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Abstract. In this article, we first consider the L-fuzzy powerset monad

on a completely distributive lattice L. Then for L = [n], we investigate
the fuzzy powerset monad on [n] and we introduce simple, subsimple and

quasisimple L-fuzzy sets. Finally, we provide necessary and sufficient con-
ditions for the existence of an equalizer of a given pair of morphisms in

the Kleisli category associated to this monad. Several illustrative exam-

ples are also provided.
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1. Introduction and Preliminaries

Kleisli categories appear in different areas of mathematics such as the se-
mantics of linear logic, [2], computing, [7], Maltsev varieties, [5], extension of
functors, [12], factorization-related monads, [3], and information systems, [10],
to mention a few. Such categories are not complete in general. The limits are
tougher than the colimits and the equalizers are more sophiticated to deal with
than products. When dealing with the Kleisli categories, monads come to play
and different monads make the situation vary considerably as far as limits are
concerned. So investigating the existence of limits for various monads gains
significance.

In [11], the completeness/cocompleteness of Kleisli categories are investi-
gated, however as the author mentions, the results are powerless in concrete
instances. In [6], the authors attempt the problem of the existence of equaliz-
ers in Kleisli categories by giving some equivalent conditions for the existence
of equalizers of a given pair of maps in a general Kleisli category; then they
present more elegant criterions for the existence of equalizers in a number of
cases of interesting monads. In this article we investigate when the Kleisli
category corresponding to the n-fuzzy powerset monad has equalizers. In par-
ticular, necessary and sufficient conditions for the existence of equalizer of a
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parallel pair of morphisms are given. For more information on fuzzy sets and
monads we refer the reader to [8] and [4]. To this end, we recall:

Definition 1.1. [1]. A monad in a category E is a triple T = (T, η, µ), where

T : E // E is a functor, η : Id // T (with Id the identity functor) and

µ : T 2 // T are natural transformations rendering commutative the follow-

ing square and triangles.

T 3 Tµ //

µT ///
��

T 2

µ

��
T 2

µ
// T

T
Tη //

1T

///

  

T 2

µ

��

T
ηToo

1T

///

~~
T

Definition 1.2. Let R be a relation on a set L. For every set X we define a
relation RX on LX = { f : X // L : f is a function} by f RX g if for every

x ∈ X, f(x) R g(x).

Lemma 1.3. Let R be a relation on a set L
(a) If R is a partial order on L, then for every X, RX is a partial order on
LX .
(b) If L is a meet semi-lattice, then for every X, LX is a meet semi-lattice.
(c) If L is a complete lattice, then for every X, LX is a complete lattice.
(d) If L is a distributive lattice, then for every X, LX is a distributive lattice.

Proof. They can be verified directly. �

Definition 1.4. Let L be a completely distributive lattice with the smallest
element 0 and the largest element 1. Define:

(a) the map L : Set // Set on objects by L(X) = LX and on morphisms
by,

L( X
f // Y ) = LX

L(f) // LY

where for every A ∈ LX and y ∈ Y , L(f)(A)(y) =
∨

x∈f−1(y)

A(x).

(b) the natural transformation η : Id // L as follows:

for every X ∈ Set and x ∈ X, ηX(x) : X // L is the function that takes

y ∈ X to ηX(x)(y) =

{
1 y = x

0 y 6= x
.

(c) the natural transformation µ : L2 // L as follows:

for every X ∈ Set and A ∈ L2(X), µX(A) : X // L is the function that

takes x ∈ X to µX(A)(x) =
∨

c∈L(X)

(A(c) ∧ c(x)).

Lemma 1.5. L = (L, η, µ) is a monad.
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Proof. See [9], Example 5. �

The functor L is called the L-fuzzy powerset functor and the monad L =
(L, η, µ) is called the L-fuzzy powerset monad.

2. n-Fuzzy Powerset Monad, Simple, Subsimple and Qua-
sisimple

In this section, we introduce the n-fuzzy power set monad and prove some
results that are needed in the subsequent sections. In the rest of the paper we
consider the lattice L = [n] = {0, 1, 2, ..., n − 1} for a fixed n ∈ N, which is
a complete lattice under the usual order. The associated functor, respectively
monad, is called the n-fuzzy powerset functor, respectively the n-fuzzy powerset
monad. The unit η, for x, y ∈ X, is now given by:

ηX(x)(y) =

{
n− 1 y = x

0 y 6= x,

and the multiplication µ, for A ∈ L2(X) and x ∈ X, is given by:

µX(A)(x) = max{min{A(c), c(x)} : c ∈ L(X)}

Lemma 2.1. Let f : X // L(Y ) be a function. For A ∈ L(X) and y ∈ Y,
we have

µY L(f)(A)(y) = max{min{A(x), f(x)(y)} : x ∈ X}

Proof. We have:

µY L(f)(A)(y) = µY (L(f)(A))(y)

=
∨

c∈L(Y )

(L(f)(A)(c) ∧ c(y))

=
∨

c∈L(Y )

((
∨

x∈f−1(c)

A(x)) ∧ c(y))

= max{
∨

x∈f−1(c)

A(x) ∧ c(y) : c ∈ L(Y )}

= max{
∨

x∈f−1(c)

(A(x) ∧ c(y)) : c ∈ L(Y )}

= max{max{A(x) ∧ c(y) : x ∈ f−1(c)} : c ∈ L(Y )}
= max{min{A(x), c(y)} : x ∈ f−1(c), c ∈ L(Y )}
= max{min{A(x), f(x)(y)} : x ∈ X}

�

Definition 2.2. Let k ∈ [n]. For every set X, we define ηkX : X // L(X)

by ηkX(x) = k̄ ∧ ηX(x), where k̄ : X → L is the constant function with value k.
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Remark: Note that ηn−1X = ηX , η0X = 0 and ηkX(x)(y) =

{
k y = x

0 y 6= x
.

Lemma 2.3. For k ∈ [n], ηk : Id // L is a natural transformation.

Proof. We need to show for any function f : X // Y, the diagram:

X
ηkX //

f

��

L(X)

L(f)
��

Y
ηkY

// L(Y )

commutes. For every x ∈ X and y ∈ Y, we have:

L(f)(ηkX(x))(y) =
∨

c∈f−1(y)

ηkX(x)(c) =

∨
c∈f−1(y)

(

{
k c = x

0 c 6= x
) =

{
k x ∈ f−1(y)

0 x 6∈ f−1(y)
=

{
k y = f(x)

0 y 6= f(x)
= ηkY (f(x))(y)

�

Lemma 2.4. For j, k ∈ [n] and s, t ∈ X, ηjX(s) and ηkX(t) are comparable if
and only if j = 0 or k = 0 or s = t.

Proof. Suppose ηjX(s) and ηkX(t) are comparable. If ηjX(s) ≤ ηkX(t), then

ηjX(s)(s) ≤ ηkX(t)(s) and so j ≤ ηkX(t)(s). It follows that j = 0 or s = t.

Similarly if ηkX(s) ≤ ηjX(t), then k = 0 or s = t. The converse is obvious. �

Lemma 2.5. Suppose B ∈ L(X) and t ∈ X. If 0 ≤ B ≤ ηX(t), then B =
ηkX(t), for some k ∈ [n].

Proof. For each s ∈ X, we have 0 ≤ B(s) ≤ ηX(t)(s). So for s = t, 0 ≤ B(s) ≤
n− 1 and for s 6= t, 0 ≤ B(s) ≤ 0. The result then follows. �

In the sequel, for A ∈ L(X), we denote supp(A) = A−1([n]− {0}) by A∗.

Lemma 2.6. If B ∈ L(X), then B =
∨

t∈B∗
η
B(t)
X (t).

Proof. For every s ∈ X, we have:

∨
t∈B∗

η
B(t)
X (t)(s) = max{ηB(t)

X (t)(s) : t ∈ B∗}

{
B(s) B(s) 6= 0

0 B(s) = 0
= B(s)

�
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Definition 2.7. For a set X, an inclusion I �
� i // L(X) and a function

e : E // L(X), we say (e, i) is µX -compatible if µXL(e) factors through

i, i.e., if there is a (necessarily unique) function ϕ rendering commutative the
following triangle.

I �
� i // L(X)

L(E)

ϕ ///

OO

µXL(e)

AA

In this case, the map ϕ is called the restricted multiplication.

Example 2.8. Consider any pair of functions X
f //
g
// L(Y ) and let i be an

equalizer of the pair L(X)
µY L(f) //
µY L(g)

// L(Y ). Given any function e : E →

L(X), using the naturality of η, µ and the monad equations, one can show that
(e, i) is µX-compatible.

Lemma 2.9. If (e, i) is µX-compatible, then the restricted multiplication ϕ
preserves order.

Proof. Suppose that A,B ∈ L(E) and A ≤ B. Then by 2.1,

ϕ(A)(x) = µXL(e)(A)(x) = max{min{A(t), f(t)(x)} : t ∈ E} and
ϕ(B)(x) = µXL(e)(B)(x) = max{min{B(t), f(t)(x)} : t ∈ E}.

Since for all t ∈ E A(t) ≤ B(t), the result follows. �

Lemma 2.10. If (e, i) is µX-compatible, then the restricted multiplication ϕ
preserves arbitrary joins.

Proof. We show that ϕ(
∨
j∈J

Aj) =
∨
j∈J

ϕ(Aj). Because ϕ preserves order and for

all j ∈ J , Aj ≤
∨
j∈J

Aj , so ϕ(Aj) ≤ ϕ(
∨
j∈J

Aj) therefore
∨
j∈J

ϕ(Aj) ≤ ϕ(
∨
j∈J

Aj).

To show ϕ(
∨
j∈J

Aj) ≤
∨
j∈J

ϕ(Aj), let x ∈ X and m = ϕ(
∨
j∈J

Aj)(x). We have:

m = ϕ(
∨
j∈J

Aj)(x) = max{min{a, b} : ∃t ∈ (
∨
j∈J

Aj)
−1(a) such that x ∈

e(t)−1(b)}

So there are a, b such that m = min{a, b} and there exists t ∈ (
∨
j∈J

Aj)
−1(a)

and x ∈ e(t)−1(b). Therefore a =
∨
j∈J

Aj(t) = max{Aj(t) : j ∈ J}. So there
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exists j0 ∈ J such that t ∈ A−1j0 (a). So m ≤ ϕ(Aj0)(x) ≤
∨
j∈J

ϕ(Aj)(x). Hence

ϕ(
∨
j∈J

Aj) ≤
∨
j∈J

ϕ(Aj).

�

Lemma 2.11. If (e, i) is µX-compatible and the restricted multiplication ϕ is
an isomorphism, then ϕ−1 preserves order.

Proof. Suppose that Q,R ∈ I, Q ≤ R. Let A = ϕ−1(Q) and B = ϕ−1(R). By
2.10, we have ϕ(A ∨ B) = ϕ(A) ∨ ϕ(B) = Q ∨ R = R = ϕ(B). So A ∨ B = B
and therefore ϕ−1(Q) = A ≤ B = ϕ−1(R). �

Definition 2.12. For a set X, let I ⊆ L(X) and A ∈ L(X).
(i) An I-chain for A, of length m, is a chain 0 < A1 < A2 < ... < Am < A,

where Aj ∈ I for all j.
(ii) A canonical I-chain for A, of length m, is an I-chain as in (i), such that

B ∈ I and 0 < B < A, implies B = Ak, for some 1 ≤ k ≤ m.
(iii) A is said to be simple if A ∈ I and it has a canonical I-chain of length

n− 2.
(iv) Let 1 ≤ k ≤ n − 1. B ∈ I is called k-subsimple if there is a simple A

with the canonical I-chain 0 < A1 < A2 < ... < An−2 < An−1 = A such that
B = Ak.

(v) B ∈ I is called subsimple if B is k-subsimple for some 1 ≤ k ≤ n− 1.
(vi) Calling a subset of a preordered set mutually incomparable, if any two

distinct members of it are incomparable, A is called quasisimple if it can be
written as a unique join of incomparable subsimples, i.e., A =

∨
k∈K

Ak, where

each Ak is subsimple and {Ak : k ∈ K} is mutually incomparable; and if A =∨
j∈J

Bj , where each Bj is subsimple and {Bj : j ∈ J} is mutually incomparable,

then {Ak : k ∈ K} = {Bj : j ∈ J}.

Lemma 2.13. Let A be simple and 0 < A1 < A2 < ... < An−2 < A be a
canonical I-chain for A.

(a) If 0 < B1 < B2 < ... < Bm < A is an I-chain for A, then B ⊆ A, where
B = {B1, B2, · · · , Bm} and A = {A1, A2, · · · , An−2}.

(b) Any I-chain of length n− 2 for A is a canonical I-chain for A.
(c) The canonical I-chain for A is unique.
(d) If S is j-subsimple and k-subsimple, then j = k.

Proof. (a) Suppose 0 < B1 < · · · < Bm < A is an I-chain for A. Since for each
j, 0 < Bj < A, we get Bj = Ak, for some k, i.e., Bj ∈ A. So B ⊆ A and thus
m ≤ n− 2.

(b) Suppose the I-chain of part (a) has length n−2. Then obviously B = A.
Since the two chains are strictly increasing, we get Bj = Aj , for all j.
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(c) Suppose 0 < B1 < · · · < Bm < A is another canonical I-chain for A. By
(a), B ⊆ A and A ⊆ B. So B = A and therefore m = n − 2. Now by (b), for
all j, Bj = Aj .

(d) Since S is j-subsimple, there is a simple A such that S = Aj . Also,
there is a simple B such that S = Bk. So Bk = S = Aj . Now the I-chain
0 < B1 < · · · < Bk = Aj < Aj+1 < · · · < An−2 < A for A has length
k + n − 2 − j. By part (a) k + n − 2 − j ≤ n − 2, implying k ≤ j. Similarly
j ≤ k. Hence j = k. �

Lemma 2.14. If (e, i) is µX-compatible and the restricted multiplication ϕ is
an isomorphism, then e(E) is the set of all simples.

Proof. First notice that since e = µXL(e)ηE = iϕηE , e is mono and for each
t ∈ E, e(t) = ϕ(ηE(t)) ∈ I.

Now let t ∈ E. It is clear that 0 < η1E(t) < η2E(t) < ... < ηn−2E (t) <

ηn−1E (t) = ηE(t). By 2.9, ϕ preserves order, so 0 < ϕ(η1E(t)) < ϕ(η2E(t)) <

... < ϕ(ηn−2E (t)) < ϕ(ηE(t)) = e(t). If there exists B ∈ I such that 0 < B <
e(t) = ϕ(ηE(t)), then by 2.11, 0 < ϕ−1(B) < ηE(t). So by 2.5, there exists
1 ≤ k ≤ n − 2 such that ϕ−1(B) = ηkE(t). i.e, B = ϕ(ηkE(t)). Hence e(t) is
simple.

Now suppose A is simple. So A has a canonical I-chain 0 < A1 < ... <
An−2 < An−1 = A. If there are s and s′ such that m = ϕ−1(A)(s) 6= 0 and

m′ = ϕ−1(A)(s′) 6= 0, then since 0 < ηmE (s) ≤ ϕ−1(A) and 0 < ηm
′

E (s′) ≤
ϕ−1(A), we get 0 < ϕ(ηmE (s)) ≤ A and 0 < ϕ(ηm

′

E (s′)) ≤ A. A being simple,

yields ϕ(ηmE (s)) = Ak and ϕ(ηm
′

E (s′)) = Ak
′
, for some k, k′. Now since Ak

and Ak
′

are comparable, we get ϕ(ηmE (s)) and ϕ(ηm
′

E (s′)) and thus ηmE (s) and

ηm
′

E (s′) are comparable. So by 2.4, s = s′. This proves ϕ−1(A) can be nonzero

at only one point, s. Therefore ϕ−1(A) = ηjE(s), for some 0 < j ≤ n − 1.

So A = ϕ(ηjE(s)), implying ϕ(ηjE(s)) is simple. Now by the first part of the
proof, since s ∈ E, e(s) is simple and we have the chain 0 < ϕ(η1E(s)) <

ϕ(η2E(s)) < ... < ϕ(ηn−2E (s)) < ϕ(ηE(s)) = e(s). This shows j = n − 1 and so
A = ϕ(ηE(s)) = e(s) ∈ e(E). This completes the proof. �

Lemma 2.15. Suppose (e, i) is µX-compatible.
(a) If t ∈ E with e(t) simple, then ϕ(ηkE(t)) is k-subsimple.
(b) If every simple is in e(E), then every k-subsimple is of the form ϕ(ηkE(t)),

for some t ∈ E with e(t) simple.

Proof. (a) Follows from the canonical I-chain 0 < ϕ(η1E(t)) < ϕ(η2E(t)) < ... <

ϕ(ηn−2E (t)) < ϕ(ηE(t)) = e(t) for e(t).
(b) Suppose A is k-subsimple. Then there is a simple B, such that 0 < A <

B. By hypothesis, B = e(t) with t ∈ E, so we have the I-chain, 0 < ϕ(η1E(t)) <

ϕ(η2E(t)) < ... < ϕ(ηn−2E (t)) < ϕ(ηE(t)) = e(t), of length n − 2 for e(t); which
by 2.13, is the canonical I-chain for e(t). So A = ϕ(ηkE(t)).

�
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Calling a function h : M // N one to one on K ⊆ M , whenever its

restriction h|K : K // N is one to one, we have:

Lemma 2.16. If (e, i) is µX-compatible, then µXL(e) is one to one on Σj =

{ηjE(t) : t ∈ E}, for each j ∈ [n] if and only if it is one to one on Σ = {ηjE(t) :
j ∈ [n], t ∈ E}.

Proof. Suppose µXL(e) is one to one on Σj , for each j ∈ [n]. If µXL(e)(ηjE(s)) =

µXL(e)(ηkE(t)), for j, k ∈ [n] and s, t ∈ E, then ϕ(ηjE(s)) = ϕ(ηkE(t)). By 2.15,

ϕ(ηjE(s)) is j-subsimple and ϕ(ηkE(t)) is k-subsimple. Now by 2.13, j = k.

Since µXL(e) is one to one on Σj , we get ηjE(s) = ηkE(s). The converse is
obvious. �

3. Equalizer in the kleisli category

In this section, we give necessary and sufficient conditions for the existence
of an equalizer of a pair of morphisms in the Kleisli category SetL.

Proposition 3.1. Let X
f //
g
// L(Y ), e : E // L(X) be functions and

I �
� i // L(X) be the equalizer of the pair L(X)

µY L(f) //
µY L(g)

// L(Y ). The dia-

gram:

L(E)
µXL(e) // L(X)

µY L(f) //
µY L(g)

// L(Y )

is an equalizer in Set if and only if e : E // L(X) is mono with e(E) the

set of all simples, µXL(e) is one to one on Σj = {ηjE(t) : t ∈ E}, for each
j ∈ [n] and every nonzero member of I is quasisimple.

Proof. Suppose that

L(E)
µXL(e) // L(X)

µY L(f) //
µY L(g)

// L(Y )

is an equalizer. Then e = µXL(e)ηE is mono and the restricted multiplication
ϕ is an isomorphism. So by 2.14, e(E) is the set of all simples. Since µXL(e)
is one to one, it is obviously one to one on Σj for each j. To prove the last
assertion, let 0 6= A ∈ I. Then there exists B ∈ L(E) such that A = ϕ(B).

By 2.6, B =
∨

t∈B∗
η
B(t)
E (t). Therefore by 2.10, A = ϕ(B) = ϕ(

∨
t∈B∗

η
B(t)
E (t)) =∨

t∈B∗
ϕ(η

B(t)
E (t)). For all t ∈ E with B(t) 6= 0, by 2.15, ϕ(η

B(t)
E (t)) is subsimple,

and by 2.4, {ϕ(η
B(t)
E (t))} is mutually incomparable. So A equals a join of

incomparable (f, g)-subsimples.
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To show the uniqueness of the join representation of A, suppose A =
∨
j∈J

Aj ,

where each Aj is subsimple and {Aj : j ∈ J} is mutually incomparable. By
2.15, there exists tj ∈ E and 0 ≤ αj ≤ n − 1 such that ϕ−1(Aj) = η

αj

E (tj).
Because {Aj : j ∈ J} is mutually incomparable, by 2.4, each αj is nonzero and
every two tj are unequal. So we have:

B = ϕ−1(A) = ϕ−1(
∨
j∈J

Aj) =
∨
j∈J

ϕ−1(Aj) =
∨
j∈J

η
αj

E (tj)

On the other hand, we know:

B =
∨

t∈B∗
η
B(t)
E (t)

It is enough to show that:

{ηαj

E (tj) : j ∈ J} = {ηB(t)
E (t) : t ∈ B∗}

Suppose D = η
αj0

E (tj0), for some j0 ∈ J . Since every two tj are unequal, we
have:

B(tj0) =
∨
j∈J

η
αj

E (tj)(tj0) = αj0 6= 0

Therefore D = η
αj0

E (tj0) = η
B(tj0 )

E (tj0).

Now suppose D = η
B(t0)
E (t0), for some t0 ∈ E, with B(t0) 6= 0. Since

B(t0) 6= 0 and every two tj are unequal, there is one and only one j0 ∈ J such
that tj0 = t0. The equation B(t0) =

∨
j∈J

η
αj

E (tj)(t0) now gives B(t0) = αj0 . It

follows that D = η
B(t0)
E (t0) = η

αj0

E (tj0). This establishes uniqueness.

Conversely, suppose e : E // L(X) is mono with e(E) the set of all

simples, that every nonzero element of I is quasisimple and µXL(e) is one to
one on Σj , for each j. We claim that µXL(e) is an equalizer of µY L(f) and
µY L(g). We have:

µY L(f)µXL(e) = µY µL(Y )L2(f)L(e) = µY L(µY )L2(f)L(e) =
µY L(µY L(f)e) =

µY L(µY L(g)e) = µY L(µY )L2(g)L(e) = µY µL(Y )L2(g)L(e) = µY L(g)µXL(e)

So there exists ϕ : L(E) // I such that iϕ = µXL(e). It suffices to show

that ϕ is an isomorphism.
To show ϕ is epi, let A ∈ I. If A = 0, then A = ϕ(0), otherwise A =

∨
j∈J

Aj

where each Aj is subsimple and {Aj : j ∈ J} is mutually incomparable. We
define B ∈ L(E) as follows:

B(t) =

{
k if ϕ(ηkE(t)) = Aj for some j ∈ J
0 otherwise
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Since {Aj : j ∈ J} is mutually incomparable and by 2.4, ϕ(ηkE(t)) and ϕ(ηk
′

E (t))

are comparable, if ϕ(ηkE(t)), ϕ(ηk
′

E (t)) ∈ {Aj : j ∈ J}, then ϕ(ηkE(t)) = ϕ(ηk
′

E (t)).

So µXL(e)(ηkE(t)) = µXL(e)(ηk
′

E (t)). Since by 2.16, µXL(e) is one to one on

Σ, we get ηkE(t) = ηk
′

E (t). So k = k′ and B is well defined. We show ϕ(B) = A.
Since each Aj is subsimple, by 2.15, for every j ∈ J , there exists tj ∈ E

and kj ∈ [n], such that Aj = ϕ(η
kj
E (tj)). So A =

∨
j∈J

Aj =
∨
j∈J

ϕ(η
kj
E (tj)) =

ϕ(
∨
j∈J

η
kj
E (tj)). Since {Aj : j ∈ J} is mutually incomparable, by 2.4, every two

tj are unequal and each kj is nonzero. So for every t ∈ E,

∨
j∈J

η
kj
E (tj)(t) =

{
kj t = tj

0 t 6= tj

On the other hand, since Aj = ϕ(η
kj
E (tj)), B(t) =

{
kj t = tj

0 t 6= tj
. So ϕ(B) = A.

To show ϕ is mono, let B1, B2 ∈ L(E) and ϕ(B1) = ϕ(B2). By 2.6, we have

Bi =
∨

t∈B∗i
η
Bi(t)
E (t) for i = 1, 2. Therefore

∨
t∈B∗1

ϕ(η
B1(t)
E (t)) = ϕ(

∨
t∈B∗1

η
B1(t)
E (t)) = ϕ(B1) = ϕ(B2) =

ϕ(
∨

t∈B∗2
η
B2(t)
E (t)) =

∨
t∈B∗2

ϕ(η
B2(t)
E (t))

If B2 = 0, then
∨

t∈B∗1
ϕ(η

B1(t)
E (t)) =

∨
t∈B∗2

ϕ(η
B2(t)
E (t)) = 0, implying for each

t ∈ B∗1 , ϕ(η
B1(t)
E (t)) = 0. Now if B∗1 6= ∅, then let t ∈ B∗1 . We have

µXL(e)(η
B1(t)
E (t)) = ϕ(η

B1(t)
E (t)) = 0. Since by 2.16, µXL(e) is one to one

on Σ, we get B1(t) = 0, that is a contradiction to t ∈ B∗1 . It follows that
B∗1 = ∅, thus B1 = 0. Similarly if B1 = 0, then so is B2. Finally if B1 6= 0 and
B2 6= 0, then 0 6= ϕ(B1) ∈ I and is therefore quasisimple. By 2.15, for all t ∈ E,

ϕ(η
B1(t)
E (t)) is subsimple. On the other hand {ϕ(η

B1(t)
E (t))} is mutually incom-

parable, because if say ϕ(η
B1(s)
E (s)) ≤ ϕ(η

B1(t)
E (t)), then 0 < ϕ(η

B1(s)
E (s)) ≤ t.

It follows that ϕ(η
B1(s)
E (s)) = ϕ(ηjE(t)) for some j = 1, 2, · · · , n − 1. Since

µXL(e) is one to one on Σ, η
B1(s)
E (s) = ηjE(t), yielding s = t. So ϕ(B1) is a

join of noncomparable subsimples η
B1(t)
E (t), for t ∈ E. Similarly ϕ(B2) is a

join of noncomparable subsimples η
B2(t)
E (t), for t ∈ E. Since ϕ(B1) = ϕ(B2)

is quasisimple, {ϕ(η
B1(t)
E (t)) : t ∈ B∗1} = {ϕ(η

B2(t)
E (t)) : t ∈ B∗2}. So for every

t ∈ B∗1 , there exists s ∈ B∗2 such that ϕ(η
B1(t)
E (t)) = ϕ(η

B2(s)
E (s)). Again since

µXL(e) is one to one on Σ, we get η
B1(t)
E (t) = η

B2(s)
E (s), implying s = t and

B1(t) = B2(t). Hence B1 = B2.



Equalizer in the Kleisli category of the n-fuzzy... – JMMR Vol. 13, No. 4 (2024) 93

�

With SetL the Kleisli category of the n-fuzzy powerset monad L, we have:

Lemma 3.2. The functor U : SetL // Set that takes f̂ : X // Y to

µY L(f) : L(X) // L(Y ) preserves and reflects equalizers.

Proof. See Proposition 3.2 of [6], with E = Set and T = L, where L = [n]. �

Theorem 3.3. Let X
f̂ //
ĝ
// Y be morphisms in SetL with X

f //
g
// L(Y )

the corresponding functions and I �
� i // L(X) be the equalizer of the pair

L(X)
µY L(f) //
µY L(g)

// L(Y ). The diagram:

E
ê // X

f̂ //
ĝ

// Y

is an equalizer in SetL if and only if the corresponding map e : E // L(X)

is mono with e(E) the set of all simples, µXL(e) is one to one on Σj = {ηjE(t) :
t ∈ E}, for each j ∈ [n] and every nonzero member of I is quasisimple.

Proof. The proof follows from 3.2 and 3.1. �

Corollary 3.4. If an equalizer of f̂ , ĝ : X // Y exists in SetL, then I is

a join-semilattice that is freely generated by a set of subsimples.

Proof. To show I is closed under join, let A,B ∈ I. So for each y ∈ Y , we
have:

µY L(f)(A)(y) = µY L(g)(A)(y)

and

µY L(f)(B)(y) = µY L(g)(B)(y)

Therefore,

max{min{A(x), f(x)(y)} : x ∈ X} = max{min{A(x), g(x)(y)} : x ∈ X}

and

max{min{B(x), f(x)(y)} : x ∈ X} = max{min{B(x), g(x)(y)} : x ∈ X}
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Using general facts that for a, b, c ∈ L, min{a ∨ b, c} = min{a, c} ∨ min{b, c}
and for functions C,D : X → L, max{C(x)∨D(x) : x ∈ X} = max{C(x) : x ∈
X} ∨max{D(x) : x ∈ X}, by 2.1 for each y ∈ Y we have:

µY L(f)(A ∨B)(y)

= max{min{A(x) ∨B(x), f(x)(y)} : x ∈ X}
= max{min{A(x), f(x)(y)} ∨min{B(x), f(x)(y)} : x ∈ X}
= max{min{A(x), f(x)(y)} : x ∈ X} ∨max{min{B(x), f(x)(y)} : x ∈ X}
= max{min{A(x), g(x)(y)} : x ∈ X} ∨max{min{B(x), g(x)(y)} : x ∈ X}
= max{min{A(x), g(x)(y)} ∨min{B(x), g(x)(y)} : x ∈ X}
= max{min{A(x) ∨B(x), g(x)(y)} : x ∈ X}
= µY L(g)(A ∨B)(y)

Hence A ∨ B ∈ I. Now by 3.3, we know every non-zero member of I is qua-
sisimple and so it is a join of subsimples. �

4. Examples

In this section to illustrate some of the results obtained in the previous
sections, we present several examples.

Example 4.1. In this example, we discuss the results obtained for the case
n = 2. In this case we have L = {0, 1}. Given a function f : X → L(Y ), for
each x ∈ X, f(x) is the characteristic function χ

Fx
, where Fx = f(x)−1(1) ⊆

Y . By 2.1,

µY L(f)(A)(y) = max{min{A(x), f(x)(y)} : x ∈ X}
= max{min{A(x), χ

Fx
(y)} : x ∈ X}

=

{
0 if ∀x, Fx 63 y
max{A(x) : x ∈ X,Fx 3 y} otherwise

= max{A(x) : x ∈ Cf,y}

where Cf,y = {x ∈ X : Fx 3 y}. So µY L(f)(A)(y) = 1 if and only if Cf,y ∩
A−1(1) 6= ∅ if and only if there is x ∈ Cf,y ∩ A−1(1) if and only if there is
x ∈ A−1(1) such that y ∈ Fx if and only if y ∈

⋃
x∈A−1(1)

Fx. Setting Af =⋃
x∈A−1(1)

Fx, we have µY L(f)(A) = χ
Af

.
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Now suppose functions X
f //
g
// L(Y ) are given and I �

� i // L(X) is the

equalizer of the pair L(X)
µY L(f) //
µY L(g)

// L(Y ). We have,

I = {A ∈ L(X) : µY L(f)(A) = µY L(g)(A)}
= {A ∈ L(X) : χ

Af
= χ

Ag
}

= {A ∈ L(X) : Af = Ag}
Since n = 2, A ∈ I is simple if and only if there is no B ∈ I such that
0 < B < A. Recalling that, an element a in a lattice with 0 is an atom if it
is non-zero and there is no element strictly between 0 and a, we have A ∈ I
is simple if and only if it is an atom in I, or an I-atom. Note an element
A ∈ I that is an atom in L(X) is an I-atom, but not vice versa. So A ∈ L(X)
is simple provided that Af = Ag and if 0 < B ≤ A such that Bf = Bg, then
B = A. It follows that the subsimple elements are only the simple ones.

Let E be the set of all simples and E �
� e // L(X) be the inclusion. The

sets Σj, j ∈ L given in 3.3 are Σ0 = {0̄ : E → L} and Σ1 = {ηE(t) : E → L |
t ∈ E}. Obviously µXL(e) is one to one on Σ0. To see it is one to one on Σ1

we have, µXL(e)(ηE(s)) = µXL(e)(ηE(t)) if and only if χ
Ae

= χ
Be

, where A =

ηE(s) and B = ηE(t) if and only if Ae = Be if and only if e(s)−1(1) = e(t)−1(1)
if and only if e(s) = e(t) if and only if s = t if and only if ηE(s) = ηE(t). So
by 3.3,

E
ê // X

f̂ //
ĝ

// Y

is an equalizer in SetL if every non-zero element of I is quasisimple.
We also have ηX(x) is in I if and only if Af = Ag, where A = ηX(x) if

and only if f(x)−1(1) = g(x)−1(1) if and only if f(x) = g(x), as A−1(1) = {x}
if and only if x ∈ Eq(f, g), where Eq(f, g) is the equalizer of f and g. Thus
ηX(x) is simple only when x ∈ Eq(f, g).

Example 4.2. In this example we let n = 2. So the results obtained in Example
4.1 applies.

a) We show the existence of simples other than ηX(x) for all x.
Let X = {1, 2}, Y be any set, f : X → L(Y ) be any function with f(1) 6=

f(2) and let g : X → L(Y ) be defined by g(1) = f(2) and g(2) = f(1). Since
Eq(f, g) = ∅, ηX(x) 6∈ I for all x ∈ X. On the other hand the constant
function 1̄ : X → L with value 1 is in I, because 1̄f = f(1)−1(1)∪ f(2)−1(1) =
g(2)−1(1)∪g(1)−1(1) = 1̄g. Since ηX(1) and ηX(2) do not lie in I, 1̄ is simple.

b) We give a pair of morphisms in SetL whose equalizer exists.
Let X = Y = {1, 2, 3} and denote by (a, b, c) : X → L the function that takes

1 to a, 2 to b and 3 to c, where a, b and c ∈ L = {0, 1}. Let f = ηX : X → L(X)
and define g : X → L(X) by g(1) = (0, 1, 0), g(2) = (1, 0, 0), g(3) = (0, 0, 0).
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With Fx = f(x)−1(1) and Gx = g(x)−1(1), we summerize the corrsponding
data in the following table.

x f(x) g(x) Fx Gx

1 (1, 0, 0) (0, 1, 0) {1} {2}
2 (0, 1, 0) (1, 0, 0) {2} {1}
3 (0, 0, 1) (0, 0, 0) {3} ∅

Since besides the empty union, only F1∪F2 = G1∪G2, we get I = {(0, 0, 0), (1, 1, 0)}.
So E = {(1, 1, 0)} and thus the only subsimple is (1, 1, 0). Obviously every
non-zero member of I is quasisimple. Hence by Example 4.1 the equalizer of

X
1X //
ĝ

// X exists in SetL.

c) Finally we give a pair of morphisms in SetL whose equalizer does not
exist.

With X and Y as in part (b), f = ηX and g defined by g(1) = (1, 0, 0),
g(2) = (1, 1, 0), g(3) = (1, 1, 1). We have,

x f(x) g(x) Fx Gx

1 (1, 0, 0) (1, 0, 0) {1} {1}
2 (0, 1, 0) (1, 1, 0) {2} {1, 2}
3 (0, 0, 1) (1, 1, 1) {3} {1, 2, 3}

It follows that I = {(0, 0, 0), (1, 0, 0), (1, 1, 0), (1, 1, 1)}, and so E = {(1, 0, 0)}.
Thus the only subsimple is (1, 0, 0). Since (1, 1, 0) ∈ I is not quasisimple, by

Example 4.1 the equalizer of X
1X //
ĝ

// X does not exist.

Example 4.3. In this example we set n = 3 so that L = {0, 1, 2}.
a) We give a pair of morphisms whose equalizer exists in SetL.
Let X = Y = {1, 2} and (a, b) : X → L denote the function that takes 1 to

a and 2 to b. Consider functions X
f //
ηX

// L(X) , where f(1) = (2, 0)

and f(2) = (1, 1). Let I be the equalizer of L(X)
µXL(f) //

µXL(ηX)=1L(X)

// L(X) .

For A ∈ L(X),

µXL(f)(A)(1) = max{min{A(1), 2},min{A(2), 1}}
= max{A(1),min{A(2), 1}}
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and

µXL(f)(A)(2) = max{min{A(1), 0},min{A(2), 1}}
= min{A(2), 1}

So

A ∈ I if and only if max{A(1),min{A(2), 1}} = A(1) and min{A(2), 1} = A(2)

if and only if max{A(1), A(2)} = A(1) and min{A(2), 1} = A(2)

if and only if A(2) ≤ A(1) and A(2) ≤ 1

if and only if A = (0, 0), A = (1, 0), A = (2, 0), A = (1, 1) or A = (2, 1).

Therefore I = {(0, 0), (1, 0), (2, 0), (1, 1), (2, 1)}. It then follows that the set of
simples is E = {(2, 0), (1, 1)} and that the set of subsimples is {(1, 0), (2, 0), (1, 1)}.
One can easily verify that the non-zero elements of I are quasisimple.

With E �
� e // L(X) the inclusion, we show that µXL(e) is one to one on

Σj, for each j ∈ [3]. Since Σ0 = {0}, the assertion holds for j = 0. For

1 ≤ j ≤ 2, suppose µXL(e)(ηjE(t1)) = µXL(e)(ηjE(t2)), where t1, t2 ∈ E. if

t1 6= t2, then say t1 = (2, 0) and t2 = (1, 1). The equality µXL(e)(ηjE(t1)) =

µXL(e)(ηjE(t1)) can be shown to be equivalent to min{j, t1(1)} = min{j, t2(1)}
and min{j, t1(2)} = min{j, t2(2)}. It follows that min{j, 2} = min{j, 1} and
min{j, 0} = min{j, 1} or equivalently j = min{j, 1} and 0 = min{j, 1}. So

j = 0 which is a contradiction. It follows that t1 = t2, and thus ηjE(t1) = ηjE(t2)

as desired. Hence by 3.3 the equalizer of X
f̂ //
1X

// X exists in SetL.

b) Now we give a pair of morphisms whose equalizer does not exist in SetL.
Set X = {1, 2}, Y = {1, 2, 3} and define f and g as in the following table.

x f(x) g(x)

1 (1, 1, 1) (2, 2, 2)

2 (2, 2, 2) (1, 1, 1)

Given any A : X → L one can easily see that for each y ∈ Y ,

µL(f)(A)(y) = max{min{A(1), 1}, A(2)} =

{
max{A(1), A(2)} if A(1) ≤ 1

max{1, A(2)} if A(1) > 1

µL(g)(A)(y) = max{A(1),min{A(2), 1}} =

{
max{A(1), A(2)} if A(2) ≤ 1

max{A(1), 1} if A(2) > 1

It follows that A ∈ I if and only if (A(1) ≤ 1 and A(2) ≤ 1) or A(1) = A(2) = 2.
Thus I = {(0, 0), (0, 1), (1, 0), (1, 1), (2, 2)}. Since n = 3, a simple is an element
of I that has only one non-zero member of I smaller than it. Thus we have no
simples here and therefore no subsimples and no quasisimples. So the condition
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that every non-zero member of I is quasisimple does not hold and thus by 3.3

the equalizer of X
f̂ //
ĝ

// X does not exist in SetL.
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