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Abstract. In this article, we discuss the concept of completely simple-

semigroups, which serves as a natural extension of the group structures.
These semigroups, also known as generalized-groups, provide an inter-

esting generalization beyond the realm of the groups. Many scientists
have investigated various applications of generalized-groups. Notably,

this algebraic structure has connections to the unified gauge theory. In

this article, we investigate the structures and properties of generalized-
groups, providing examples and results within this fascinating subject.

Specially, we show that the generalized Lagrange Theorem may not be

true for generalized-groups.
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1. Introduction

In 1998, M. R. Molaei [6] introduced the generalized-groups as an extension
of the traditional group structure. A generalized-group is a set G 6= ∅ equipped
with a binary operation called multiplication, satisfying the following rules for
each x, y, and z in G:

• x(yz) = (xy)z; (Associativity)
• For each x in G, there is exactly one corresponding element e(x) in G

such that xe(x) = e(x)x = x; (Identity element(s))
• For each x in G, there is a corresponding element x′ in G such that
xx′ = x′x = e(x). (Inverse element)

Remarkably, J. Araujo and J. Konieczny [5] established the equivalence between
the generalized-groups and the completely simple semigroups. Specifically, con-
sider G be a semigroup where for each element x in G, we had G ·x ·G = G, and
consider α and β are idempotent elements in G such that α · β = β ·α, then G
qualifies as a completely simple semigroup. In this article, we collectively refer
to these structures as generalized-groups. Many scientists, including Professors
V. V. Vagner [10], M. R. Molaei [7], M. R. Ahmadi Zand and S. Rostami [3],
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P. G. Romeo and K. K. Sneha [8], A. A. A. Agbola [2], have explored vari-
ous applications of generalized-groups. It should be noted that this algebraic
structure is related to the unified gauge theory.

2. Generalized Groups

In this section, we explore some properties of the generalized-groups.

Definition 2.1. [9] Suppose G 6= ∅ be a set, and assume that “?” denotes a
binary operation over the set G. We introduce the following terms:
1. If G is a Groupoid and if for each g and h in G, the equations g ? x = h and
y ? g = h have solutions in G, then couple (G, ?) is called a quasi-group.
2. If (G, ?) is a groupoid and for each g, h, and k in G, we have (g ? h) ? k =
g ? (h ? k), then (G, ?) is classified as a semigroup.

Definition 2.2. [6] A semigroup (G, ?) which satisfies the following condi-
tions, is called a generalized-group:

• For each element g in G, there is a unique element e(g) in G such that
e(g) ? g = g ? e(g) = g.

• For each element g in G, there is an element g−1 in G such that g−1?g =
g ? g−1 = e(g).

Example 2.3. Every group is a generalized-group. It is well-known that ev-
ery group naturally falls into the category of generalized-groups. Specifically,
consider a group G. We can define the set of elements {e(g) : g ∈ G} to be
equal to the singleton set {e}. This simple observation highlights the inherent
connection between groups and generalized-groups.

Example 2.4. [5] Let G be a group and e be the identity element of G.
Additionally, let Γ 6= ∅ and I 6= ∅ be sets. Consider the Γ× I matrix P = (gγi)
over the group G. Now, for elements i, j in I, and γ, µ in Γ, as well as k, h
in G, we define “?” the binary operation on the set I ×G× Γ as follows:

(i, k, γ) ? (j, h, µ) := (i, kgγjh, µ)

Observations:

• The identity element of (i, k, γ) the resulting structure is given by:

e((i, k, γ)) = (i, g−1
γi , γ)

• The inverse of (i, k, γ) is:

(i, k, γ)−1 = (i, g−1
γi k

−1g−1
γi , γ)

Hence, the structure (I × G × Γ, ?) forms a generalized-group. Moreover, we
have the union:

I ×G× Γ :=
⋃

(i, γ)∈I×Γ

{i} ×G× {γ}
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Each group {i}×G×{γ} isomorph to the original group G. Hence, I ×G×Γ
is the union disjoint Card(I × Γ) isomorphic groups to G.

Definition 2.5. [6] Consider a generalized-group (G, ?). If for all g, h in G:
e(g ? h) = e(g) ? e(h), then (G, ?) is called as a normal generalized-group.

Example 2.6. In general, based on the concepts introduced in Example 2.4,
the structure (I ×G× Γ, ?) is not a normal generalized-group. We have:

• The identity element of the product (i, k, γ) ? (j, h, µ) is:

e((i, k, γ) ? (j, h, µ)) = e((i, kgγjh, µ)) = (i, g−1
µi , µ)

• The product of individual identity elements is:

e((i, k, γ)) ? e((j, h, µ)) = (i, g−1
γi , γ) ? (j, g−1

µj , µ) = (i, g−1
γi gγjg

−1
µj , µ)

Interestingly, it can be demonstrated that (I×G×Γ, ?) is a normal generalized-
group if and only if there exist functions θ : I −→ G and σ : Γ −→ G such
that:

gγi = σ(γ)θ(i) for all γ ∈ Γ, i ∈ I.

Example 2.7. Consider a field F and H to be the set defined as:

H =

{[
0 0
x y

]
| 0 6= y, x ∈ F

}
We claim that H forms a normal generalized-group under ordinary matrix mul-
tiplication. In fact,

For any element (

[
0 0
x y

]
) in H, we have: e

([
0 0
x y

])
=

[
0 0

xy−1 1

]
, and([

0 0
x y

])−1

=

[
0 0

x2y−1 y−1

]
. Then, if (

[
0 0
x y

]
) and (

[
0 0
z t

]
) be in H. Their

product is: [
0 0

xy−1 1

] [
0 0

zt−1 1

]
=

[
0 0

zt−1 1

]
.

Hence, e

([
0 0
x y

])
e

([
0 0
z t

])
=

[
0 0

xy−1 1

] [
0 0

zt−1 1

]
=

[
0 0

zt−1 1

]
. Hence,

H with the ordinary matrix multiplication, is a normal generalized-group.

Definition 2.8. [6] A generalized-group (G, ?) is called an Abelian generalized-
group if (g ? h = h ? g) for all g, h ∈ G.

It can be shown that, if G is an Abelian generalized-group, then the cardi-
nal number of the set {e(g)|g ∈ G} is one, so G is an Abelian group. Then all
Abelian generalized-groups are Abelian groups.

Some parts of the following Theorem can be found in [1] and [4]. They are
mentioned in the proof.
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Theorem 2.9. Assume that (G, ?) be a generalized-group and g, h be two
arbitrary elements in G. Then, we have:

(1) e(e(g)) = e(g),i.e., implying that e(g) is unique.
(2) e(g) is an idempotent element.
(3) g−1 is a unique element, and (g−1)−1 = g.
(4) If (G, ?) be a normal generalized-group where the elements e(g) and

h−1 commute together, then (g ? h)−1 = h−1 ? g−1.
(5) For each integer number n, e(g)n = e(gn) = e(g).
(6) For each x ∈ G, the set G(x) = {y ∈ G : e(x) = e(y)} forms a group,

and we have, G =
⋃
x∈GG(x), making G a union of disjoint groups

G(x).
(7) If the cardinal number of G is finite, then there is a positive integer

number k such that gk = e(g).

Proof. The proof of certain aspects of this theorem can be found in the refer-
ences. Now, let’s break down the proof into different parts:
Proof of parts (1), (2), (3), and (4) can be found in reference [1].
Proof of Part (5): We consider the following cases for n:
Case 1: n = 0, let’s consider g0 = e(g). Then, we have, e(g0) = e(e(g)) = e(g).
Case 2: n > 0, we observe that, gn ? e(g) = gn−1 ? g ? e(g) = gn−1 ? g = gn =
g ? gn−1 = e(g) ? g ? gn−1 = e(g) ? gn.
Case 3: n < 0, since −n > 0, referring to Case 2, we deduce that, e(gn) =
e((gn)−1) = e(g−n) = e(g).
Proof of the first part of (6) and (7) can be found in reference [4].
Proof the second part of (6), let g ∈ G. Since g is in G(g), we have G ⊆⋃
x∈GG(x) ⊆ G. Therefore, G =

⋃
x∈GG(x). �

Theorem 2.10. Suppose that (G, ?) be a generalized-group, and let g ∈ G. If
the cardinal number of G is finite, then for g ∈ G the cardinality of the subgroup
G(g) divides the cardinality of G.

Proof. By Theorem 1 in [5], there is a finite group H and finite non-empty sets
I and Γ and a Γ× I matrix P with entries gγi ∈ H, such that G is isomorphic
to the generalized-group I×H×Γ. Now, let’s focus on an arbitrary member g
of G. This corresponds to an element (j, h, µ) in the product set I×H×Γ. We
can define a subgroup G(g) within G. This subgroup is isomorphic to the group
(I × H × Γ)(j,h,µ) = j × H × µ. Therefore, we have the following cardinality
relationships:

Card G(g) = Card {j} ×H × {µ} = Card H

i.e., Card G = Card I ×H × Γ = Card I ×Card H ×Card Γ. Therefore, the
cardinality of G(g) divides the cardinality of G. �

Theorem 2.11. Let (G, ?) be a generalized-group, and the cardinal number of
G be finite, and let G =

⋃
g∈AG(g), which, A 6= is a subset of G such that for
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all x, y ∈ A and x 6= y, it implies G(x) 6= G(y). Then, the cardinal number of
A divides the cardinal number of G.

Proof. According to the symbols introduced in Theorem 2.10, we have the
equality: Card A = Card I×Card Γ. Therefore, we can express the cardinality
of G as follows, Card G = Card (I ×H × Γ) = Card I ×Card H ×Card Γ =
Card A×Card H. In other words, the cardinal number of A divides the cardinal
number of G. �

Definition 2.12. Consider a generalized-group denoted as G with the binary
operation ?. Let S be a non-empty subset of G such that (S, ?) is also a
generalized-group, where, ? is the same binary operation on G, limited on
S × S. We recalled that S is a generalized-subgroup of G and is denoted as
S ≤ G.

Theorem 2.13. The intersection of an arbitrary family of generalized-subgroups
of a generalized-group G is generalized-subgroup of G.

Proof. Let {Si}i∈I be an arbitrary family of generalized-subgroups of a generalized-
group G, we have:

x ∈
⋂
i∈I

Si =⇒ x ∈ Si, ∀i ∈ I =⇒ x ∈ G, ∃! e(x) ∈ G =⇒ e(x) ∈ Si, ∀i ∈ I

=⇒ e(x) ∈
⋂
i∈I

Si.

x ∈
⋂
i∈I

Si =⇒ x ∈ Si, ∀i ∈ I =⇒ x−1 ∈ Si, ∀i ∈ I =⇒ x−1 ∈
⋂
i∈I

Si

x, y ∈
⋂
i∈I

Si =⇒ x, y ∈ Si, ∀i ∈ I =⇒ x ? y ∈ Si, ∀i ∈ I =⇒ x ? y ∈
⋂
i∈I

Si

Therefore,
⋂
i∈I

Si is generalized-subgroup of G. �

Remark 2.14. The union of some generalized-subgroups of a generalized-group
maybe not a generalized-subgroup.

Theorem 2.15. Consider a generalized-group denoted as G, and let S ≤ G.
Assume that x ∈ S. Then, the subgroup S(x) is a subgroup of G(x). In the
special case where G is finite, we have:

Card S(x) divides Card G(x) and therefore Card S(x) divides Card G.

Proof. Given that S is a subset of G, we have:

S(x) = {y ∈ S : e(y) = e(x)} ⊆ {y ∈ G : e(y) = e(x)} = G(x).

We observe that both S(x) and G(x) are groups, and S(x) is a subgroup of
G(x). If G is a finite generalized-group, then G(x) is also finite. By using the
Lagrange Theorem, we conclude that the cardinal number of S(x) divides the
cardinal number of G(x). Furthermore, based on Theorem 2.10, the cardinal
number of G(x) divides the cardinal number of G. Therefore, the cardinal
number of S(x) must also divide the cardinal number of G. �
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Theorem 2.16. Suppose G is a generalized-group, and S is a generalized-
subgroup of G (denoted as S ≤ G). Then, there exist sets B and A such that,
B ⊆ A ⊆ G and we have:

S =
⋃
x∈B

S(x) and G =
⋃
x∈A

G(x).

Moreover, for all y and z in A (where y 6= z), we have Gy ∩ Gz = ∅. In the
special case where G is finite, we find that, Card S devides Card G if and only
if Card B divides Card A × [G(x) : S(x)], which, [G(x) : S(x)] is the index of
subgroup S(x) of the group G(x).

Proof. Assuming that B be a subset of S, such that, S =
⋃
x∈B S(x), and for

each y, z ∈ B where (y 6= z), it implies Sy ∩ Sz = ∅. Since S(x) ≤ G(x) for all
x ∈ B, we can extend B to the set A such that: G =

⋃
x∈AG(x), and for each

y, z ∈ A where (y 6= z), it implies Gy∩Gz = ∅. Now, considering a fixed element
x ∈ B, we have: Card G = Card A × Card G(x) and Card S = Card B ×
Card S(x). By Theorem 2.15, we know that Card S(x) divides Card G(x).
Therefore, Card S divides Card G if and only if Card B ×Card S(x) divides

Card A×Card G(x). This is equivalent to Card B dividing Card A×Card G(x)
Card S(x)

if and only if Card B dividing Card A× [G(x) : S(x)]. �

Corollary 2.17. Assume that G is a finite generalized-group, and H is a
generalized-subgroup of G. It is conceivable that the generalized Lagrange The-
orem does not hold for H and G, meaning that the cardinality of H may not
evenly divides the cardinality of G.

Proof. Referring to Theorem 2.16, we recognize that it is essential for the num-
ber of elements in S to divide the number of elements in G if the number of
elements in B divides the number of elements in A. Consequently, we can de-
liberately select sets A and B such that the cardinality of B does not divide
the cardinality of A. �

3. Conclusion

In this article, we discussed the concept of generalized-groups, which serves
as an extension of the group structures. We investigated the structures and
properties of generalized-groups, providing examples and results within this
fascinating subject. Finally, we show that the generalized Lagrange Theorem
may not be true for generalized-groups.
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