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Abstract. The aim of this paper is to introduce a generalized (3 + 1)-
Kadomtsev-Petviashvili equation which is used to describe waves in a
ferromagnetic medium. The equation’s bilinear form is created and the
new homoclinic test approach based on the Hirota bilinear form is used to
find numerous novel precise solutions. These accurate solutions, which are
depicted in the contour, two-dimensional and three-dimensional graphs,
show the evolution of periodic characteristics. The modulation instability
is used to investigate the stability of the obtained solutions. Additionally,
the development of the fusion soliton is examined, as well as the fusion
phenomenon in the traveling wave solution is described in the physical
discussion. For this evolution equation, the study indicates new mechan-
ical structures and various characteristics. The derived results back up
the model that was proposed. These discoveries open up a new avenue
for us to investigate the concept further.
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1. Introduction
Partial differential equations PDEs first appeared in the study of surfaces

in geometry [14, 15, 22] and a wide range of problems in mechanics. In the
late 19th century, prominent mathematicians from all over the world became
actively interested in the study of a broad range of problems caused by partial
differential equations [31]. The precise solutions of partial differential equations
[21] are necessary to describe complex evolutionary phenomena. Water wave
equations or water wave type equations have attracted a lot of attention in
the domain of mathematics and physics in recent years [43]. In natural science,
there are various nonlinear differential equations which are used to model water
wave phenomena [30,54].
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Although all solitary waves have infinite tails, looking for model equations
that yield solitary waves with finite spans is truly interesting. Unlike solitons,
two such waves would interact for a finite amount of time before becoming
completely oblivious to each other. This is equivalent to searching for wavelets
with compact support. A compact wave is a powerful solitary wave with com-
pact support that disappears into the background. That is, they all vanish in
the same way after they leave a finite core region. In contrast, a compacton
is said to be a compact wave that keeps its shape after interacting with an-
other compacton [32, 33]. Compactons are solitary waves with a finite length.
Consider

(1) ut +
(
ua
(
ub
)
xx

)
x
+ α (um)x = 0.

With a+ b ≡ n ≥ 1, and m ≤ a− 1. Zheng-De and Rosenau [34,53] introduced
and explored a family of totally nonlinear KdV equations n = b = 1, m = 2
and m = 3 to better understand the impact of nonlinear dispersion in the
generation of patterns in liquid drops. The well-known Korteweg–de Vries
equation is obtained by setting n = b = 1 and m = 2 as

(2) ut + 6uux + uxxx = 0.

Here u is the wave amplitude function of the dimensioned space coordinate x
and time component t and the subscripts represent the appropriate derivatives,
is being used to model wave movement as well as stratified internal waves in
fluids, as well as the ion-acoustic wave in plasma. A two-dimensional equation
is the Kadomtsev-Petviashvili (KP) equation [3, 12], often called as the two-
dimensional KdV equation

(3) (ut + 6uux + uxxx)x ± αuyy = 0.

Is often used to describe longitudinal waves in a 1-D shallow fluid having short
amplitude and gradual dependency mostly on horizontal coordinate, as well as
Rayleigh and interior waves in a medium of varying widths and depths [12,38],
here α = +1 is used when surface tension is smaller than gravitational forces.
However, when surface tension is strong, α = −1 is chosen. Several meth-
ods for getting exact solutions to the non-linear partial differential equation
(NLPDE) models have evolved over the past few years, such as the Bernoulli
sub-equation function methods [6], the neural network technique [16, 17], the
φ6-model expansion method [13,18,19], the auxiliary equation method [46], the
reduction perturbation method [2], the sinh-Gordon function method [47], the
improved tanh method [48], the auto-Bäcklund transformation method [25], the
generalized exponential rational function method [5], the modified extended
tanh-function approach [4], the modified auxiliary equation method [1], the
homoclinic technique [49, 50], the symbolic computation method [20], the in-
verse scattering transformation [7], the variational iteration method [23], the
gradient Ricci-Bourguignon soliton [10], the Jacobi elliptic function expansion
method [35–37] and so on.
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The Kadomtsev-Petviashvili equation is being used to model the nonlinear
evolution, small-amplitude long waves in two spatial and one temporal coordi-
nate, gradual dependency on the transverse coordinate. The completely inte-
grable KP model is often used to explain the evolution of quasi-one-dimensional
shallow-water waves in a situation where the influences of surface tension and
viscosity are negligible [11, 26, 29, 39, 40, 44]. We will look at a generalized
(3 + 1)-dimensional Kadomtsev–Petviashvili (GKP) equation in this paper
(4) uxt + uyt + β(uxuy)x + αuyxxx + δuzz = 0.

The analytical function u is based on the temporal coordinate t, the prop-
agation distance x, y and z while α, δ, β are arbitrary constants. The fact
that equation (4) contains the derivative with respect to the time variable t
indicates that the GKP equation is an evolution equation. This indicates that
the behaviour or properties of the system can evolve dynamically with time.
The Kadomtsev-Petviashvili equation describes weakly dispersive and small-
amplitude water waves in the (3+1)-dimensional zone in hydrodynamics. This
type of equation can be found in almost every major industry [26,40].

Wang, Li and He et al [11,40,44] studied the multi-soliton solutions, Wron-
skian and Gramian formulations of the model. Wazwaz [39] used the unified
form of Hirota’s approach to obtain multi-soliton and multi-singular soliton
solutions, the multiple exp-function algorithm was used to obtain many soliton
solutions by Ma et al [29], Liu et al [27] used the extended homoclinic test
method to obtain new exact periodic solitary wave solutions.

This paper’s outline can be found below. Section 2 contains an introduction
and definition of the Hirota bilinear technique. The new (3 + 1)-Kadomtsev-
Petviashvili bilinear transformation is derived in section 3, the Hirota bilinear
operation of the equation is then given, which is supported by a theorem. The
Hirota bilinear approach is used in section 4 to retrieve new soliton solutions
for the GKP model using the homoclinic approach. In the contour, 2D and
3D graphs, the physical aspect of the solitary wave solution is also graphically
depicted. Section 5 aims to use the technique of linear stability analysis to
assess the stability of the presented equation. Section 6 delves into the physical
dynamics of soliton solutions, whereas section 7 delves into the conclusions.

2. Bilinearization technique
Hirota [45] presented a well-known technique for producing numerous soli-

tary wave solutions to fully integrable models named the direct technique. This
approach’s core idea is to provide new variables into the structure of solutions
that are related to the equation’s simplified equivalent form via a new variable
transformation. Some of the more effective applications of the approach are
shown in Ghanbari [8]. Bilinear differential operators were initially presented
to the functions (q, p) of a real value x by Hirota
(5) Dx (q · p) = (∂x1

− ∂x2
) q (x1) p (x2)|x1=x2

.
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We develop the notion to x and t in this expression but usually applied to any
set of real parameters, obviously generalizable to any number of real variables
for multiple repetitions of the operator and when applying the operator to
different values [9, 51]

(6) Dx
kDt

m (p · q) = (∂x1
− ∂x2

)
k
(∂t1 − ∂t2)

m
p (x1, t1) q (x2, t2)

∣∣∣
x1=x2,t1=t2

.

Where k,m ≥ 0 and k+m ≥ 1. Some brief results are offered here to help the
D-operator gains some intuition.
(7) Dx (p · q) = qpx − qxp = −Dx (q.p) .

(8) D2
x (p · q) = qpxx − 2pxqx + qxxp.

(9) DxDt (p · q) = pxtq − ptqx − pxqt + pqxt.

Whenever p = q

(10) D2n−1
x p · p = 0.

D2n
x p · p =

2n∑
k=0

(−1)
2n−k

(
2n

k

)(
∂k
xp
) (

∂2n−k
x p

)
.

On the other hand, bilinear partial derivative forms are related to

(12) Dk
xD

m
t (p · p) =

k∑
i=0

m∑
j=0

(−1)
m+k−j−i

(
k

i

)(
m

j

)(
∂i
x∂

j
t p
)(

∂k−i
x ∂m−j

t p
)
.

For k,m ≥ 1, as shown [28], this bilinear problem’s solution set contains linear
subspaces.

3. Bilinear Transformation of The GKP Equation
The bilinear form of equation (4) is the main idea of this section.
A logarithmic transformation known as p = p(t, y, x, z) was developed as an

auxiliary function [40]

(13) u(t, x, y, z) =
6α

β
(log p)x .

When this equation is applied, certain terms are canceled, which results in
having a quadratic equation in variable p, here p(y, x, z, t) is a variational ex-
pansion. Here, 6α

β is the leading constant. When equation (13) is inserted
in equation (4), the generalized (3 + 1)-Kadomtsev-Petviashvili model can be
expressed as

2 (ppxt − pxpt) + 2α (ppxxxy − pxxxpy − 3pxxypx + 3pxxpxy)(14)
+2 (ppyt − pypt) + 2δ

(
ppzz − p2z

)
= 0.
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The Hirota bilinear algorithm can be used to linearize the given equation[
δD2

z +DxDt +DyDt + αD3
xDy

]
p.p = 0.

Theorem 3.1. p satisfies equation (13) if and only if u(t, x, y, z) = 6α
β (log p)x

is a generalized (3 + 1)-Kadomtsev-Petviashvili model’s solution[
DxDt + αD3

xDy +DyDt + δD2
z

]
p.p = 2 (ppxt − pxpt) + 2 (ppyt − pypt)
+ 2α (ppxxxy − pxxxpy − 3pxxypx + 3pxxpxy)
+2δ

(
ppzz − p2z

)
= 0.

(15)

4. New Traveling Wave Solutions For GKP Equation
To derive the exact solutions utilizing the Hirota operator in this section, we

would use the new homoclinic test technique [3,52] with an arbitrary constant
solution. The function p(t, y, x, z) is assumed to be of the following form

(16) p(t, y, x, z) = h1e
µ + h2e

−µ + h3 sinh (λ) .

µ = mx+ ny + kz − vt.(17)
λ = ax+ by + cz − dt.

Here m, k, n, a, b, c, d and v are free variables that are subject to further de-
termination. The following outcomes are generated by putting equations (16),
(17) and (13) into equation (3), then gathering the coefficients and equating
them to zero

8
(
−mv − nv + 4m3nα+ k2δ

)
h1h2 = 0.(18)

2

(
d (m+ n) + bv − 3a2bmα− bm3α
−a3nα+ a

(
v − 3m2nα

)
− 2ckδ

)
h1h3 = 0.

−2

(
− (a+ b) d− (m+ n) v + a3bα+ 3abm2α

+3a2mnα+m3nα+ δ
(
c2 + k2

) )
h1h3 = 0.

−2

(
d (m+ n) + (a+ b) v

−
(
3a2bm+ bm3 + a3n+ 3am2n

)
α− 2ckδ

)
h2h3 = 0.

−2

(
−d (a+ b)− v (m+ n)

+
(
a3b+ 3abm2 + 3a2mn+m3n

)
α+ δ

(
c2 + k2

) )h2h3 = 0.

2
(
(a+ b) d− 4a3bα− c2δ

)
h2
3 = 0.

2
(
− (a+ b) d+ 4a3bα+ c2δ

)
h2
3 = 0.

Using the aforementioned equations, we can arrive at the following results:
Case I:

(19) d =
4a3bα+ c2δ

a+ b
, h1 = 0, h2 = 0.
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The exact solution of equation (4) is found using the above case along with
equations (13), (16) and (17) as

(20) u1(x, y, z, t) =
6aα coth

(
ax+ by + cz −

(
4a3bα+c2δ

a+b

)
t
)

β
.
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Figure 1. The 3D (a), density (b) and 2D (c) graphs of equa-
tion (20) for a = 0.2, b = 0.01, c = 0.8, β = −1, α = 0.6, δ =
−0.002, y = 1, z = 1.

Case 2:

(21) b = −a, c =
−2a2

√
α√

δ
, h1 = 0, h2 = 0.

The exact solution of equation (4) is found using the case 2 along with equations
(13), (16) and (17) as

(22) u2(x, y, z, t) =
−6aα

β
coth

(
dt+ a

(
−x+ y +

2az
√
α√

δ

))
.

Case 3:

(23) h3 = 0, v =
4m3nα+ k2δ

m+ n
.
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Figure 2. The 3D (a), density (b) and 2D (c) graphs of equa-
tion (22) for n = 7.8, h1 = 0.3, h2 = 8.4, k = 4.2, β = 0.45, δ =
1.8, α = 0.3, y = 1, z = 1,m = 0.5

The kink soliton solution of equation (4) is found using the above case along
with equations (13), (16) and (17) as
(24)

u3(x, y, z, t) =

6αm

(
h1e

mx+ny+kz−
(

4m3nα+k2δ
m+n

)
t − h2e

−mx−ny−kz+
(

4m3nα+k2δ
m+n

)
t
)

β

(
h1e

mx+ny+kz−
(

4m3nα+k2δ
m+n

)
t
+ h2e

−mx−ny−kz+
(

4m3nα+k2δ
m+n

)
t
) .

Case 4:

(25) k =
−2m2

√
α√

δ
, h3 = 0, n = −m.

The exact solution of equation (4) is obtained using the above case together
with equations (13), (16) and (17) as

(26) u4(x, y, z, t) =

6αm

(
h1e

2mx − h2e
2tv+2m

(
y+ 2mz

√
α√

δ

))
β

(
h1e2mx + h2e

2tv+2m
(
y+ 2mz

√
α√

δ

)) .
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Figure 3. The 3D (a), density (b) and 2D (c) graphs of equa-
tion (24) for m = 0.5, n = 7.8, h1 = 0.3, h2 = 8.4, k = 4.2, β =
0.45, δ = 1.8, α = 0.3, y = 1, z = 1.

Case 5:

(27) δ =
v (m+ n)− 4m3nα

k2
, h3 = 0, n = n.

The exact solution of equation (4) is found using the above case along with
Equations(13), (16) and (17) as

(28) u5(x, y, z, t) =
6αm

(
h1e

2(mx+ny+kz) − h2e
2tv
)

β
(
h1e2(mx+ny+kz) + h2e2tv

) .

Case 6:

(29) δ =
d (a+ b)− 4a3bα

c2
, h1 = 0, h2 = 0, n = n.

The exact solution of equation (4) is derived by using the case (6) together
with equations(13), (16) and (17) as

(30) u6(x, y, z, t) =
−6aα

β
coth (dt− ax− by − cz) .
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Figure 4. The 3D (a), density (b) and 2D (c) graphs of
equation (26) for m = 0.6, v = 0.55, h1 = 0.3, h2 = 8.4, β =
0.45, δ = 1.8, α = 0.3, y = 1, z = 1.
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Figure 5. The 3D (a), density (b) and 2D (c) graphs of equa-
tion (28) for n = 0.8, v = 4.2, h1 = 0.3,m = 6.5, h2 = 8.4, k =
9.5, β = 0.45, α = 0.3, y = 1, z = 1.

Case 7:

m =

√
−ab (a− 3b)√

a+ b
, v =

−bd
√
a+ b (a− 3b)

3

4 (−ab (a− 3b))
3
2

,

δ = 0, n =
ab
√
a+ b√

−ab (a− 3b)
, α =

(a+ b) d

4a3b
.(31)
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Figure 6. The 3D (a), density (b) and 2D (c) surfaces of
equation(30) for a = 0.09, b = 0.06, c = 1.08, h1 = 0.3, h2 =
8.4, d = 0.108, β = 0.45, α = −2.08, y = 1, z = 1.

The exact solution of equation (4) is found using the above case along with
equations (13), (16) and (17).

u7(x, y, z, t) =

3d (a+ b)


√

−a(a−3b)be

(a−3b)3b
√

a+bdt

4(−a(a−3b)b)3/2
+

√
−a(a−3b)bx√

a+b
+

ab
√

a+by√
−a(a−3b)b

+kz

h1√
a+b

−
√

−a(a−3b)be
− (a−3b)3b

√
a+bdt

4(−a(a−3b)b)3/2
−
√

−a(a−3b)bx√
a+b

− ab
√

a+by√
−a(a−3b)b

−kz

h2√
a+b

+a cosh [dt− ax− by − cz]h3



2a2bβ

 e
(a−3b)3b

√
a+bdt

4(−a(a−3b)b)3/2
+

√
−a(a−3b)bx

√
a+b

+ ab
√

a+by√
−a(a−3b)b

+kz
h1

+e
− (a−3b)3b

√
a+bdt

4(−a(a−3b)b)3/2
−

√
−a(a−3b)bx

√
a+b

− ab
√

a+by√
−a(a−3b)b

−kz
h2

− sinh [dt− ax− by − cz]h3


.(32)

Case 8:

(33) m = −a, n = −b, v = −d, α =
d (a+ b)

4a3b
, δ = 0.
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Figure 7. The 3D (a), density (b) and 2D (c) surfaces of
equation (32) for a = 2.08, b = 20.8, c = 2.3, k = 0.03, h1 =
0.3, h2 = 0.4, h3 = 1.6, d = 0.108, β = 0.45, y = 1, z = 1.

The exact solution of equation (4) is retrived by using the case above together
with equations (13), (16) and (17) as
(34)

u8(x, y, z, t) =

−3d (a+ b)

(
h1e

2dt+2kz − h2e
2ax+2by

−h3e
dt+ax+by+kz cosh (dt− ax− by − cz)

)
2a2bβ

(
h1e

2dt+2kz + h2e
2ax+2by

−h3e
dt+ax+by+kz sinh (dt− ax− by − cz)

) .

Case 9:

(35) m = a, n = b, v = d, α =
d (a+ b)

4a3b
, δ = 0.

The exact solution of equation (4) is retrieved by using the case above, along
with equations(13), (16) and (17) as
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Figure 8. The 3D (a), density (b) and 2D (c) graphs of
equation (34) for a = 3.02, b = 0.08, c = 1.3, d = 2.028, k =
0.3, h1 = 0.3, h2 = 0.4, h3 = 1.6, β = 0.45, y = 1, z = 1.

(36)

u9(x, y, z, t) =

3d (a+ b)

(
h1e

2(ax+by+kz) − h2e
2dt

+h3e
dt+ax+by+kz cosh (dt− ax− by − cz)

)
2a2bβ

(
h1e

2(ax+by+kz) + h2e
2dt

−h3e
dt+ax+by+kz sinh (dt− ax− by − cz)

) .

Case 10:

(37) a = 0, b = 0, c = 0, h2 = 0, m =
−iδ

1
4

√
k

α
1
4

, n =
iδ

1
4

√
k

α
1
4

.

The exact solution of equation (4) is retrieved by using the case 10, along with
equations(13), (16) and (17) as

(38) u10(x, y, z, t) =
−6ih1α

3
4 δ

1
4

√
ke

(
kz+ iyδ

1
4

√
k

α
1
4

)
h1βe

(
kz+ iyδ

1
4

√
k

α
1
4

)
− h3βe

(
tv+ ixδ

1
4

√
k

α
1
4

)
sinh (dt)


.
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Figure 9. The 3D (a), density (b) and 2D (c) graphs of equa-
tion(36) for a = 1.4, b = 0.3, c = 2.8, d = 2.028, k = −0.4, h1 =
0.3, h2 = 0.4, h3 = 1.6, β = 0.45, y = 1, z = 1.

Case 11:

(39) a = 0, b = 0, c = 0, h2 = 0, m =
−δ

1
4

√
k

α
1
4

, n =
δ

1
4

√
k

α
1
4

.

The exact solution of equation (4) is found using the above case along with
equations (13), (16) and (17) as

(40) u11(x, y, z, t) =
−6h1α

3
4 δ

1
4

√
ke

(
kz+ yδ
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α
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4

)
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(
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4

)
− h3βe

(
tv+ xδ
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√
k

α
1
4

)
sinh (dt)

.

Case 12:

a = 0, h2 = 0, m =
−δ

1
4

√
k

α
1
4

, n =
δ

1
4

√
k

α
1
4

,(41)

d =
c2δ

b
, v =

−bα
1
4 δ

3
4 k

3
2 + 2ckδ

b
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Figure 10. The 3Ds (a), (a1), densities (b), (b1) and 2Ds
(c), (c1) surfaces of equation(38) for v = 4.2, α = 2.04, δ =
−0.8, d = 2.028, k = 18.9, h1 = 2.3, h3 = 0.6, β = 0.45, y =
1, z = 1.

The exact solution of equation (4) is found using the case (12) along with
equations (13), (16) and (17) as
(42)

u12(x, y, z, t) =
−6h1α

3
4 δ

1
4

√
ke

(
kz+ yδ

1
4

√
k

α
1
4

)
 h1βe

(
kz+ yδ

1
4

√
k

α
1
4

)

+h3βe

(
xδ

1
4

√
k

α
1
4

−k
3
2 tα

1
4 δ

3
4 + 2cktδ

b

)
sinh

(
by + cz − c2δ

b t
)

.



Analysis of dynamics of fusion solitons of the generalized... – JMMR Vol. 13, No. 2 (2024) 519

0 2 4 6 8 10

0

2

4

6

8

10

x

t

(b)

0 2 4 6 8 10

-300

-250

-200

-150

-100

-50

0

x

u
1
1
(x
,1
,1
,2
)

(c)

Figure 11. The 3D (a), density (b) and 2D (c) surfaces of
equation(40) for d = 0.08, k = 18.02, v = 1.2, h1 = −0.8, h3 =
0.6, β = 0.45, α = 6.04, δ = 3.8, y = 1, z = 1.

Case 13:

a = 0, n = 0, c =
bm2

√
α+ bk

√
δ

m
√
δ

,(43)

d = bm2α+ 2bk
√
α
√
δ +

bk2δ

m2
, v =

k2δ

m
.

The soliton solution of equation (4) is retrieved by using the case above, to-
gether with equations(13), (16) and (17) as
(44)

u13(x, y, z, t) =
6mα

(
h1e
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2tk2δ

m
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β
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.
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Figure 12. The 3D (a), density (b) and 2D (c) graphs
of equation (42) for a = −0.5, c = 0.3, k = 0.0021, h1 =
0.82, h3 = 0.8, β = 0.6, α = 2.04, δ = 9.8, y = 1, z = 1.

Case 14:

a = a, b = 0, m = 0, c =
na2

√
α+ ak

√
δ

n
√
δ

,(45)

d =
a3n2α+ 2a2kn
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n2
, v =

k2δ

n
.

The exact solution of equation (4) is obtained by using the case above together
with equations(13), (16) and (17) as
(46)

u14(x, y, z, t) =
6ah3αe
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Case 15:

a =
−iδ
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Figure 13. The 3D (a), density (b) and 2D (c) graphs of
equation(44) for b = 0.008,m = 0.85, k = 0.5, h1 = 3.08, h2 =
0.4, h3 = 0.06, β = −3.8, α = 3.04, δ = 3.8, y = 1, z = 1.
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Figure 14. The 3D (a), density (b) and 2D (c) surfaces of
equation(46) for a = 0.8, n = 0.8, k = 0.12, h1 = 0.8, h2 =
2.4, h3 = 0.6, β = 0.45, α = 0.04, δ = 3.8, y = 1, z = 1.

The exact solution of equation (4) is found using the above case along with
equations(13), (16) and (17) as
(48)
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Figure 15. The 3Ds (a), (a1), densities (b),(b1) and 2Ds
(c),(c1) surfaces of equation(48) for d = −0.08, v = 0.02, k =
0.6, h1 = 0.8, h2 = 2.4, h3 = 0.6, β = 0.45, α = 0.04, δ =
3.8, y = 1, z = 1.
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Case 16:

a =
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The exact solution of equation (4) is obtained using the above case together
with equations(13), (16) and (17) as
(50)
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Figure 16. The 3D (a), density (b) and 2D (c) surfaces of
equation (50) for d = 0.08, v = 4.8, k = 0.6, h1 = 0.8, h2 =
2.4, h3 = 0.6, β = 0.45, α = 0.04, δ = 3.8, y = 1, z = 1.
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5. Analysis of the GKP Equation’s Stability
In this part, the linear stability analysis technique [41] will be utilized to

assess the stability of the proposed equation (4). Considering the perturbed
solution of the form
(51) u (t, y, x, z) = r + λv (t, y, x, z) .

A steady state solution of equation (4) can easily be shown for any constant r.
When equation (51) is substituted in equation (4) the result is
(52) βλ2vtxvy + βλ2vtvxy + αλvyxxx + δλvzz + λvxt + λvyt = 0.

Linearizing the above equation in λ

(53) αvyxxx + δvzz + vxt + vyt = 0.

Assuming the above equation (53) has a solution in the form of

(54) v (x, y, z, t) = ei(Lx+My+Nz−µt).

Here L,M and N are normalized wave numbers, one can get the following by
inserting equation (54) into equation (53)

(55) µ (L,M,N) =
δN2 − αL3M

L+M
.

The propagation relationships in equation (55) are studied. The µ(L,N,M)’s
sign implies that the solution will grow or shrink in size as time goes by. The
dispersion relation equation (55)’s steady-state stability is assessed via stimu-
lated Raman scattering, self-phase modulation along with group velocity dis-
persion. When µ(L,M,N) ̸= 0, the wave numbers N , L and M are real and
the steady-state is stable even when changed slightly, whilst µ(L,N,M) = 0,
at this point, the steady-state solution happens to be unstable, the wave num-
bers are infinite and the perturbation increases exponentially. As a result, it
is simple to demonstrate that modulation stability occurs when L+M ̸= 0.

6. Results and discussion
Considering the double linear form of the generalized (3+1)-KP equation,

which physically models the waves occurring in a medium, different exact solu-
tions have been produced with a new technique consisting of the combination
of the exponential and hyperbolic sine function. The new solutions of travel-
ing wave produced for the GKP model are in the form of equation (21). In
the model of this traveling wave, both exponential and hyperbolic form are
designed as a combination. The Hirota binary linear form gives this wave
design model greater significance. One of the generated traveling wave solu-
tions can be chosen to elaborate the discussion about waves in a ferromagnetic
medium. The traveling wave solution chosen without any criteria can play a
key role in understanding nonlinear wave propagation. For the evolution equa-
tion discussed in this study, the findings will shed light on the nonlinear wave
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propagation mechanism through new mechanical structures and new proper-
ties. On the other hand, it can be said that the interaction between solitons for
integrable models is flexible. The interaction between solitons in the KP equa-
tion, like many other integrable equations such as Sharma–Tasso–Olver model
and the Burgers model, may not be entirely elastic [42]. If the circumstances
are right, several solitons may merge or one soliton may divide into several
solitons through the interaction of traveling waves. While the splitting of the
solitons is referred to as the fission phenomena in the literature, the union of
the solitons is referred to as the fusion phenomena [24]. In this study, it will
shed light on the physical fission phenomenon and a simulation of the fission
soliton formation will be included.
Let us employ equation (32) from the traveling wave solutions, which are the
evolution equation’s new mechanical structures. In equation (17), the vari-
ables m, k, n, a, b, c, d and v, which are mathematically arbitrary constants,
have physical meanings as well. The wave frequencies are denoted by a,m,
the number of waves are denoted by k, b, c and the wave speeds are represented
by v, d [51]. The parameter a, which has a direct effect on the frequency,
number and speed of the wave, will be used to further the discussion in this
study. Other than a in equation (32), which is the subject of discussion, all
other parameters are treated as constants. In the light of this information, we
can present the following simulation for different values of a in equation (32).

Figure 17. 3D graphs equation (32) for b = 20, c = 2.3, d =
0.108, k = 0.03, β = 0.45, h1 = 0.3, h2 = 0.4, h3 = 1.6, y =
1, z = 1 and (a) for a = 0.1 (b) for a = 0.15 (c) for a = 0.2
(d) for a = 0.6.
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The mathematical link between the frequency, number and velocity of the
wave, as shown in equations (17) and (32), reveals the intricacy of physical
dynamics. The response of different values of a, which plays an active role in
the dynamics of nonlinear wave distribution and represents the number of waves
physically, to the solution can be observed in Figure 17. The phenomenon of
fusion of two solitary waves at a given moment without collision event can be
clearly observed with the selected parameters. On the other hand, changes in
x position without changing the solitary wave properties for different values
of time parameter t can be observed in the graph below. It is clear from this

Figure 18. 2D graph of equation (32) for a = 0.5, b =
20, c = 2.3, d = 0.108, k = 0.03, β = 0.45, h1 = 0.3, h2 =
0.4, h3 = 1.6, y = 1, z = 1.

analysis that the GKP equation is the only new traveling wave solution for the
sole soliton that results from the union of two solitons. The fission phenomenon
will be shed light on and we can conclude that the fission soliton formation is a
traveling wave at different time values of t, as seen in Figure 18. Additionally, it
can be seen that the advancing wave, whose direction of wave motion depends
on the sign of the wave velocity, also moves to the right in the x’s direction.
The traveling solitary wave, which exhibits soliton properties without spoiling
any of its properties, also contains the fusion phenomenon. As a result, this
traveling wave deserves a nomination for a fusion soliton under the suitable
conditions.
When equation (32) is thoroughly examined, it becomes clear that one of the
key wave dynamics that impacts the traveling wave’s frequency and speed is
the parameter a, which stands for the wave number. Therefore, the velocity
of the traveling wave, its response to the traveling wave solution for various
values of a, can be analyzed. The figure below can be carefully scrutinized for
this analysis.
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Figure 19. 2D graph of equation (32) for b = 1, c = 2.3, d =
−0.108, k = 0.03, β = 0.45, h1 = 0.3, h2 = 0.4, h3 =
1.6, y = 1, z = 1, t = 0.

Figure 19 was created with the intention of analyzing the impact of the a
parameter, which is crucial to the dynamics of the traveling solitary wave on
the velocity of the wave. The wave velocity corresponding to the a = 0.2, a =
0.3, a = 0.4, a = 0.6, value, respectively, is in the form of 1.549, 0.831, 0.529, 0.273.
As a increases, the wave velocity and amplitude decreases. In addition, it can
be noticed that the propagating wave turns into a single soliton as its velocity
decreases. The following three dimensional graphs make these inferences easier
to see.

Figure 20. 3D graphs equation (32) for 2D graph of equation
(32) for b = 1, c = 2.3, d = −0.108, k = 0.03, β = 0.45, h1 =
0.3, h2 = 0.4, h3 = 1.6, y = 1, z = 1, t = 0. and (a) for
a = 0.2 (b) for a = 0.8.

Solitons theory allows for many considerations of traveling wave solutions with
complicated dynamics. Different suggestions for experimental researchers may
be possible as a result of these scientific talks.
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7. Conclusion
In this study, a new approximation technique consisting of the combination

of the hyperbolic sine function and exponential function with the help of Hi-
rota bilinear form for the generalized (3+1)−Kadomtsev-Petviashvili equation
has been used. Through this new technique, many new solitary wave solutions
of the nonlinear evolution model have been achieved. Graphics of these exact
solutions, as seen in three dimensional, two dimensional and contour at any
instant, the evolution of periodic properties are shown. Modulation instability
has been used to search for the stability of the obtained solutions. Linear sta-
bility analysis technique has been used to evaluate the stability of the evolution
equation. In addition, the fusion phenomenon is encountered in the equation
(32) traveling wave solution analyzed for discussion. Fission soliton evolution
have been simulated for different values of the wave number a, which play im-
portant roles in many dynamics of the traveling wave. The findings from this
study open up new horizons for further exploration of the concept.
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