=1)
n—1
(55);1an = 5n—1An71X0 =+ Z Sn—jﬁnijil(Aij), n = 1, 2, . ,Nt,
j=1

this means, we can define a polynomial recursively as:
po(z) = 1

(56> pn(x> = 5nxn+zgn7j+1xnijpjfl(m)v n= 1727~'~7Nta

j=1
and using this, now, we enable to define
(57) A"X, =pp_1(A)Xo, n=1,2,...,Ny,

where pn,l(fl) is the value of p,,_1(z) at A with appropriate modifications.
Another advantage of using this method and the above formula is that it is
not depend on intermediate solutions, X;s,i=1,..., N; — 1, and only depends
on Xo, hence, this enables us to calculate final solution at once.
To calculate the polynomials p,, (x) we can proceed as follows too. We define
pn(x) = Z?:o a2t then calculate the coefficients a,, ; as:

Oppn = Op, n=0,1,2,...
m+1

Apm = E 5kan—k,m—k+l ) m <n.
k=1
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5. Notes on Convergence

In this section, we will have some argue about conditions that guarantees
convergence of the presented method and introduce definitions, theorems and
etc about convergence.

Definition 4. [31] A mapping T : X — Y is bounded if there exists a constant
¢ > 0, independent of z € X, such that ||Tx|y < c||z||x for all x € X.

For a linear mapping 7', boundedness is equivalent to continuity [31].

Definition 5. [1] Assume V and W be spaces that equipped with a norm, and
let operator K : V' — W be linear. Then K is compact if the set {Kv | ||v||v < 1}
has compact closure in W. This is equivalent to saying that for every bounded
sequence {v, } C V, the sequence {Kv,} has a subsequence that is convergent
to some point in W. Compact operators are also called completely continuous
operators.

Suppose T': X — Y be a bounded linear operator and X, Y Banach spaces.
If T has finite rank, then T is compact [31]. Therefore:
Every operator with a finite dimension image is compact. For example, matrices
are compact operators of finite rank as same as functionals [23].

Corollary 6. [4] Every Volterra operator,

Tf(x) = / "k, ) f ) dy.

where k(z,y) is continuous on A = {(z,y) € [a,b] X [a,b];a <y <z <b}isa
compact operator.

Lemma 7. [1] Suppose V be a Banach space, and assume {P,} be a collection
of bounded projections on V with

Pru — uasn — oo,u € V.
If operator K : V' — V is compact, then
I =P, K|| = 0asn— .

Theorem 8. The presented method in subsection 3.1 to solve ODE (27) numer-
ically is convergent.

Proof. First, we define operator
P, : L2[0,1] — W, := span{vy, ..., ¥, } C L?[0,1],
as the orthogonal projection operator that maps every f € L2[0,1] to its ap-
proximation in W, i.e. P, f(z) = CT®(z). Observing that P, is a bounded
linear operator is uncomplicated. Now, we define operator K : L?[0,1] —
L?[0,1] as Kf = fox f(t)dt. By corollary 6 K is compact.
We know that:

Poy’ = CT¥(2) =4y, asn — oo,
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for " € L2[0,1]. Also, verifying that,
PuKy" =Py, / y'(t)dt = CTP¥(x),
0
is uncomplicated. Here P is the operational matrix of integration for W(z),
(ChWs). So, by Lemma 7 we have:
I —P.K|| =0, as n — oo.

Therefore, y' — CTP®(z) + y}.

And x t x
cr= [ [rwa= [@-nioa.

agian, by corollary 6, in a similar way as above, can deduce that
y — CTP2W () + yhx + yo,
and this complets the proof. (]

Definition 9. [1] Suppose W is a Banach space. A linear operator P on W
satisfying the trait P? = P is named a projection operator.

If W, in the definition, be a Hilbert space, P be a projection operator, and
W = P(W)@® (I — P)(W) be an orthogonal direct sum, then we name P an
orthogonal projection operator.

It isn’t difficult to observe that a projection operator is orthogonal if and only
if (Pv, (I — P)w) =0, Yv,w € W [1].

Theorem 10. [1] Suppose W an inner product space and K is a complete
subspace of it. Then the orthogonal projection operator Px : W — W, best
approximation in K, is linear self-adjoint, i.e.,

(Pgu,v) = (u, Pxv),
and
[1Prcl| = 1.
Theorem 11. [1] Assume W7 is a closed linear subspace of the Hilbert space

W, and Wit be the orthogonal complement of W;. Let P : W — W;. Then

(1) If the operator P be a self-adjoint projection, then, it is an orthogonal
projection and vice versa.

(2) Every orthogonal projection P # 0 is continuous and || P|| = 1.

(3) W=w, e Wi.

(4) The orthogonal projection operator from W onto Wi is unique.

Lemma 12. [16] Assume H be a Hilbert space, and let P be an orthogonal
projection operator on H, i.e., P € BL(H), that is, P is a bounded linear
operator, P2 = P and R(P) L Z(P). Then P is a positive operator.
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Theorem 13. [8] Assume a < b be two real numbers and suppose Li, Lo, ...
be positive operators all defined on domain D, which contains the restrictions
of 1,t,t% to the interval [a,b]. For n = 1,2,..., assume L, (1) is bounded.
Suppose g € D be continuous in [a, b], with modulus of continuity w. Then for
n=12...,

lg = Lu(@)ll < llgll - 1L (1) = L + | Ln (1) + e (pen),
where i, = ||(Ln ([t — 2]2))(2)]|2, and || - || denote the sup-norm on [a, b].
Notably, if L, (1) = 1, then the conclusion becomes

19 = Lu(g)|| < 2w(pn)-

Definition 14. [1] Modulus of continuity of function g on [a,b] is represented
by w(g;d) for 6 < b — a and defined by:

wig:d) = max_g(tr) — g(t2)].
aﬁlth%ng

Theorem 15. [8] In case that the function g is continuous in the interval [—1, 1],
then

En(9) = |1Pu(g,-) — gll < 6w(g;n™"),

wherein P, (g,t) is an algebraic polynomial whose degree do not exceed n, with
the least deviation from the function g.

Corollary 16. The presented method in subsection 3.1 is convergent.

Proof. Let n =1,2,... and define L,, be the operator that maps the (accurate)
solution of the ODE (27), y(z), to the approximate solution, y,(x), obtained
by (37). As, by corollary 12, we can verify easily, the operator is positive and
the functions 1, z and z? are solutions to the following ODEs respectively:

( ay’ + 8y +yy =7, w=y=1

( ay’ + By +yy=vr+B, yp=0 y=1

(60) ay’ + By +yy=n2" +20x+2a, yo=0,y =1

and if we try to solve the first equation using the presented method, we have

r(z) = v and hence R = «vE where the vector E introduced in Eq (33). So, by
Eq (36)

(af + BPT +1(PT)? — (BB +1B)¥” (1)(PT)?)C=1E ~7E =0,

58)
59)

consequently, by Eqns (33) and (34)
(al + BPT + ~(PT)? — (BE®T(1) + vB\IIT(l))(PT)Q)C ~0.

Therefore, C = 0 and thereby according to Eq (37) we will have y,,(z) = 1.
This means L, (1) = 1. Consequently, by theorem 13

ly = Lo ()]l < 2w(pn)

and since i, is continuous on compact set [0, 1], the method is convergent. [
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5.1. Notes to facilitate calculations. In this subsection, we consider some

vectors and matrices that appear in calculations of the method and calculating

their elements will considerably reduce calculations time and complexity.
First, lets begin with defining some vectors as follows:

& :=10,...,0, 1T

N—_——

2k —1 times
Te:=[1,..., 17,

N——

2k times

_ T
HM = [(_1)M7(_1)M 1a"'7(_1)0] )
My =1[0,1,...,28 —1]T",
T
Nag = [ﬁ,ﬁ,...,\/2M+1} :
T
M ao.; M-1 a1 ans
Ay = S0 N d :
M jz::oj+2 j:0]+ ZM+3+2

then, calculate (1) = [1o0(1),- .., Ynm(1)]T. By definition of ChWs (2) we
have:

\11(1):2’“/2{ 0,0,...,0,0 ,(—DMV1,(-DM~1V3, ..., (-1)°V2M + i

(2k—1)(M+1) times
(61) = Qk/25k ® (Hapr o Ny)

where o denotes the Hadamard (elementwise) multiplication. Now, we try to
calculate elements of vector E. Remember that we had 1 = ETW(z). So E; =

Jy i) de, i=1,...,5 =25(M+1). According to Eq (19) E; = 52+l

2k/2(M+1)
where m = (i — 1) mod (M + 1). Therefore, in vector notation, we have:
1
62 E=_—711i— .
(62) sy M)

Also, remember that = BT ¥(x), so, B; = fo ) (z) de = ;,;2? TP () dz,
i=1,...,m wheren = (i — 1)+ (M + 1) and m = (i — 1)2 mod (M + 1).
After integrating, we deduce B; = %(n + (M +1) ZjMZSm ), or
in vector notation

1

M @Npy + (M +1)T @ (Na o Ang)) .

Finally, matrix 91 in Eq (25) can be calculated as:

_ 1 AT
(64) M= M M
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6. Illustrative Examples

In this section, to show the effectiveness of the presented method, we present
various examples and compare them with other methods if possible. As we will
see, all the results obtained in the examples are confirmed by theoretical results.

Ezample 2. [17,18,26,32] Consider the following problem with accurate solu-
tion u(z,t) = (2% + 2% + 1)(t + 1)?
ou(x,t) ., O%u(w,t) ou(z,t)
ot 2 Ox? +G ox

+ Coulz,t) + f(x,t),
(z,t) € (0,1) x (0,1),

uw(0,t) = (t+1)%  w(l,t) =3(t+1)%,

u(z,0) = 2® + 2 + 1,

where, Cy = 1, Co = ~0.5, Cy = —(Co+Cs) and f(2,t) = o (=aii=ay -

=)@+ 22 +1) — (t+ 1) (Coz® + (3C1 + Co)x? + (6C2 + 2C1 )z + 2C5 + Co).
The presented method is applied on the problem with k = 3, M = 3, a =
0.1,0.25,0.5,0.75,0.9 and N; = 20,40, 60, 80,100, 120. The results are showed
in table 2. Also in Fig 1, the graphs of the L., of the error for & = 0.1 at the
t =tn, = T are displayed. As can be seen and expected, Reducing the value
of a and increasing the value of N; both lead to a reduction in the error value.

Of course, theory also confirms this.

TABLE 2. L., Error and evaluated order of convergence w.r.t.
time for different values of o and N; in Example 2

N, Order of
20 40 60 80 100 120 convergence
0.1 |5.16739 x 1077 1.49800 x 10— 7.22394 x 100 4.29732 x 10~° 2.86937 x 1070 2.06160 x 10~° 1.81334
0.25 | 1.95118 x 107*  6.06715 x 107> 3.05086 x 10> 1.87029 x 107> 1.27857 x 10~ 9.36580 x 10~¢ 1.70722
0.5 |8.34043 x 107* 299211 x 10~% 1.63911 x 10~* 1.06865 x 10~* 7.66629 x 10~° 5.84296 x 10~ 1.48965
0.75 | 2.84050 x 1073  1.19842 x 1072 7.22874 x 10~* 5.04889 x 10~* 3.82168 x 10~* 3.04379 x 10~* 1.24827
0.9 | 5.65629 x 1073 2.64139 x 10~° 1.69153 x 10~ 1.23288 x 10~° 9.64641 x 10~* 7.89400 x 10~* 1.09961

TABLE 3. L, error with o = 0.7 for problem of Example 2

N | Method in [17] Method in [18] Method in [32] Presented Method
80 |3.79591 x 10~* 2.9376 x 10~% 3.5176 x 10~* 3.72833 x 10~*
160 | 1.54434 x 10~% 1.1949 x 10~*  1.3065 x 10~* 1.51684 x 10~*

Comparing the results with results in the cited references, Table 3, it can
be seen that solutions with accuracy of the same order have relatively large Ny
and more calculations in the references.
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1.x1075
5.x1078 — Ni=20

Ni=40

N,=60
— N;=80
— N=100
— N=120

1.x1076

5.x1077 -

1.x1077

5.x1078

0.2 04 0.6 0.8 1.0

FIGURE 1. Error function for N; = 20, 40, 60, 80, 100, 120 and
a=0.1at ¢t =T for Example 2

Ezample 3. [17,18,26,32] Consider the following problem with exact solution
u(w,t) = (t+1)%2%(1 — x)

0%u(x,t)
ot

0?u(x,t)
Ox?

ou(z,t)

= ox

+C

+ Cou(z,t) + f(x,t),
(z,t) € (0,1) x (0,1),

u(0,t) =0, wu(l,t)=0,

u(z,0) = 2%(1 — 2),

where, Cy = %, Cy = —r, C; = 1 — ";, o =025, r=0.05and f(z,t) =
2 2 2t~ (t42—a)z?(z—1) .

2C(1+t)*(Bx— 1)+ C1(1+t)?x(3x — 2) — =) . The presented

method is applied on the problem for o = %, k=4, M =3 and N, = 120.

The results are showed in table 4 and Fig 2.

TABLE 4. Ly error with o« = 0.7 for problem of Example 3

N; | Method in [17] Method in [18] Method in [32] Presented Method
80 |3.09290 x 10~% 2.28581 x 10~% 2.5638 x 10~ 2.58647 x 10~ 4%
160 | 1.26173 x 10~° 9.32188 x 10™5 9.5056 x 10~°  9.05819 x 10~5

As can be seen, the presented method produces less error compared to the
example 1 mentioned in [32].
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|Hexa(1.x)—b{ap,x(1 .x)|

0.00015 -

0.00010 |-

0.00005 -

1 1 1 1
0.2 0.4 0.6 0.8 1.0

FIGURE 2. Function U(x,1) with o = 0.7 and N; = 120 for
example 3

1.x107 =

5.x1075 -
— N=20
L — N=40
: — N;=60

-6

5.x107° - — N=80
| — N=100
1x10°8 — N=120

5.x107 |

0.2 04 06 0.8 1.0

FiGURE 3. Error function for various N; for Example 3

Ezxample 4. Consider the following problem

0u(x,t) ., O%u(w,t) Ou(x,t)
ot =Co 922 +Cy 9z + Co U(JJ, t) + f(xa t)v
(z,t) € (0,1) x (0,1),
t40¢
u(0,t) = t*,  w(l,t) = =
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with exact solution u(z,t) = e~ cos(3wx)t*®, where, Cy = 0727 Co = —r,
Ci=r—%,0=0257=005and

f(z,t) :%e_%t?’o‘ <3to‘ (7r (2r — 50°) sin(3mz)

+ (27" + (3772 - 2) 02) Cos(37rm)> + (da+1) COS(SWE))

I'(3a+1)
The presented method is applied on the problem for « = 0.2, 0.7, k = 5,6, M =
1,2,3 and N; = 1000. The results are showed in table 5.

TABLE 5. L, of error of example 4 with £ =5,6, M =1,2,3
and a = 0.2,0.7

a=0.2 a=0.7
k k
5 6 5 6
1]1.74818 x 103 4.61812 x 10~ || 2.04976 x 10~ 4.42312 x 10~%
M 2|3.82118 x 10™° 1.19771 x 107° || 1.37218 x 10~* 3.25044 x 10~°
311.15894 x 10~% 1.07891 x 107 || 3.10334 x 10~° 3.02873 x 10~°

As it can be seen in table 5 and the theory also confirms it, with the increase
of M and/or k and the decrease of a, the error of the method decreases.

Ezxample 5. Take into account the following fractional Black-Scholes equation
for an European option:
O°U(s,T) o2 ,0%U(s,T)
—_— —F—— -D
g T2t ae T D)
(s,7) € (3,15) x (0,1),
UB,7)=0, U(15,7)=0,
U(s,T) = max{S — K,0} ,
where, 0 = 0.45,7 = 0.03, D = 0.0l and 7' =1, K = 10. The equation express’s
a European double barrier knock-out call option and has no exact solution for

the given o values. This equation has been solved by the presented method for
a =0.1,0.5,0.9 and N; = 100,200, and the results are given in the fig 4.

SaU(S,T)

s —rlU(s,7) =0,

Ezxample 6. Consider the following time-fractional Black-Scholes equation con-
ducting an European call option:

0°U(s,T) % ,0%U(s,T)

(s,7) € (0.1,100) x (0,1),
U0.1,7) =0, U(100,7) =100 — K exp(—r(1 — 7)),
U(s,T) = max{S — K,0} ,

OU(s,T) B
T TZ/[(S,T) —0,
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1.0

FIGURE 4. Function U(s,7) with a = 0.1 and N; = 100

where, 0 = 0.25,7 =0.05,D =0 and T =1, K = 50.

FIGURE 5. Function (s, 7) with a = 0.1 and N; = 200
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50/ 10

— a=0.1
a=0.4
a=0.7

— a=0.9

30

— a=1
20

FIGURE 6. function u(s,t) with various as at t = tn,

The equation has been solved by the presented method for « = 0.1,0.4,0.7,0.9,1
and N; = 100, 200, and the results are shown in the figs 5 and 6.

7. Conclusion

In this paper, a novel method based on Chelyshkov wavelets is utilized to
approximate the solution of TFBS equation for pricing standard European
call/put options. TFBS model is the general form of classical Black-Scholes
model. The method introduced in the paper is a hybrid method that combines
a (2 — B)-order finite difference method for discretization in time dimension
and an operational method based on Chelyshkov wavelets for discretization in
space dimension from a computational point of view.

The proposed method has two main advantages: First, the coefficient matrix
of the resulting linear system of equations remains constant during calculation
processes and the second, if one need only final solution (soulution of TFBS at
initial time ¢ = 0) it can be calculated with no need for intermediate steps cal-
culation as explained in (57). In economics, the time-fractional Black-Scholes
PDE plays a key role in defining European options in financial activities. The
Black-Scholes model is a popular choice for option pricing due to its simplicity
and availability from a practical point of view. The convergence of Chelyshkov
wavelets approximation has been proved and applied to show that the intro-
duced method is also convergent. The method’s applicability and theoretical
orders of convergence are demonstrated through numerical experiments. The
approximate solution obtained by the presented method has notable contiguity
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with the accurate solution of the equation. Also, as seen, the calculated nu-
merical solutions are endorsed with the stated theoretical topics. Additionally,
the considered method has been applied to price three distinctive European
options governed by a time-fractional Black-Scholes model.
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