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ABSTRACT. In this article, we first consider the L-fuzzy powerset monad
on a completely distributive lattice L. Then for L = [n], we investigate
the fuzzy powerset monad on [n] and we introduce simple, subsimple and
quasisimple L-fuzzy sets. Finally, we provide necessary and sufficient con-
ditions for the existence of an equalizer of a given pair of morphisms in
the Kleisli category associated to this monad. Several illustrative exam-
ples are also provided.
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1. Introduction and Preliminaries

Kleisli categories appear in different areas of mathematics such as the se-
mantics of linear logic, [2], computing, [7], Maltsev varieties, [5], extension of
functors, [12], factorization-related monads, [3], and information systems, [10],
to mention a few. Such categories are not complete in general. The limits are
tougher than the colimits and the equalizers are more sophiticated to deal with
than products. When dealing with the Kleisli categories, monads come to play
and different monads make the situation vary considerably as far as limits are
concerned. So investigating the existence of limits for various monads gains
significance.

In [11], the completeness/cocompleteness of Kleisli categories are investi-
gated, however as the author mentions, the results are powerless in concrete
instances. In [6], the authors attempt the problem of the existence of equaliz-
ers in Kleisli categories by giving some equivalent conditions for the existence
of equalizers of a given pair of maps in a general Kleisli category; then they
present more elegant criterions for the existence of equalizers in a number of
cases of interesting monads. In this article we investigate when the Kleisli
category corresponding to the n-fuzzy powerset monad has equalizers. In par-
ticular, necessary and sufficient conditions for the existence of equalizer of a
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parallel pair of morphisms are given. For more information on fuzzy sets and
monads we refer the reader to [8] and [4]. To this end, we recall:

Definition 1.1. [1]. A monad in a category &€ is a triple T = (T, n, ), where
T:&——¢ isafunctor, n:Id——=T (with Id the identity functor) and

i : T? — T are natural transformations rendering commutative the follow-
ing square and triangles.

T3 i)jﬂ

y Ny L B
A
uTi /1] i# R‘J%
T2T>T T

Definition 1.2. Let R be a relation on a set L. For every set X we define a
relation Ry on LX = { f:X —— [ [fisafunction} by f Ry g if for every

zx € X, f(z) R g(z).

Lemma 1.3. Let R be a relation on a set L

(a) If R is a partial order on L, then for every X, Rx is a partial order on
LX

(b) If L is a meet semi-lattice, then for every X, L is a meet semi-lattice.
(c) If L is a complete lattice, then for every X, LX is a complete lattice.

(d) If L is a distributive lattice, then for every X, L is a distributive lattice.

Proof. They can be verified directly. |

Definition 1.4. Let L be a completely distributive lattice with the smallest
element 0 and the largest element 1. Define:

(a) themap L : Set — Set on objects by £(X) = L* and on morphisms
by,

ox—Loyy— px 9 gy

where for every A€ LX andy € Y, L(f)(A)(y) = \V A(=).
zef~1(y)
(b) the natural transformation 7:Id —— L as follows:

for every X € Set and z € X, nx(z) : X —— L is the function that takes
1 y==x

0 y#x

() the natural transformation p: £2 —— £ as follows:

for every X € Set and A € £L?(X), pux(A): X —— L is the function that

takes x € X to pux(A)(z) = XX)(A(C) A c(x)).

y € X tonx(z)(y) = {

Lemma 1.5. L = (£,n, ) is a monad.
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Proof. See [9], Example 5. O

The functor L is called the L-fuzzy powerset functor and the monad L =
(L,m, p) is called the L-fuzzy powerset monad.

2. n-Fuzzy Powerset Monad, Simple, Subsimple and Qua-
sisimple

In this section, we introduce the n-fuzzy power set monad and prove some
results that are needed in the subsequent sections. In the rest of the paper we
consider the lattice L = [n] = {0,1,2,...,n — 1} for a fixed n € N, which is
a complete lattice under the usual order. The associated functor, respectively
monad, is called the n-fuzzy powerset functor, respectively the n-fuzzy powerset
monad. The unit 7, for z,y € X, is now given by:

n—1 y==x

UX(@(Z/)Z{O v+

and the multiplication p, for A € £2(X) and z € X, is given by:
px (A)(z) = max{min{A(c),c(z)} : c € L(X)}

Lemma 2.1. Let f: X ——= L(Y) be a function. For A€ L(X) andy €Y,
we have

iy £(F)(A)(y) = max{min{A(2), f(@)(y)} : @ € X}
Proof. We have:
py L(f)(A)(y)

py (L(f)(A)(y)
=V LHA)(e)Acy)

ceL(Y)

V (CV A@)ncy)

celL(Y) zef~1(c)

=max{ \/ A(@)Ac(y):ceL(Y)}

zef~ie)
= max{ \/ (A(x)Ae(y)) :ce LY)}
vef~1(c)
= max{max{A(z) Ac(y):z € f1(c)}:ce LIY)}
= max{min{A(z),c(y)} : x € f*(c),c € L(Y)}
= max{min{A(z), f(z)(y)} : z € X}

O

Definition 2.2. Let k € [n]. For every set X, we define n% : X —— £(X)
by nk () = k Anx(z), where k : X — L is the constant function with value k.
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k y==x

Remark: Note that 77" - =nx, 779< =0 and 77’5((33)(3/) = :
0 y#=x

Lemma 2.3. Fork € [n], n*:Id —— L is a natural transformation.

Proof. We need to show for any function f: X ——=Y, the diagram:

commutes. For every z € X and y € Y, we have:

Nik@)@ =V k@) -
CEf H(y)
c-x kzef 'y Jk y=flz)
Cefvl(y)<{0 C?éx {0 o )_{o v £ 7o) =15 (f(2))(y)

0
Lemma 2.4. For j,k € [n] and s,t € X, 77% (s) and n%(t) are comparable if
and only if j =0 ork=0 ors=t.

Proof. Suppose ng((s) and 7% (t) are comparable. If n&(s) < nk(t), then
i (8)(s) < nk(t)(s) and so j < n% (t)(s). Tt follows that j =
Similarly if 7% (s) < 7% (t), then k = 0 or s = t. The converse is obvious. [

0 or s = t.

Lemma 2.5. Suppose B € L(X) andt € X. If0 < B < nx(t), then B =
n% (t), for some k € [n].

Proof. For each s € X, we have 0 < B(s) < nx(t)(s). Sofor s =t,0 < B(s) <
n—1 and for s # ¢, 0 < B(s) < 0. The result then follows. O

In the sequel, for A € £(X), we denote supp(A) = A~1([n] — {0}) by A*.

Lemma 2.6. If B € L(X), then B= \/ nﬁ(t)( £).
teB*

Proof. For every s € X, we have:

V ik (0)(s) = max{nZ (0)5) - £ € B} {OB(S)

teB*
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Definition 2.7. For a set X, an inclusion JC— > L(X) and a function

e: E—— L(X), we say (e,i) is px-compatible if uxL(e) factors through
i, i.e., if there is a (necessarily unique) function ¢ rendering commutative the
following triangle.

' L r(X)
«pT /11
L(E) nx L(e)

In this case, the map ¢ is called the restricted multiplication.

f
Example 2.8. Consider any pair of functions X —= L(Y) and let i be an
g

wy L(f)
equalizer of the pair L(X) —————= L(Y). Given any function ¢ : E —
my £(g)

L(X), using the naturality of n, p and the monad equations, one can show that
(e,1) is px-compatible.

Lemma 2.9. If (e,i) is pux-compatible, then the restricted multiplication ¢
preserves order.

Proof. Suppose that A, B € L(E) and A < B. Then by 2.1,

(A) () = ux £(e)(A)(x) = maxfmin{A(t), f(£)(2)} : ¢ € B} and
#(B)(x) = jix L(e)(B)(x) = max{min{ B(t), f(t)(2)} : ¢ € E}.

Since for all t € E A(t) < B(t), the result follows. O

Lemma 2.10. If (e,i) is pux-compatible, then the restricted multiplication ¢
preserves arbitrary joins.

Proof. We show that o(\/ A,) =\ ¢(4,). Because ¢ preserves order and for
JjeJ JjeJ

all je J, A; <V Aj, 50 p(4;) < @(\V Aj) therefore \/ ¢(A;) < p(V A4j).
jET j€J j€J j€J
To show ¢(V A;) < V w(4;), let x € X and m = o(\ A;)(z). We have:
j€T j€T jed

m=p(\ A;)(z) = max{min{a,b} : 3t € (\/ A4;)7'(a) such that z €
j€J j€J

e(t)7H(b)}

So there are a,b such that m = min{a,b} and there exists t € (\/ A;)"'(a)
JjeJ
and = € e(t)'(b). Therefore a = \/ A;(t) = max{A;(t) :j € J}. So there
jeJ
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exists jo € J such that t € A;(jl(a). Som < ¢(Aj,)(x) < V ¢(A4;)(z). Hence

jeJ
e(V 45) <V o(4)).
jedJ JjeJ
O

Lemma 2.11. If (e,i) is px-compatible and the restricted multiplication ¢ is
an isomorphism, then ¢~' preserves order.

Proof. Suppose that Q,R€ I, Q < R. Let A= ¢ }(Q) and B = ¢~ '(R). By
2.10, we have p(AV B) = p(A)Vo(B)=QV R=R=¢(B). So AVB =B
and therefore ¢~ 1(Q) = A < B = ¢ }(R). O

Definition 2.12. For a set X, let I C £(X) and A € L(X).

(i) An I-chain for A, of length m, is a chain 0 < A' < A% < ... < A™ < A,
where A7 € I for all j.

(ii) A canonical I-chain for A, of length m, is an I-chain as in (i), such that
Beland0< B < A, implies B = A, for some 1 < k < m.

(iii) A is said to be simple if A € I and it has a canonical I-chain of length
n— 2.

(iv) Let 1 <k <n—1. B €1 is called k-subsimple if there is a simple A
with the canonical I-chain 0 < A' < A2 < ... < A""2 < A"~! = A such that
B = A*.

(v) B €I is called subsimple if B is k-subsimple for some 1 < k <n — 1.

(vi) Calling a subset of a preordered set mutually incomparable, if any two
distinct members of it are incomparable, A is called quasisimple if it can be

written as a unique join of incomparable subsimples, i.e., A = \/ A, where
keK

each Ay is subsimple and {Ay : k € K} is mutually incomparable; and if A =

\/ Bj, where each B, is subsimple and {B; : j € J} is mutually incomparable,

jeJ

then {Ay: ke K} ={B; :j € J}.

Lemma 2.13. Let A be simple and 0 < Al < A2 < ... < A" 2 < A be a
canonical I-chain for A.

(a) If 0 < B* < B2 < ... < B™ < A is an I-chain for A, then B C A, where
B={B,B? .- ,B™} and A= {A' A% ... A"72}.

(b) Any I-chain of length n — 2 for A is a canonical I-chain for A.

(¢) The canonical I-chain for A is unique.

(d) If S is j-subsimple and k-subsimple, then j = k.

Proof. (a) Suppose 0 < B! < ... < B™ < A'is an I-chain for A. Since for each
j,0< BJ < A, we get BI = AF, for some k, i.e., B € A. So B C A and thus
m<n-—2.

(b) Suppose the I-chain of part (a) has length n— 2. Then obviously B = A.
Since the two chains are strictly increasing, we get B7 = AJ, for all j.
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(c) Suppose 0 < B! < --- < B™ < A is another canonical I-chain for A. By
(a), BC Aand AC B. So B = A and therefore m = n — 2. Now by (b), for
all j, BY = A7,

(d) Since S is j-subsimple, there is a simple A such that S = A7. Also,
there is a simple B such that S = B¥. So B¥ = § = A7. Now the I-chain
0 < B < ... <BF = A1 < AT < ... < A"2 < A for A has length
k+n—2—j. Bypart (a) k+n—2—7 <n—2 implying k¥ < j. Similarly
j < k. Hence j = k. O

Lemma 2.14. If (e,q) is pux-compatible and the restricted multiplication ¢ is
an isomorphism, then e(E) is the set of all simples.

Proof. First notice that since e = puxL(e)ng = iYng, e is mono and for each
teE, e(t) = plp(t) € I

Now let t € E. It is clear that 0 < nkL(t) < n%4(t) < ... < 9 2(t) <
ny ' (t) = ne(t). By 2.9, ¢ preserves order, so 0 < ¢o(nk(t)) < ¢(n%(t)) <

< p(E (1) < @(ne(t)) = e(t). If there exists B € I such that 0 < B <
e( ) = p(ng(t)), then by 2.11, 0 < ¢~ *(B) < ng(t). So by 2.5, there exists
1 <k < n—2such that p~}(B) = nk(t). i.e, B = p(nk(t)). Hence e(t) is
simple.

Now suppose A is simple. So A has a canonical I-chain 0 < A! < ... <
An=2 < An=1 = A. If there are s and s’ such that m = p=1(A4)(s) # 0 and
m' = ¢ Y (A)(s') # 0, then since 0 < n2(s) < ¢ '(A) and 0 < np'(s') <
e 1(A), we get 0 < @(np(s)) < A and 0 < (' (s')) < A. A being simple,
yields o(n2(s)) = AF and o(np’(s')) = A¥, for some k,k’. Now since A*
and A* are comparable, we get ¢(n}2(s)) and @(n2 (s')) and thus 772 (s) and
np' (s') are comparable. So by 2.4, s = s'. This proves ¢~ '(A) can be nonzero
at only one point, s. Therefore p~1(A) = nij(s), for some 0 < j < n — 1.
So A = 90(77‘1;(3))’ implying gp(n}s(s)) is simple. Now by the first part of the
proof, since s € E, e(s) is simple and we have the chain 0 < ¢(nk(s)) <
o(n%(s)) < ... < p(np2(s)) < ¢(ne(s)) = e(s). This shows j =n — 1 and so
A= p(ne(s)) =e(s) € e(E). This completes the proof. O

Lemma 2.15. Suppose (e, 1) is px-compatible.

(a) If t € E with e(t) simple, then p(n'(t)) is k-subsimple.

(b) If every simple is in e(E), then every k-subsimple is of the form ¢(nk(t)),
for some t € E with e(t) simple.

Proof. (a) Follows from the canonical I-chain 0 < p(nL(t)) < p(n%(t)) < ... <
e (1) < p(ne(t) = e(t) for e(t).

(b) Suppose A is k-subsimple. Then there is a simple B, such that 0 < A <
B. By hypothesis, B = e(t) with ¢ € E, so we have the I-chain, 0 < ¢(ng(t)) <
o%(t) < ... < o 2(1)) < e(ne(t)) = e(t), of length n — 2 for e(t); which
by 2.13, is the canonical I-chain for e(t). So A = p(nk(1)).

0
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Calling a function h: M —— N one to one on K C M, whenever its
restriction hjg : K —— N is one to one, we have:

Lemma 2.16. If (e,i) is pux-compatible, then pxL(e) is one to one on ¥; =
{n%(t) :t € E}, for each j € [n] if and only if it is one to one on ¥ = {n}a(t) :
j€ln], te E}.

Proof. Suppose pux L(e) is one to one on X;, for each j € [n]. Tf ux L(e) (17 (s)) =
pxL(e)(nk(t)), for j,k € [n] and s,t € E, then 50(17%(5)) = p(nk(t)). By 2.15,
@(17)(s)) is j-subsimple and @(n%(t)) is k-subsimple. Now by 2.13, j = k.
Since puxL(e) is one to one on ¥, we get 75 (s) = nl(s). The converse is
obvious. g

3. Equalizer in the kleisli category
In this section, we give necessary and sufficient conditions for the existence

of an equalizer of a pair of morphisms in the Kleisli category Sety..

f
Proposition 3.1. Let X —= L(Y), e: E——= L(X) be functions and
9

; wy L(f)
I~ L(X) be the equalizer of the pair L(X) ——% L(Y). The dia-
wy L(g)
gram:
xL(e 12 [,(f)
L(E) ) L(X) Y:; L(Y)
py L£(g)

is an equalizer in Set if and only if e: E —— L(X) is mono with e(E) the

set of all simples, pxL(e) is one to one on ¥; = {nh(t) : t € E}, for each
j € [n] and every nonzero member of I is quasisimple.

Proof. Suppose that

L(e 12 L(f)
ptle) L(X) Y:; L(Y)
my £(g)

L(E)

is an equalizer. Then e = px L(e)ng is mono and the restricted multiplication

© is an isomorphism. So by 2.14, e(F) is the set of all simples. Since pxL(e)

is one to one, it is obviously one to one on ¥; for each j. To prove the last

assertion, let 0 # A € I. Then there exists B € L(FE) such that A = p(B).

By 2.6, B=V ng(t) (t). Therefore by 2.10, A = p(B) = ¢( V ng(t)(t)) =
te B te B

V @(ng(t) (t)). For all t € E with B(t) # 0, by 2.15, go(ng(t)(t)) is subsimple,
te B
and by 2.4, {cp(ng(t)(t))} is mutually incomparable. So A equals a join of

incomparable (f, g)-subsimples.



Equalizer in the Kleisli category of the n-fuzzy... — JMMR Vol. 13, No. 4 (2024) 91

To show the uniqueness of the join representation of A, suppose A = \/ A;,
jeJ
where each A; is subsimple and {4, : j € J} is mutually incomparable. By
2.15, there exists t; € E and 0 < a; < n — 1 such that p=1(A;) = 0y (t;).
Because {4, : j € J} is mutually incomparable, by 2.4, each «; is nonzero and
every two t; are unequal. So we have:
B=p ' (A)=¢ ' (V 4)) =V ¢ ' (4)) = V 0 (t;)
JjeJ jeJ jeJ

On the other hand, we know:

B=V n2")
teB*

It is enough to show that:

Qj - — [, B . *
{n (t)):5 € Jy = {ng" (1) : 1 € B*}
Suppose D = n%jo (tj,), for some jo € J. Since every two t; are unequal, we
have:
B(tjo) = \/ W%j(tj)(tjo) = #0
jeJ

Therefore D = ny° (t;,) = ng(t'j")(tjo).

Now suppose D = ng(to)(to), for some ty € E, with B(ty) # 0. Since

B(tp) # 0 and every two t; are unequal, there is one and only one jj € J such
that t;, = to. The equation B(tg) = \/ Ny (t;)(to) now gives B(ty) = avj,. It

follows that D = ng(t‘))(to) =0y (t jo) This establishes uniqueness.
Conversely, suppose e: E—— L(X) is mono with e(E) the set of all
simples, that every nonzero element of I is quasisimple and px£L(e) is one to

one on Yj, for each j. We claim that puxL(e) is an equalizer of py L(f) and
py L(g). We have:

py L(f)pxL(e) = pypeo) L2(f)L(e) = py L(py )L (f)L(e) =
py L(py L(f)e) =
pry L(py L£(g)e) = py L(py )L (g)L(e) = py pevyL2(9)L(e) = py L(g)px L(e)

So there exists ¢ : L(E) —— 1T such that ip = pxL(e). It suffices to show

that ¢ is an isomorphism.
To show ¢ is epi, let A € I. If A =0, then A = ¢(0), otherwise A= \/ A;
jeJ
where each A; is subsimple and {A; : j € J} is mutually incomparable. We
define B € L(F) as follows:

k if o(nk(t)) = A; for some j € J
B(t) = :
0 otherwise
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’

Since {A; : j € J} is mutually incomparable and by 2.4, (7% (¢)) and (0% (t))

are comparable, if p(n%(t)), @(n,’fj/ (t)) € {A; : 5 € J}, then p(nk(t)) = o(nk ().

So pxL(e)(nk (1)) = uxL(e)(nk (t)). Since by 2.16, pxL(e) is one to one on

5, we get k(1) = 1% (t). So k =k’ and B is well defined. We show ¢(B) = A.

Since each A; is subsimple, by 2.15, for every j € J, there exists t; € E

and k; € [n], such that 4; = o(n (1;))- So A = V 4; = V o (1)) =
JjE JjE

oV nE '(tj)). Since {A; : j € J} is mutually incomparable, by 2.4, every two
=
t; are unequal and each k; is nonzero. So for every t € E,

ky _ )k t=1
ng (t;)() =
V)0 {0 oy
. k; kj t:t]
On the other hand, since A; = ¢(n4 (¢;)), B(t) = 0 tht, So ¢p(B) = A.
J

To show ¢ is mono, let By, By € L(E) and ¢(B1) = ¢(B2). By 2.6, we have
V ngi(t) (t) for i = 1,2. Therefore

teB;
VRO = ol V0 O0) = plBr) = o(B) =
PV )= V eng™®)
teBg teB

If B, = 0, then V/ @(ngl(t)( t) =V @(ngz(t)( t)) = 0, implying for each
teB; teBj

t € Br, o2 (1)) = 0. Now if B # 0, then let ¢t € Bf. We have
uxﬁ(e)(nEl(t)( t) = cp(nBl(t)( t)) = 0. Since by 2.16, uxL(e) is one to one
on X, we get By(t) = 0, that is a contradiction to ¢t € B}. It follows that
Bf =0, thus By = 0. Similarly if By = 0, then so is By. Finally if By # 0 and
By # 0, then 0 # ¢(B1) € I and is therefore quasisimple. By 2.15, for all ¢t € E,
gp(ngl(t) (t)) is subsimple. On the other hand {¢(n Bl(t)( t))} is mutually incom-

parable, because if say ¢(ng Buls )( ) < o(n Bl(t)( t)), then 0 < ¢(ng Buls )( )) < t.

It follows that @(ngl(s)( ) = gp(nE( )) for some j = 1,2,--- ,n — 1. Since

puxL(e) is one to one on X, ,r}Bl(S)( ) =

= 17l.(t), yielding s = t. So @(B;) is a
join of noncomparable subsimples nBl(t)( t), for t € E. Similarly ¢(Bs) is a
join of noncomparable subsimples 17 ( ), for t € E. Since ¢(B1) = ¢(B2)
is quasisimple, {¢(n Bl(t)( t)):t € BY} ={pn Bz(t)( t)) : t € B5}. So for every
t € By, there exists s € B; such that g@(nEl(t)( ) = @(ngz(s)(s)). Again since
pxL(e) is one to one on X, we get nEl(t)( t) = 7752(5)( ), implying s = ¢ and
Bl (t) B2( ) Hence Bl B2
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O
With Setr, the Kleisli category of the n-fuzzy powerset monad L, we have:

Lemma 3.2. The functor U : Setp, —— Set that takes f: X——=Y to
uy L(f) : L(X) ——= L(Y) preserves and reflects equalizers.

Proof. See Proposition 3.2 of [6], with £ = Set and T =1L, where L = [n]. O

f f
Theorem 3.3. Let X —=xY be morphisms in Sety, with X —=% L(Y)
P g

the corresponding functions and j . L(X) be the equalizer of the pair

wy £(f)
L(X) ———= L(Y). The diagram:
ny £(9)
p f
B X————=V
g

is an equalizer in Sety, if and only if the corresponding map e: E —— L(X)

is mono with e(E) the set of all simples, px L(e) is one to one on 3 = {17, (t) :
t € E}, for each j € [n] and every nonzero member of I is quasisimple.

Proof. The proof follows from 3.2 and 3.1. d

Corollary 3.4. If an equalizer of f,g : X ——=Y exists in Sety, then I is
a join-semilattice that is freely generated by a set of subsimples.

Proof. To show I is closed under join, let A, B € I. So for each y € Y, we
have:

py L(F)(A)(y) = ny L(9)(A)(y)

and

py £(f)(B)(y) = py L(9)(B)(y)
Therefore,
max{min{A(z), f(@)(y)} : € X} = max{min{A(z), g(2)(y)} : @ € X}
and

max{min{B(z), f(x)(y)} : z € X} = max{min{B(x), g(x)(y)} : x € X}
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Using general facts that for a,b,¢ € L, min{a V b, ¢} = min{a, ¢} V min{b, c}
and for functions C, D : X — L, max{C(z)VD(z):z € X} =max{C(x) : x €
X} Vmax{D(z):z € X}, by 2.1 for each y € Y we have:

ny L(f)(AV B)(y)

S(@)(y)} e e X}

(y)} Vmin{B(z), f(z)(y)} : v € X}

(1)} : 2z e X} Vmax{min{B(z), f(z)(y)} : v € X}
}iz € X} Vmax{min{B(x),g(z)(y)} : x € X}
}Vmin{B(z),g(z)(y)} : v € X}

= max{min{A(z) vV
= max{min{A(z), f
= max{min{A(z), f
(), 9
(), 9
(z) vV

= max{min{A(z

<
~— ~—

= max{min{A(z),
= max{min{A(z

= puyL(g)(AV B)(y)

Hence AV B € I. Now by 3.3, we know every non-zero member of I is qua-
sisimple and so it is a join of subsimples. O

4. Examples

In this section to illustrate some of the results obtained in the previous
sections, we present several examples.

Example 4.1. In this example, we discuss the results obtained for the case
n = 2. In this case we have L = {0,1}. Given a function f : X — L(Y), for
each x € X, f(x) is the characteristic function x, , where F, = f(x)~*(1) C
Y. By 2.1,

py £(f)(A)(y) = max{min{A(z), f(z)(y)} : # € X}
= max{min{A(z), x,, (y)}: 7 € X}
B {0 ifVa, Fy, 4y
max{A(x):xz € X,F, >y} otherwise
=max{A(z):z € Csy}

where Cyy = {x € X : Fp 3 y}. So uy L(f)(A)(y) = 1 if and only if Cyy N
A~Y(1) # 0 if and only if there is x € Cy, N ATY(1) if and only if there is
x € A7Y(1) such that y € F, if and only ify € |J  Fy. Setting Ay =

z€A-1(1)
U  Fi, we have py L(f)(A) = Xa -
z€A-1(1)
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f ,
Now suppose functions X —= L(Y) are given and [ L(X) is the
g

my £(f)
equalizer of the pair L(X) Y:; L(Y). We have,
my £(g)

I'={Ae LX) : pyL(f)(A) = pyL(g)(A)}
={AecL(X): Xa, = XAQ}
(A L(x): A= A,)

Since n = 2, A € I is simple if and only if there is no B € I such that
0 < B < A. Recalling that, an element a in a lattice with 0 is an atom if it
is non-zero and there is no element strictly between 0 and a, we have A € I
is simple if and only if it is an atom in I, or an I-atom. Note an element
A € I that is an atom in L(X) is an I-atom, but not vice versa. So A € L(X)
is simple provided that Ay = Ag and if 0 < B < A such that By = By, then
B = A. It follows that the subsimple elements are only the simple ones.

Let E be the set of all simples and E<—“— L(X) be the inclusion. The
sets $;, j € L given in 3.3 are Xg ={0: E — L} and ¥1 = {ng(t): E — L |
t € E}. Obuiously uxL(e) is one to one on ¥g. To see it is one to one on ¥
we have, pux L(e)(ne(s)) = uxL(e)(ne(t)) if and only if x,. = X, where A =
ne(s) and B = ng(t) if and only if Ae = Be if and only if e(s) (1) = e(t)~1(1)
if and only if e(s) = e(t) if and only if s =t if and only if nr(s) = ne(t). So
by 3.3,

E—% - X

Y

g
1s an equalizer in Sety, if every non-zero element of I is quasisimple.

We also have nx(z) is in I if and only if Ay = A,, where A = nx(x) if
and only if f(z)71(1) = g(z)~1(1) if and only if f(z) = g(x), as A~(1) = {x}
if and only if x € Eq(f,g), where Eq(f,qg) is the equalizer of f and g. Thus
nx (z) is simple only when x € Eq(f,g).

Example 4.2. In this example we let n = 2. So the results obtained in Example
4.1 applies.

a) We show the existence of simples other than nx (z) for all x.

Let X = {1,2}, Y be any set, f: X — L(Y) be any function with f(1) #
f(2) and let g : X — L(Y) be defined by g(1) = f(2) and g(2) = f(1). Since
Eq(f,9) = 0, nx(z) € I for all x € X. On the other hand the constant
function 1: X — L with value 1 is in I, because 15 = f(1)~H(1)U f(2)"1(1) =
g(2)71(1)ug(1)~1(1) = 1,. Since nx (1) and nx(2) do not lie in I, 1 is simple.

b) We give a pair of morphisms in Sety, whose equalizer exists.

Let X =Y ={1,2,3} and denote by (a,b,c) : X — L the function that takes
1toa,2toband3 toc, wherea,bandc € L ={0,1}. Let f =nx : X — L(X)
and define g : X — L(X) by g(1) = (0,1,0), ¢g(2) = (1,0,0), ¢g(3) = (0,0,0).
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With F, = f(z)"'(1) and G, = g(z)~'(1), we summerize the corrsponding
data in the following table.

v flo)  g@) Fo G

1 (1,0,0) (0,1,0) {1} {2}

2 (0,1,0) (1,0,0) {2} {1}

3 (0,0,1) (0,0,0) {3} 0

Since besides the empty union, only F1UFy; = G1UG2, we get I = {(0,0,0),(1,1,0)}.
So E = {(1,1,0)} and thus the only subsimple is (1,1,0). Obviously every
non-zero member of I is quasisimple. Hence by Fxample 4.1 the equalizer of

1x
X ——————= X exists in Sety,.

g
¢) Finally we give a pair of morphisms in Sety, whose equalizer does not

exist.
With X and Y as in part (b), f = nx and g defined by g(1) = (1,0,0),
9(2) = (1,1,0), g(3) = (1,1,1). We have,

z  fl&) 9@ F Gy
1 (1,0,0) (1,0,0) {1} {1}

2 (0,1,0) (1,1,0) {2} {1,2}
3 (0,0,1) (1,1,1) {3} {1,2,3}

It follows that I = {(0,0,0),(1,0,0),(1,1,0),(1,1,1)}, and so E = {(1,0,0)}.
Thus the only subsimple is (1,0,0). Since (1,1,0) € I is not quasisimple, by
1

Ezxample 4.1 the equalizer of X :;X X does not exist.
g

Example 4.3. In this example we set n =3 so that L = {0,1,2}.
a) We give a pair of morphisms whose equalizer exists in Sety,.
Let X =Y ={1,2} and (a,b) : X — L denote the function that takes 1 to

a and 2 to b. Consider functions X —————=x L(X) , where f(1) = (2,0)
nx

px L(f)
and f(2) = (1,1). Let I be the equalizer of L(X) = L(X).

pxLnx)=lg(x)

For A € L(X),

px £0P)(A)(1) = max{ming A(1), 2}, min{ A(2), 1}}
= max{A(1), min{A(2),1}}



Equalizer in the Kleisli category of the n-fuzzy... — JMMR Vol. 13, No. 4 (2024) 97

and

i £(F)(A)(2) = max{min{A(1), 0}, min{A(2), 1}}
= min{A(2),1}

So
A € I if and only if max{A(1), min{A(2),1}} = A(1) and min{A(2),1} = A(2)
if and only if max{A(1), A(2)} = A(1) and min{A(2),1} = A(2)
if and only if A(2) < A(1) and A(2) <1
if and only if A= (0,0),A=(1,0),A=(2,0),A=(1,1) or A= (2,1).
Therefore I = {(0,0),(1,0),(2,0),(1,1),(2,1)}. It then follows that the set of
simples is E = {(2,0), (1,1)} and that the set of subsimples is {(1,0), (2,0),(1,1)}.
One can easily verify that the non-zero elements of I are quasisimple.

With E<—“— L(X) the inclusion, we show that pxL(e) is one to one on
Yj, for each j € [3]. Since ¥g = {0}, the assertion holds for j = 0. For
1 < j <2, suppose puxL(e)(ng(t1)) = pxLle)(np(tz)), where ty,t; € E. if
t1 # t2, then say t1 = (2,0) and t2 = (1,1). The equality pxLe)(ny(t)) =
px L(e)(n(t1)) can be shown to be equivalent to min{j,t1(1)} = min{j, t2(1)}
and min{j,t1(2)} = min{j,t2(2)}. It follows that min{j,2} = min{j, 1} and
min{j,0} = min{j,1} or equivalently j = min{j,1} and 0 = min{j,1}. So
J = 0 which is a contradiction. It follows that t; = to, and thus ny,(t1) = nk(t2)

as desired. Hence by 3.3 the equalizer of X ———2= X euxists in Sety,.
1x

b) Now we give a pair of morphisms whose equalizer does not exist in Sety,.
Set X ={1,2}, Y ={1,2,3} and define f and g as in the following table.
x flx)  g(@)
1 (1,1,1) (2,2,2)
2 (2,2,2) (1,1,1)
Given any A : X — L one can easily see that for each y € Y,

A0 =m0, 1, 42) = { AR A<
HEL(9)(A)(y) = max{A(1), min{A(2), 1}} = {Ejjjﬁi’f}@)} jijﬁii .

It follows that A € I if and only if (A(1) <1 and A(2) <1)or A(1) = A(2) = 2.
Thus I ={(0,0),(0,1),(1,0),(1,1),(2,2)}. Sincen =3, a simple is an element
of I that has only one non-zero member of I smaller than it. Thus we have no
simples here and therefore no subsimples and no quasisimples. So the condition
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that every non-zero member of I is quasisimple does not hold and thus by 3.3

the equalizer of X ————= X does not exist in Sety,.

g
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