
تعداد نشریات | 26 |
تعداد شمارهها | 447 |
تعداد مقالات | 4,557 |
تعداد مشاهده مقاله | 5,379,989 |
تعداد دریافت فایل اصل مقاله | 3,580,057 |
Analyzing skewed financial data using skew scale-shap mixtures of multivariate normal distributions | ||
Journal of Mahani Mathematical Research | ||
دوره 13، شماره 3 - شماره پیاپی 28، آبان 2024، صفحه 71-90 اصل مقاله (2.88 M) | ||
نوع مقاله: Special Issue Dedicated to memory of Prof. Mahbanoo Tata | ||
شناسه دیجیتال (DOI): 10.22103/jmmr.2024.22735.1562 | ||
نویسندگان | ||
Mostafa Tamandi* 1؛ Mehdi Amiri2 | ||
1Department of Statistics, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran | ||
2Department of Statistics, Faculty of Basic Sciences, University of Hormozgan, Bandar Abbas, Iran. | ||
چکیده | ||
This paper introduces an innovative family of statistical models called the multivariate skew scale-shape mixtures of normal distributions. These models serve as a versatile tool in statistical analysis by efficiently characterizing the skewed and leptokurtic nature commonly observed in multivariate datasets. Their applicability shines in real-world scenarios where data often deviate from standard statistical assumptions due to the presence of outliers. We present an EM-type algorithm designed for maximizing likelihood estimation and evaluate the model's effectiveness through real-world data applications. Through rigorous testing against various datasets, we assess the performance and practicality of the proposed algorithm in real statistical scenarios. The results demonstrate the remarkable performance of this new family of distributions. | ||
کلیدواژهها | ||
Shape mixtures؛ Scale Mixtures؛ EM-type algorithm؛ Multivariate distributions؛ Stock Markets | ||
مراجع | ||
[1] Adcock, C., Eling, M., & Loper do, N. (2015) Skewed distributions in -nance and actuarial science: a review. Europian Journal of Finance 21:1{29. https://doi.org/10.1080/1351847X.2012.720269
[2] Amiri, M., & Balakrishnan, N. (2022). Hessian and increasing-Hessian orderings of scale-shape mixtures of multivariate skew-normal distributions and applications. Journal of Computational and Applied Mathematics, 402, 113801. https://doi.org/10.1016/j.cam.2021.113801 [3] Arellano-Valle, R. B., & Genton, M. G. (2005). On fundamental skew distributions. Journal of Multivariate Analysis, 96(1), 93-116. https://doi.org/10.1016/j.jmva.2004.10.002
[4] Azzalini, A., & Capitanio, A. (2014). The Skew-Normal and Related Families. Cambridge University Press.
[5] Bodie, Z., & Kane, A. (2020). Essentials of investments.
[6] Branco, M.D., & Dey, D. k. (2001). A general class of multivariate skew-elliptical distributions. Journal of Multivariate Analysis, 79, 99{113. https://doi.org/10.1006/jmva.2000.1960
[7] Cont, R. (2007). Volatility clustering in nancial markets: empirical facts and agentbased models. In Long memory in economics (pp. 289-309). Berlin, Heidelberg: Springer Berlin Heidelberg.
[8] Denkowska, A., & Wanat, S. (2020). A tail dependence-based MST and their topological indicators in modeling systemic risk in the European insurance sector. Risks, 8(2), 39. https://doi.org/10.3390/risks8020039
[9] Fabozzi, F. J., Markowitz, H. M., & Gupta, F. (2008). Portfolio selection. Handbook of nance.
[10] Fama, E. F., & French, K. R. (1993). Common risk factors in the returns on stocks and bonds. Journal of nancial economics, 33(1), 3-56. https://doi.org/10.1016/0304-405X(93)90023-5
[11] Ferreira, C. S., Bolfarine, H., & Lachos, V. H. (2011). Skew scale mixtures of normal distributions: properties and estimation. Statistical Methodology, 8(2), 154-171. https://doi.org/10.1016/j.stamet.2010.09.001
[12] Ferreira, C. S., Lachos, V. H., & Bolfarine, H. (2016). Likelihood-based inference for multivariate skew scale mixtures of normal distributions. AStA Advances in Statistical Analysis, 100(4), 421-441. https://doi.org/10.1007/s10182-016-0266-z
[13] Gomez-Deniz, E., Caldern-Ojeda, E., & Gomez, H. W. (2022). Symmetric and Asymmetric Distributions: Theoretical Developments and Applications III. Symmetry, 14(10), 21-43. https://doi.org/10.3390/sym14102143
[14] Hardle, W. K., & Simar, L. (2019). Applied multivariate statistical analysis. Springer Nature.
[15] Harvey, C. R., & Siddique, A. (2000). Conditional skewness in asset pricing tests. The Journal of nance, 55(3), 1263-1295. https://doi.org/10.1111/0022-1082.00247
[16] Jamalizadeh, A., & Lin, T. I. (2017). A general class of scale-shape mixtures of skewnormal distributions: properties and estimation. Computational Statistics, 32, 451-474. https://doi.org/10.1007/s00180-016-0691-1
[17] Jorion, P. (2007). Value at risk: the new benchmark for managing nancial risk. McGraw-Hill.
[18] Junior, L. S., & Franca, I. D. P. (2012). Correlation of nancial markets in times of crisis. Physica A: Statistical Mechanics and its Applications, 391(1-2), 187-208. https://doi.org/10.1016/j.physa.2011.07.023
[19] Kotz, S., Balakrishnan, N., & Johnson, N. L. (2004). Continuous multivariate distributions, Volume 1: Models and applications (Vol. 1). John Wiley & Sons.
[20] Liu, C.H., & Rubin, D.B. (1994). The ECME algorithm: a simple extension of EM and ECM with faster monotone convergence. Biometrika, 81, 633{648. https://doi.org/10.1093/biomet/81.4.633
[21] Madan, D. B. (2020). Multivariate distributions for nancial returns. International Journal of Theoretical and Applied Finance, 23(06), 2050041. https://doi.org/10.1142/S0219024920500417
[22] Mahdavi, A., Amirzadeh, V., Jamalizadeh, A., & Lin, T. I. (2021). A Multivariate exible skew-symmetric-normal distribution: Scale-shape mixtures and parameter estimation via selection representation. Symmetry, 13(8), 1343. https://doi.org/10.3390/sym13081343 [23] Mardia, K. V., Kent, J. T., & Bibby, J. M. (1979). Multivariate Analysis. Academic Press.
[24] Mata, L. M., Nu~nez Mora, J. A., & Serrano Bautista, R. (2021). Multivariate Distribution in the Stock Markets of Brazil, Russia, India, and China. SAGE Open, 11(2), 21582440211009509. https://doi.org/10.1177/21582440211009509
[25] McNeil, A. J., Frey, R., & Embrechts, P. (2015). Quantitative risk management: Concepts, techniques and tools. Princeton university press.
[26] Meng, X. L.,& Rubin, D. B. (1993). Maximum likelihood estimation via the ECM algorithm: a general framework. Biometrika, 80, 267-278. https://doi.org/10.1093/biomet/80.2.267
[27] Mondal, S., Arellano-Valle, R. B., & Genton, M. G. (2023). A multivariate modi ed skew-normal distribution. Statistical Papers, 1-45. https://doi.org/10.1007/s00362-023-01397-1
[28] Naderi, M., Arabpour, A., & Jamalizadeh, A. (2018). Multivariate normal mean-variance mixture distribution based on Lindley distribution. Communications in Statistics-Simulation and Computation, 47, 1179{1192. https://doi.org/10.1080/03610918.2017.1307400
[29] Pourmousa, R., Jamalizadeh, A., & Rezapour, M. (2015). Multivariate normal mean{variance mixture distribution based on Birnbaum{Saunders distribution. Journal of Statistical Computation and Simulation, 85(13), 2736{2749. https://doi.org/10.1080/00949655.2014.937435
[30] Pu, T., Zhang, Y., & Yin, C. (2023). Generalized location-scale mixtures of elliptical distributions: De nitions and stochastic comparisons. Communications in Statistics-Theory and Methods, 1-25. https://doi.org/10.1080/03610926.2023.2165407 | ||
آمار تعداد مشاهده مقاله: 119 تعداد دریافت فایل اصل مقاله: 107 |