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Abstract. When the probability of selecting an individual from a pop-
ulation is proportional to its length, the resulting distribution of ob-

servation will exhibit length bias. This distribution is referred to as a

length-biased distribution. Let {Yi; i = 1, . . . , n} be a sample from a
length-biased population with cumulative distribution function G(·). In

this paper we consider Cox’s empirical estimator F cn(·) and the smoothed

kernel-type estimator F sn(·) of F (·). Under suitable conditions, the ex-
tended Glivenko-Cantelli theorem for F cn(·) and F sn(·) are proved. Also,

the validity of the extended Glivenko-Cantelli property for the smoother

estimator F sn(·) is investigated using a simulation study.

Keywords: Law of iterated logarithm, Length-biased data, Smoothed es-

timator, Strong consistency.
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1. Introduction

For a given i.i.d. sampleX1, . . . , Xn from an unknown continuous cumulative
distribution function (CDF) F (·),the empirical distribution function is defined
as Fn(t) = 1

n

∑n
i=1 I (Xi ≤ t) where I(·) is the indicator function. Since Xi

,s
are i.i.d. from Strong Law of Large Numbers one can see that

Fn(t) =
1

n

n∑
i=1

I (Xi ≤ t)→ E[I(X ≤ t)] = F (t), as n→∞, w.p.1,

and since Var[I(X ≤ t)] = F (t)(1−F (t)) from Central Limit Theorem we have

Fn(t) ∼ AN
(
F (t), n−1F (t)(1− F (t))

)
, as n→∞.

Also, the classical Glivenko-Cantelli theorem says that Fn converges almost
surely (a.s.) to F (t) uniformly in t ∈ R, i.e.,

sup
t∈R
|Fn(t)− F (t)| → 0, a.s.
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As well as the extended Glivenko-Cantelli lemma (in Fabian and Hannan [5],
pp 80-83) states that supnα |Fn(t)− F (t)| → 0 a.s., for any 0 < α < 1/2.
Although Fn(t) is a consistent estimator for F (t) and it also has the good
properties mentioned above, but the empirical distribution is not smooth as it
jumps by 1/n at each sample realization point. As an alternative Nadaraya
[11] introduced Kernel-type estimators for distribution estimation, based on
symmetric kernels as follows:

F̂n(t) =

∫ t

−∞
fn (x) dx

where

fn(x) =
1

nh

n∑
i=1

K

(
x−Xi

hn

)
,

andK(x) is some density function such thatK(x) < c <∞, limx→±∞ |xK(x)| =
0, and hn → 0 with increasing n. On the other hand, the other form of the
above formula can also be written as follows

F̂n(t) =

∫ t

−∞
f̂(x)dx =

1

n

n∑
i=1

L

(
t−Xi

hn

)
,

where L(t) =
∫ t
−∞K(x)dx is a CDF.

A lot of research has been done on the smooth estimator of the cumulative
distribution function, among which the following can be considered. Yamato
[17] proposed the new smoothed kernel distribution estimator and provided
mild necessary and sufficient conditions for the consistency of it in uniform
norm. Also, under certain regularity conditions the Chung-Smirnov property
has been obtained for it by Winter [16] for the upper bound and Degenhardt [3]
for the lower bound, i.e.

lim sup
n→∞

sup
0<t<∞

{2n/ log log n}1/2
∣∣∣F̂n(t)− F (t)

∣∣∣ = 1 a.s.

Furthermore, it has been shown by Reiss [12] and Falk [6] that asymptotic

performance of Yamato’s estimator is better than empirical function F̂n(·).
Also Fernholz [7] gave a rate of order o(n−1/2) for strong uniform convergence
under Lipschitz condition on F (·) and some regular conditions on kernel func-
tion. Also Yukich [18] found sufficient conditions for this convergence with rate
op(n

−1/2) in a more general set. Almost sure limit behavior for the maximal
deviation between kernel c.d.f. estimator and the true underlying c.d.f. was in-
vestigated by Degenhardt [4] under various smoothness conditions on F (·) and
the class of kernels. In the continuation of the discussion, because in the next
section we need to use the law of iterated logarithm to prove part of theorem
2.1, we will recall the famous classic definition of the law of iterated logarithm.
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Definition 1.1. Let X1, . . . , Xn from F (·) be independent, identically dis-
tributed random variables with means µ and variances σ2. Let Sn = X1 + . . .+
Xn. Then

lim sup
n→∞

|Sn − nµ|√
2σ2n log log n

= 1 a.s.

In this article, based on a special type of sampling called length-biased sam-
pling, we will investigate some properties of CDF estimators. The issue of
length-biased data was proposed for the first time by Wicksell [15] in the con-
text of anatomy which he named corpuscle problem. While observing the
corpuscles, he found out that only those corpuscles are observable that their
size is larger than a certain magnitude and the smaller ones are not visible by
microscope. Then, this phenomenon was investigated by Mcfadden [10] and
Blumenthal [1] with statistical concept. Cox [2] found out that in an indus-
trial sampling, the longer fibers, the bigger the chance of being chosen. This
issue imposed a bias on the results which is later called length-bias. In general,
length-biased data sets arise when the sampling mechanism is such that the
larger the potential observation, the higher the probability of being included
in the final sample.

Now as mentioned before let X be a non-negative continuous random vari-
able with its CDF F (·) and density function f(·). As above mentioned, if the
probability of a selected item for the sample is proportional to its length (X),
the distribution of the observed length is length-biased. In the case of length-
biased data, we consider random variable Y has the length-biased distribution
with CDF G(·) and density function g(·). One can see that the following rela-
tionship between F (·) and its length-biased distribution G(·) will be held,

G(t) =
1

µ

∫ t

0

x dF (x), t ≥ 0,

where µ = E(X) is assumed finite. Throughout this paper we assume that
G(·) is continuous on

R+ = [0,∞).

From this it can be concluded that F (·) is also continuous. An elementary
calculation shows that F (·) is determined uniquely by G(·), namely

(1) F (t) = µ

∫ t

0

y−1dG(y), t ≥ 0.
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Cox [2] proposed an estimator of the common underlying CDF F (·) based

on a sample Y1, . . . , Yn from G(·). Let νn = 1
n

n∑
i=1

1
Yi

, then

F cn(t) = ν−1n

∫ t

0

y−1dGn(y)

=
ν−1n
n

n∑
i=1

1

Yi
I(Yi ≤ t),(2)

where Gn(·) is the empirical estimator of G(·). Vardi [14] showed that the Cox’s
estimator is a non-parametric maximum likelihood estimator for the target
distribution F (·). Horváth [8] established strong uniform consistency without
rate of F cn(·) and showed that under the condition E(Y −1) <∞,

lim
n→∞

sup
0<t<∞

|F cn(t)− F (t)| = 0 a.s.(3)

The empirical estimator F cn(·) is step function and discontinuous. Since,
smoothed estimators have a better performance compared to non-smoothed
estimators, we define the kernel smoothed version of F sn(·) through the convo-
lution of two functions F cn(·) and CDF L(·), i.e.

F sn(t) =

∫ ∞
0

L

(
t− y
hn

)
dF cn(y)

=
ν−1n
n

n∑
i=1

1

Yi
L

(
t− Yi
hn

)
, t > 0,(4)

where hn is an arbitrary sequence of smoothing parameters (or bandwidths)
that fulfills lim

n→∞
hn = 0 and L(·) is a cumulative form of a kernel density

function K(·), i.e.

L(t) =

∫ t

−∞
K(x) dx.

Jahanshahi et al. [9] investigated uniform consistency and asymptotic nor-
mality of (4) and made a one-sample Kolmogorov type of goodness of fit test
with this estimator for length-biased data. Also Zamini et al. [19] established
a Berry-Esseen type bound for the smoothed estimator in this setting

The purpose of this paper is to obtain a more general result of (3), as well
as the extended Glivenko-Cantelli theorem for the smoothed estimator F sn(·).
In the following, we prove a limit theorem consisting of strong consistency for
F sn(·). To this end, some assumptions are required which are presented below:

Assumptions.

A1. The kernel function K(·) is symmetric, of bounded variation on (−1, 1).
In addition K(t) = 0 if t /∈ (−1, 1) and satisfies the following conditions:∫ 1

−1K(t)dt = 1,
∫ 1

−1 tK(t)dt = 0,
∫ 1

−1 t
2K(t)dt = m <∞.
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A2. Suppose that there exists a sequence of positive real number γn such
that

∑∞
n=1G(γn) <∞.

A3. Suppose that |f(s)| ≤ M for s in a neighborhood of t, where M is a
constant depending only on t.

A4. Let γn = o(n−β) for any β > α ≥ 0, and β + α < 1
2 .

A5. Let Y is a non-negative random variable with its CDF G(·) then we
suppose that E(Y −1) <∞ and E(Y −2) <∞.

Discussion on the Assumptions. Assumption A1 is widely used in the
literature of kernel density estimators and is assumed for extended Glivenko-
Cantelli of F sn(·). Assumption A2 is required to guarantee that for each n
enough large, we have G(y) = 0 for y < γn . Assumption A3 is used in Theo-
rems 2.1 and 2.3 to obtain the rate of smoothed and non smoothed estimators
that were mentioned before. We note that Assumption A4 in Theorems 2.1
and 2.3 is needed to find the certain rate of strong consistency of F cn(·) and
F sn(·). Assumption A5 is used in part I1 in Theorem 2.1.

2. Main results

In the following theorems, we give the extended Glivenko-Cantelli theorem
for the Cox’s estimator F cn(·) and the smoother estimator F sn(·). It is worth
noting that all the main theorems and their proofs have been presented and
proven by the authors in this section for the first time.

Theorem 2.1. Let 0 ≤ α < 1/4. Suppose that 0<µ<∞ and Assumptions A2-
A5 are satisfied. Then, we have

lim
n→∞

sup
0≤t<∞

nα|F cn(t)− F (t)| = 0, a.s.(5)

Proof. It can clearly be seen that

sup
0≤t<∞

nα|F cn(t)− F (t)| ≤nα|ν−1n − µ|
∫ ∞
0

y−1dGn(y)

+ µnα sup
0≤t<∞

∣∣∣ ∫ t

0

y−1d (Gn(y)−G(y))
∣∣∣

≤nα|ν−1n − µ|
∫ ∞
0

y−1dGn(y) + µnα
∫ γn

0

y−1dGn(y)

+ µnα
∫ γn

0

y−1dG(y) + 2µγ−1n nα sup
γn≤t<∞

|Gn(t)−G(t)|

=:I1 + I2 + I3 + I4.(6)
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But according to (1), we have

E(νn) = E(
1

n

n∑
1

1

Yi
) = E(Y −11 )

=

∫ ∞
0

y−1g(y)dy =
1

µ

∫ ∞
0

y−1yf(y)dy =
1

µ
.(7)

Also with a little calculation it can be shown that

V ar(νn) =
γ2

n
,

where γ2 =
∫∞
0
y−2dG(y)−µ−2 and according to Assumption A5, it is obvious

that γ2 <∞. On the other hand one can see that

|ν−1n − µ| =
∣∣∣∣ 1

µ−1
− 1

νn

∣∣∣∣ =
|νn − µ−1|
µ−1νn

=
|
∑n
i=1

(
Y −1i − µ−1

)
|

nµ−1νn

=

√
2nγ2 log log n

nµ−1νn

|
∑n
i=1

(
Y −1i − µ−1

)
|√

2nγ2 log log n
.

By the law of the iterated logarithm for independent identically distributed
random variables as mentioned in the definition 1.1,

lim sup
n→∞

|
∑n
i=1

(
Y −1i − µ−1

)
|√

2nγ2 log logn
= 1 a.s.

Furthermore, based on (7) and the strong law of large numbers, it follows that
νn −→ µ−1 a.s, so

lim sup
n→∞

√
n

log log n
|ν−1n − µ| =

√
2γµ2 a.s.

Now, based on 0<µ<∞, we have

|ν−1n − µ| = O

(√
log logn

n

)
a.s.

But this is a reasonable condition to assume
∫∞
0
y−1dGn = 1

n

∑n
i=1

1
Y −1
i

<∞,
then one can see that

I1 = O
(
nα−1/2

√
log log n

)
, a.s.,

and therefore, since α<1/4, we obtain that

I1 = nα|ν−1n − µ|
∫ ∞
0

y−1dGn(y) −→ 0, a.s.(8)
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To deal with I2, if the Assumption A2 is satisfied, it is an immediate conse-
quence of Theorem 1 of Section 10.1 of Shorack and Wellner [13] that P (min(Y1, . . . , Yn) ≤
γn, i.o.)=0, so

lim
n→∞

nα
∫ γn

0

1

y
dGn(y) = 0, a.s,

it follows that

I2 = µnα
∫ γn

0

1

y
dGn(y) −→ 0, a.s.(9)

On the other hand according to Assumption A3, we have

I3 = nαµ

∫ γn

0

y−1dG(y) = nα
∫ γn

0

f(y)dy ≤Mnαγn.

Now, according to Assumption A4, we have γn.n
β −→ 0 for any β > α ≥ 0,

that implies γn.n
α −→ 0. So

I3 = nαµ

∫ γn

0

y−1dG(y) −→ 0, a.s.(10)

For I4, we use the extended Glivenko-Cantelli lemma mentioned in Fabian and
Hannan [5] [pp. 80-83], thus

I4 = 2µγ−1n nα sup
γn≤t<∞

|Gn(t)−G(t)| → 0, a.s.(11)

So, by substituting (8)-(11) into (6), the proof is completed.
�

Remark 2.2. Note that considering α = 0, (5) reduces to Theorem 1 in Horváth
[8].

Theorem 2.3. Suppose that Assumption A1 is satisfied. Then under the
assumptions of Theorem 2.1 and lim

n→∞
nαhn = 0 for 0 ≤ α < 1/4, we have that

(12) lim
n→0

sup
0≤t<∞

nα|F sn(t)− F cn(t)| = 0, a.s.

Proof. Using change of variables and integration by parts, one can see that, for
any t > 0 , u ∈ [−1, 1] and large n,

|F sn(t)− F cn(t)| ≤
∫ 1

−1
|F cn(t− hnu)− F cn(t)|dL(u)

≤
∫ 1

−1
|F cn(t− hnu)− F (t− hnu)|dL(u) +

∫ 1

−1
|F cn(t)− F (t)| dL(u)

+

∫ 1

−1
|F (t− hnu)− F (t)|dL(u)

≤ 2 sup
06t<∞

|F cn(t)− F (t)|+
∫ 1

−1
|F (t− hnu)− F (t)|dL(u).(13)
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By the Mean Value Theorem and Assumption A3, we can obtain

|F (t− hnu)− F (t)|K(u)du ≤Mhn.

So according to
∫ 1

−1K(t)dt = 1, one can see that

sup
06t<∞

∫ 1

−1
|F (t− hnu)− F (t)|K(u)du = O (hn) .

Now, according to condition limn→0 n
αhn = 0, it is obvious that

lim
n→0

sup
06t<∞

nα
∫ 1

−1
|F (t− hnu)− F (t)|K(u)du = 0.(14)

On the other hand, according to Theorem 2.1, we have

lim
n→∞

2 sup
0≤t<∞

nα|F cn(t)− F (t)| = 0, a.s.(15)

Hence, substituting (15) and (14) in (13), we obtain

lim
n→0

sup
06t<∞

nα|F sn(t)− F cn(t)| = 0.

Now, the proof is completed. �

Remark 2.4. In the following, as an example for Theorem 2.3, we will consider
the correctness of (12) based on simulation studies. For this purpose, we as-
sume that the unbiased data have a gamma(1, 2) distribution. Therefore, it is
obvious that according to (1), one can see that the random sample Y1, . . . , Yn
must be drawn from the gamma(2, 2) distribution. Also, F cn(·) and F sn(·) are
obtained based on Formulas (2) and (4) respectively. The kernel used in F sn(·)
is the Epanechnikov kernel, which also fulfills Assumption A1. We have con-
sidered α = 0.1, which applies to the conditions of this Theorem. Furthermore,
the bandwidth parameter hn is obtained from the cross-validation method.

As can be seen in the Figure 1, with the increase of the sample size n,
the desired value tends to zero, that is a confirmation for the correctness of
Theorem 2.3.
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Figure 1. Values of sup
0≤t<∞

nα|F sn(t)− F cn(t)| for different n.

Corollary 2.5. Under the Assumptions of Theorems 2.1 and 2.3, we have

lim
n→0

sup
0≤t<∞

nα|F sn(t)− F (t)| = 0, a.s.

Proof. Using the triangle inequality, we have

|F sn(t)− F (t)| ≤ |F sn(t)− F cn(t)|+ |F cn(t)− F (t)| .(16)

According to Theorem 2.1

lim
n→∞

sup
0≤t<∞

nα|F cn(t)− F (t)| = 0, a.s.(17)

On the other, based on Theorem 2.3

(18) lim
n→0

sup
0≤t<∞

nα|F sn(t)− F cn(t)| = 0, a.s.

So by placing (17) and (18) in (16) the proof is completed. �

3. Concluding

In this paper, we gave an overview of the Asymptotic properties such as the
Chung-Smirnov property and the law of the iterated logarithm for the kernel-
type estimators of CDF function. Also, based on length-biased sampling, we
proved the extended Glivenko-Cantelli theorem for non-smooth estimator F cn(·)
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and the smooth estimator F sn(·). In the following, we checked the correctness
of Theorem 2.3 in a special case by using the simulation study.
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